

#### Controversies and problems in surgery 2017 S.C Tsotetsi



#### Introduction

- Acute Vs Chronic limb ischaemia
- prompt recognition and diagnosis, followed by rapid restoration of blood flow to the ischemic extremity to minimize risk of limb loss and subsequent reperfusionrelated local and remote organ injury.
- most often occurs in aged patients, who often have significant comorbidities, and can lead to their demise even after successful
- revascularization of a limb
- Litigation





Box 1. Common causes of embolism and thrombosis in acute limb ischemia.

#### Embolism

- Atherosclerotic heart disease
  - Acute myocardial infarction, left ventricle aneurysm
- = Arrhythmia (atrial fibrillation)
- Valvular heart disease
  - Rheumatic, degenerative, congenital, bacterial, prosthetic
- Artery-to-artery
  - Aneurysm (popliteal), atherosclerotic plaque
- = Idiopathic
- latrogenic
- Paradoxical embolus
- Trauma
- Other
  - Air, amniotic fluid, fat, tumor, drugs

#### Thrombosis

- Atherosclerosis and arterial plaque rupture
- Low-flow states
  - Congestive heart failure, hypotension, systemic shock
- Hypercoagulable states
- Vascular grafts
  - Disease progression, intimal hyperplasia, mechanical
- Trauma
- Dissection
- = External compression (popliteal entrapment or adventitial cyst with thrombosis)
- latrogenic
- Vasospasm with thrombosis (ergotism)
- Arteritis or HIV arteriopathy with thrombosis

Data taken from [15]

## Phlegmasia cerulia dolens



## Cardiac sources of emboli





| Table 1. Differentiating embolic versus thrombotic acute limb ischemia.      |                                                                                 |  |  |  |  |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|--|--|
| Embolic                                                                      | Thrombotic                                                                      |  |  |  |  |
| History                                                                      |                                                                                 |  |  |  |  |
| Sudden onset, severe                                                         | Vague, progressive onset, less severe                                           |  |  |  |  |
| Cardiac history                                                              | No recent cardiac events                                                        |  |  |  |  |
| No peripheral arterial disease                                               | History of peripheral arterial disease symptoms                                 |  |  |  |  |
| No prior vascular surgery                                                    | Often history of surgical or catheter-based interventions                       |  |  |  |  |
| Physical exam                                                                |                                                                                 |  |  |  |  |
| Arrhythmia                                                                   | No arrhythmia                                                                   |  |  |  |  |
| Severe signs of ischemia                                                     | Less severe signs of ischemia                                                   |  |  |  |  |
| Cold and mottled                                                             | Cool and cyanotic                                                               |  |  |  |  |
| May have normal contralateral limb without<br>signs of chronic limb ischemia | Abnormal contralateral limb pulses often with signs of<br>chronic limb ischemia |  |  |  |  |
| Clear demarcation                                                            | No distinct demarcation                                                         |  |  |  |  |
| Data taken from [13].                                                        |                                                                                 |  |  |  |  |



Figure 2. A thrombotic occlusion, with abundant collaterals, at the site of a previously placed stent graft (A); versus an embolic occlusion with a filling defect and a paucity of collaterals (B).

# Symptoms and signs

- 6 P's
- Pain
- Pallor
- Pulselesness
- Paresthesia
- Paralysis
- poikilothermia

# **Stages of Acute Limb Ischemia**

| Stage | Description and<br>Prognosis                                                               | Findings                         |                                | Doppler Signal       |           |
|-------|--------------------------------------------------------------------------------------------|----------------------------------|--------------------------------|----------------------|-----------|
|       |                                                                                            | Sensory<br>Loss                  | Muscle<br>Weakness             | Arterial             | Venous    |
| Î     | Limb viable, not<br>immediately threatened                                                 | None                             | None                           | Audible              | Audible   |
| I     | Limb threatened                                                                            |                                  |                                |                      |           |
| lla   | Marginally threatened, salvageable if                                                      | Minimal (toes)<br>or none        | None                           | Often inaudible      | Audible   |
| llb   | Immediately threatened,<br>salvageable with immediate<br>revascularization                 | More than<br>toes,<br>associated | Mild or moderate               | Usually<br>inaudible | Audible   |
| ш     | Limb irreversibly damaged,<br>major tissue loss or<br>permanent nerve damage<br>inevitable | Profound, anesthetic             | Profound,<br>paralysis (rigor) | Inaudible            | Inaudible |



