Non-operative treatment of abscesses-are there limits or limitations

Controversies of Surgery 8-9 October 2016

Dr Brandon Jackson, Department of Surgery, Kalafong Hospital and Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.

Introduction

- The management of abscesses is to gain source control in order to reduce the production of endotoxins.
- Standard
 - Antibiotics
 - Drainage
- Some abscesses have been successfully treated non-operatively
 - Antibiotics only
 - antibiotics and needle aspiration
 - antibiotics and Percutaneous catheter drainage (PCD)
- PCD prevents the morbidity of an operation.
- Successful PCD:
 - decrease of >90% of the original abscess size
 - if septic patients recover from the sepsis².
- There are certain limiting factors that will not allow the manage abscesses non-operatively.

- PCD is not always suitable
 - abscesses lying in difficult locations e.g. intra-abdominally
- Diverticular abscesses when amenable to PCD has a reported failure rate of 15 to 30 percent⁴.
- PCD of renal abscesses
 - Pyopneumothorax
 - Bacteraemia
 - Fistula in the gastrointestinal tract⁵

- In a retrospective review of 114 patients with intra-abdominal abscesses.
- Antimicrobial therapy without drainage was successful in 86 percent of cases.
- Pelvic abscesses
 - usually associated with a worse prognosis
 - often require surgery
- *In this study, the management of pelvic abscesses were no different than abscesses in the other locations⁶.

- Muscle abscesses can usually be treated conservatively,
- The presence of concurrent bone involvement limits the success rate.
- A retrospective study of 94 patients showed the success of PCD for muscle abscesses
- The presence of skeletal infection was associated with drainage failure².
 - Osteomyelitis
 - Diskitis
 - Epidural abscess
- Musculoskeletal infection was statistically significantly more likely to undergo surgery (p = 0.0001).

- Amoebic liver abscesses- antibiotics>aspiration>surgery₁₆
- Skin abscesses are **not** usually treated successfully with non-operative intervention.
- A prospective study of 101 patients with skin abscesses
- All patients had a sonar at initial presentation
- 54 were randomized for I&D and 47 U/S guided needle aspiration
- 60% of needle aspirations yielded little or no purulence, despite:
 - U/S visualization of an abscess cavity
 - U/S guidance during the procedure.
- Success of U/S guided needle aspiration: 26%
- Success in patients with I&D: 80%.⁷

- In endoscopic pancreatic abscess drainage, access to the abscess cavity is gained through an incision made in the stomach wall or duodenum.
- With or without endoscopic ultrasound (EUS) guidance.
 - In non-EUS-guided drainage:
 - the abscess cavity must be in close apposition to the gastrointestinal wall (1 cm)
 - there must be a bulge either in the stomach or duodenum marking the location of the abscess.
- The advantage of using EUS:
 - does not rely on bulging to locate the site of the abscess
 - excludes the presence of interposed blood vessels and reduces the risk of procedurerelated bleeding.21

Size of the Abscess: Intra-abdominal

- Intra-abdominal abscesses >5cm has a less favourable outcome with antibiotic treatment alone.
- According to the retrospective study by Kumar, high failure rate with:
 - large intra-abdominal abscesses (>6.5 cm)
 - temperature >38.4 degrees ⁶.

Table 1⁶

Factors Associated With Failure of Conservative Management of Intra-abdominal Abscesses						
	Clinical Improvement With Antibiotic Management	Failed Conservative Management	P Value			
No. of patients	61	50				
Age (yr)	39 (25-48)	39 (29-50)	0.5694			
Tmax-Admission (F)	100.8 (99.3-101.5)	101.2 (100.6-101.9)	0.0067			
Admission WBC (×10 ³ /µl)	13.7 (10.7–16.8)	15.2 (13.1-18.5)	0.0622			
Maximum abscess diameter (cm)	4 (3–6)	6.5 (5–10)	< 0.0001			

WBC = white blood cell.