## Acute limb Ischaemia

#### Management

#### Recognize

Start unfractionated heparin

- Loading dose 75 100 IU/Kg (approximately 5000 IU)
- Followed Infusion of heparin -18U/kg (approximately -1000U/hr)
- Refer to vascular surgeon
- Pain relief
- Keep fasting
- Inform theatre and anaesthetist
- Consent for embolectomy and fasciotomy
- Check the Viability of the limb note.

## Investigations

#### **Doppler Ultrasonography**

- Detection of blood velocity using ultrasonography
- Normal is triphasic: peak in systole, reversal of flow in early diastole and forward diastolic flow
- Earliest change: loss of reversal of flow so biphasic
- As obstruction increases widening of diastolic peak occurs and flow monophasic

#### **Duplex Ultrasonography**

- B mode imaging information about vessel wall and peak systolic velocity (PSV)
- Ratio of PSV at stenosis to proximal segment of 2 denotes 50% obstruction and 4 -70%
- Non invasive, cheap has largely replaced routine use of conventional

#### arteriography







#### Acute limb Ischaemia

- Surgery
  - Embolectomy with fogarty catheter
  - Can be done under LA











Exhibit 202194\_05X



















## Upper limb ischemia

















### Aorta-Iliac occlusion













# Infra-inguinal



## leg exposures



## Knee dislocation





#### Whey revascularize for a non-viable limb?



### Complications of Acute limb Ischaemia

- Limb loss
- Death

- Compartment syndrome
- Reperfusion effects
- Volkmann ischemic contracture

## Ischemia-reperfusion injury

- Ischemia refers to cessation or reduction of blood flow to and from a tissue.
- Reperfusion injury refers to damage to tissue caused when blood supply returns to the tissue after a period of ischemia.
- Reperfusion Syndrome = local + systemic signs of reperfusion injury

## Main Role players

#### Ischaemia

- ATP and mitochondrial function
- Gene Activity

AP-1

HIF-1

VEGF

GLUT-1

COX-2

#### reperfusion

- Reactive Oxygen species
- Eicosanoids (PG, Thromboxane, Leucotrines)
- Nitric oxide
- Endothelin
- Cytokines (TNFα, IL-1, 6,8)
- Neutrophils
- Complement activation
- No-flow phenomenon

# Local consequences of I/R injury in skeletal muscle

#### Revascularization of ischemic skeletal muscle:

oRelease of K+

- o Hydrogen ions
- o Myoglobin
- o Acid phosphatase
- o Amino Acids Nucleotide Purine bases

# Systemic consequences of I/R injury

- Myocardial injury:
  - o Release of myocardial depressant factors: C3a, TxA2, LTD4, PAF
- Remote lung injury:
  - o Non-cardiogenic pulmonary edema activation of PMNs, endothelial injury
  - o ARDS
- Renal injury:
  - o Myoglobin deposition in renal tubules
  - o Acute tubular necrosis

#### Reperfusion effects

#### Local

 Reperfusion injury – paradoxical death of already dying muscles after reperfusion

#### Systemic

- Reperfusion syndrome
  - Hypotension
  - ARDS
  - Lactic acidosis
  - Hyperkalemia
  - Renal failure

# Compartment syndrome

#### **Clinical features**

- Excessive pain pain on passive movements
- Numbness -e.g. anterior compt. first toe web (deep peroneal N )
- Tense swollen leg
- Do not look for absent distal pulse late



# Fasciotomy