Size of the Abscess: Pyogenic Liver abscesses

- A retrospective study of 58 patients with pyogenic hepatic abscess
- Antibiotics alone for the smaller abscesses (<3.5cm in diameter)</p>
- Percutaneous drainage for abscesses >3,5cm 19

Size of the Abscess: Crohn's disease

Carvalhoa:

- ► >4 cm
- usually would not respond to medical treatment alone
- require drainage
- The American College of Radiology recommends imaging-guided PCD for Crohn's disease related abdominal fluid collections greater than 4cm.³

Size of the Abscess: Breast

- Studies have shown the success of sonar guided needle aspiration of lactating breast abscesses.
- Abscesses >3cm to 5cm, needle aspiration is unlikely to be successful and will require PCD under sonar guidance^{8, 14,15}.
- A larger than average volume of pus is a risk for failure to treat with needle aspiration.
- Eryilmaza reported from a prospective study that the mean volume of pus from successful needle aspiration was 44.3ml and in the unsuccessful aspiration was 70.55ml⁹.

Size of the Abscess: Renal

- 3cm to 5cm is the maximum diameter between treating with antibiotics only or a drainage procedure (percutaneous or surgical).
- <3cm: antibiotics only</p>
- 3cm to 5cm: antibiotics only or antibiotics with drainage
- >5cm :antibiotics and drainage⁵.

<u>Table 2⁵</u> <u>Reported Primary Treatment of Renal or Perinephric</u> <u>Abscesses by Size</u>

Investigator	Country	Year	n	Mean abscess size		hospital stay		
				< 3 cm	3 - 5 cm	> 5 cm	(days)	
Siegel, et al.4	United States	1984 - 1993	51	Antibiotics alone	PCD	PCD	20 - 21	
Dalla Palma, et al. ⁵	Italy	1984 - 1997	16	Antibiotics alone	Antibiotics	-	-	
Shu, et al.10	United States	1991 - 2002	26	Antibiotics alone	PCD	PCD	11	
Coelho, et al.11	Brazil	1992 - 2002	65	Antibiotics alone	PCD or SD	SD	-	
Lin, et al.9	Taiwan	2001 - 2006	73	Antibiotics alone	Antibiotics alone	PCD or SD	21 - 24	
Present study	Korea	2001 - 2008	41	Antibiotics alone	Antibiotics alone	PCD	15.3	
PCD, percutaneous drainage; SD, surgical drainage.								

Type of infections

- Antibiotics
 - penetrate abscesses poorly
 - have poor activity in this environment in which bacteria are not rapidly dividing⁶
 - No diagnostic drainage
 - Empirical regimens are used without knowledge of the infective organisms and their antimicrobial susceptibilities⁵.
- A multivariate analysis showed that MRSA is an independent risk factor for failure of therapy regardless of the drainage procedure.
- Gaspari reported in a prospective study of superficial abscesses
 - U/S guided needle aspiration of abscesses with MRSA were less likely to be successful compared to I&D (8% versus 61%)⁷.
- The growth of yeast in liver abscesses is an independent risk for failure of nonoperative treatment 19

Concurrent use of other medications

- Concurrent use of medications that may influence the immunological response
- Retrospective studies on patients with Crohn's disease associated abscesses have success rate of 60% using IVI antibiotics alone.
- Unfortunately, over 50% of those patients eventually required operative drainage.
- These patients were on corticosteroid treatment for their inflammatory bowel disease³.
- Another study by Cronin on muscle abscesses also demonstrated a higher failure rate with PCD when the patients were on chemotherapy².
- Mezhir also showed failure with chemotherapy to treat liver abscesses nonoperatively. 19

Characteristics of abscesses: viscosity, loculations and capsule

- Thickened abscess contents, i.e. increased viscosity may obstruct abscess drainage⁶.
- Washing out to decrease the viscosity of purulent discharge
 - normal saline
 - sterile water.
- Studies have compared normal saline and lytic agents
 - Urokinase
- There was no difference in the success or failure of the draining abscess².
- Small-caliber catheters
 - necrotic tissue
 - blood coagulates
 - thick purulent fluid³.

Characteristics of abscesses: viscosity, loculations and capsule

- Loculations or septations, even with the use of U/S-guided needle aspiration, may fail^{7, 10}.
- In multi-septated abscesses PCD drainage may not access all of the individual compartments, thereby preventing a complete drainage¹¹
- The capsule:
 - Too firm-resist penetration
 - Too soft-evade penetration
 - E.g. Endorectal ultrasound-guided aspiration and drainage of pelvic fluid collections.22
- Esther also demonstrated in patients with any breast abscess:
 - Uncapsulated abscesses are usually inadequately drained and requires the insertion of a PCD¹¹.

Hospital and patient factors

- The local expertise of the hospital influences management.
- Carvalhoa: intra-abdominal abscesses admitted to a teaching hospital were associated with an increased likelihood of PCD³.
- Eryilmaza reported that delayed access to medical facilities is associated with a higher failure rate of needle aspiration for breast abscesses⁹.
- Independent patient factors also influences outcome
 - age over 65 years
 - Thrombocytopenia
 - underlying comorbidity such as Diabetes Mellitus⁵.
- Worsening of sepsis when treating conservatively indicates that management needs to progress to operative treatment.

Distorted anatomy

- PCD in patients with previous abdominal surgery has a high risk of complication
 - Bleeding
 - perforated viscus
 - solid organ injury.
- Minor complications occur more frequently⁶
 - catheter obstruction
 - migration

Complicated abscesses

- Complicated abscesses indicates surrounding tissue damage
- Highly unlikely to be treated successfully with non-operative measures.
- Crohn's disease associated abscesses + strictures + fistulae
 .>> operative intervention.
- Conversely, small abscess without concurrent fistula >>> antibiotics alone.
- Pyogenic liver abscesses with fistula's with the biliary tree is an independent predictor of non-operative management failure.19
- The presence of strictures and abdominal fistulas >>> surgical treatment (since there might be already an irreversible structural damage in the bowel wall)³.

clinical deterioration

imaging that demonstrated failure of abscess resolution.19

Summary of limits/limitations

- Type and Site of abscesses
- Size of the Abscess
- Type of infections
- Concurrent use of other medications
- Characteristics of abscesses
- Hospital and patient factors
- Distorted anatomy
- Complicated abscesses
- Non-resolving

Conclusion

- There are many factors that influences the most appropriate management of abscesses.
- The treatment of one abscess is not always the same for another.
- Health professionals need to be aware of the non-operative options available to manage abscesses and the limits and limitations thereof; and when to progress to operative management.

- 1. Seiler CA, Brügger L, Forssmann U, Baer HU and Büchler MW. Conservative surgical treatment of diffuse peritonitis. Surgery. 2000; 127 (2): 178-184.
- 2. Cronin CG, Gervais DA, Hahn PF, Arellano R, Guimaraes AR and Mueller PR. Treatment of Deep Intramuscular and Musculoskeletal Abscess: Experience with 99 CT-Guided Percutaneous Catheter Drainage Procedures. American Journal of Radiology 2011; 196:1182–1188.
- 3. Carvalhoa ATP, Cathalá Esberarda B, Moreira ADL. Current management of spontaneous intra-abdominal abscess in Crohn's disease. Journal of coloproctology (rio j). 2016, 179; 1-6.
- 4. Brandt D, Gervaz P, Durmishi Y, Platon A, Morel Ph and Poletti PA. Percutaneous CT Scan-Guided Drainage vs. Antibiotherapy Alone for Hinchey II Diverticulitis: A Case-Control Study. Diseases of the Colon Rectum, 2006; 1533-1539.
- 5. Lee SH, Jung HJ, Mah SY, and Chung BH. Renal Abscesses Measuring 5 cm or Less: Outcome of Medical Treatment without Therapeutic Drainage. Yonsei Med J 51(4):569-573, 2010.
- 6. Kumar RR, Kim JT, Haukoos JS, Macias LH, Dixon MR, Stamos MJ, et al. Factors Affecting the Successful Management of Intra-Abdominal Abscesses With Antibiotics and the Need for Percutaneous Drainage. Dis Colon Rectum 2005; 49: 183–189.

7. Gaspari RJ, Resop D, Mendoza M, Kang T and Blehar D. A Randomized Controlled Trial of Incision and Drainage Versus Ultrasonographically Guided Needle Aspiration for Skin Abscesses and the Effect of Methicillin-Resistant Staphylococcus aureus. Ann Emerg Med. 2011; 57:483-491.

8. Ulitzsch D, Nyman MKG and Carlson RA. Breast Abscess in Lactating Women: US-guided Treatment. Radiology 2004; 232:904–909.

9. Eryilmaza R, Sahina M, Tekelioglub H and Daldal E. Management of lactational breast abscesses. The Breast. 2005: 1/4: 375–379.

10. Flagili F, Abdullah N, Fong L and Pei T. Aspiration of Breast Abscess Under Ultrasound Guidance: Outcome Optained and Factors Affecting Success. Asian J Surg. 2007; 30(1): 40–4.

1. Esther MF, Schwarzc I, Stadlmannb S, Singerb G, Hauserc Rahel N and Kubik-Huch A. Breast Abscesses: Diagnosis, Treatment and Outcome. Breast Care. 2012; 7:32–38.

12. Simillis C, Symeonides P, Shorthouse AJ, and Tekkis PP. A meta-analysis comparing conservative treatment versus acute appendectomy for complicated appendicitis (abscess or phlegmon). Surgery 2010; 147:818-29.

13. Whiteford MH, Kilkenny J, Hyman N, Buie D, Cohen J, Orsay C, et al. Practice Parameters for the Treatment of Perianal Abscess and Fistula-in-Ano (Revised). Dis Colon Rectum. 2005; 48: 1337–1342.

14. Wang K, Ye Y, Sun G and Xu Z. The Mammotome biopsy system is an effective treatment strategy for breast abscess. The American Journal of Surgery. 2013; 205 (1): 35-38.

15. Hook GW and Ikeda DM. Treatment of Breast Abscesses with US-guided Percutaneous Needle Drainage without Indwelling Catheter Placement. Radiology. 1999; 213:579-582.

16. McGarr PL, Madiba TE, Thomson SR, Corr P. Amoebic liver abscess - results of a conservative management policy. S Afr Med J 2003; 93: 132-136.

17. Yagci G, Ustunsoz B, Kaymakcioglu N, Bozlar U, Gorgulu S, Simsek A, et al. Results of Surgical, Laparoscopic, and Percutaneous Treatment for Hydatid Disease of the Liver: 10 Years Experience with 355 Patients. World Journal of Surgery. Dec2005, Vol. 29 Issue 12, p1670-1679.

18. O'Farrell N, Collins CG and McEntee GP. Pyogenic liver abscesses: Diminished role for operative treatment. The Surgeon.2010; 8: 192–196.

19. Mezhir JJ, Fong Y, Jacks LM, Getrajdman GI, Brody LA, Covey AM, et al Current Management of Pyogenic Liver Abscess: Surgery is Now Second-Line Treatment. J Am Coll Surg 2010; 210: 975–983.

20. Ferraioli G, Garlaschelli A, Zanaboni D, Gulizia R, Brunetti E, Tinozzi FP, et al. Percutaneous and surgical treatment of pyogenic liver abscesses: Observation over a 21-year period in 148 patients. Digestive and Liver Disease 40 (2008) 690–696.

21. Zerem E, Pavlović-Čalić N, Sušić A and Haračić B. Percutaneous management of pancreatic abscesses: Long term results in a single center. European Journal of Internal Medicine 22 (2011) e50–e54.

22. Sailer M, Bussen D, Fuchs KH and Thiede A. Endoscopic ultrasound-guided transrectal aspiration of pelvic fluid collections. Surg Endosc (2004) 18: 736–740.