Drug eluting stents and balloons in peripheral arterial disease

A.T.O. ABDOOL-CARRIM
UNIVERSITY OF WITWATERSRAND

Drug eluting stents and balloons

- Endovascular treatment now becoming more popular for treatment of superficial femoral artery
- Late clinical failure due to restenosis, neo-intimal hyperplasia, and stent fracture still major problem
- Angioplasty and or stenting preferred because of shorter hospital stay less wound infection and peri-op mortality compared with open surgery^{1,2}
- 1.Amighi J et al Radiology 2008;247(1):267-272
- 2.Pietzsch JB et al Catheter Cardiac Interv 2014;84(4):546-554

Angioplasty

- Plain balloon angioplasty is considered first line treatment for femoropopliteal disease and stenting only for poor outcome high rate of restenosis despite initial technical success rate of 95% even with stenting 1 year restenosis rates have varied between 20-50% depending on an increasing with length of lesion.
- Balloon angioplasty for shorter lesions(<4cm) and primary stenting in longer lesions and secondary stenting if residual stenosis/dissection
- Bypass surgery still gold standard but recent advances in stent design, drug coated balloons, drug eluting stents and Endograft are challenging this gold standard

Drug coated balloons

- Deliver sufficient drug at target lesion to intervene at the level of the smooth muscle cells inhibiting cell proliferation and hence reducing intimal hyperplasia and decreasing incidence of re-stenosis
- Paclitaxel is the drug used stops cellular cycle in the M phase leading to cell apoptosis.
- Optimal delivery dose is 3ug/mm² of Paclitaxel and at least 180 seconds inflation time excipients such as polyethylene glycol to improve release of drug also used
- Pre-dilation with plain balloon essential to achieve release of drug
- Sirolimus, Everolimus and Rapamycin also used.

Drug coated balloons (DCB) trials

- THUNDER¹
- LEVANT 1² and 11³
- PACIFIER⁴
- IN.PACT SFA^{5,6}
- 1.Tepe G et al JACC Cardiovasc Interv 2015;8:102-108
- 2. Scheinert M et al JACC Cardiovasc Interv 2014;7(1):9-10
- 3.Rosenfield K et al NEJM 2015;373(2):145-53
- 4.Werk M et al Circ Cardiovasc Interv 2012;5(6):831-840
- 5.Tepe G et al Circulation2015;131(5):495-502
- 6.Laird JR et al J Am Coll Cardiology 2015;66(21):2329-38

Table 1 DCB Trials

Study	Year	Study Size	Location	Outcome(s)	Follow-up Time	Results			
						Outcome	РОВА	DCB	P Value
THUNDER	2008	154	Germany	LLL and TLR	6 Months	LLL	1.7mm	0.4mm	<0.001
						TLR	37%	4%	<0.001
Werk et al	2008	87	Germany	LLL and TLR	6 Months	LLL	0.8mm	0.3mm	0.031
						TLR	50%	13%	0.001
LEVANT I	2014	101	Primarily Germany and Belgium	LLL	6 Months	LLL	1.09mm	0.46mm	0.016
LEVANT II	2015	476	US and Europe	PP and TLR	12 Months	PP	52.6%	65.2%	0.02
						TLR	16.8%	12.3%	0.21
						PP (US)	56.5%	69.9%	not given
						PP (Non-US)	46%	69.1%	not given
PACIFIER	2015	85	Germany	LLL and TLR	12 Months	LLL	0.65mm	0.1mm	0.001
						TLR	27.90%	7.10%	0.02
IN.PACT SFA	2015	331	US and Europe	PP and CD-TLR	24 Months	PP	50.10%	78.9%	<0.001
						CD-TLR	28.30%	9.10%	<0.001

POBA: Plain old balloon angioplasty; DCB: Drug-coated balloon; LLL: Late lumen loss; TLR: Target lesion revascularisation; CD-TLR: Clinically driven target lesion revascularisation; PP: Primary patency

Drug coated balloon trials

- Thunder trial --- 6/12 follow-up late lumen loss less at 5 years TLR 21% VS 56%
- Levant 11 trial primary patency 73.5% vs 56.8% at 1 year
- IN.PACT SFA trial –primary patency 89.8% vs 66.8% at 1 year
 2 years primary patency 78.9% vs 50.1%

Drug coated balloons

Summary

Multiple large European and USA trials --- benefit for drug coated balloons in the femoro-popliteal segments however industry driven and short term follow-up

Drug coated balloons infra-popliteal lesions

• IDEAS RCT DCB vs DES in infra-popliteal disease

Binary stenosis (more than 50%) angiographic stenosis in DES 28% vs DCB 57.9% at 6 months

 IN.PACT DEEP Trial – DEB comparable efficacy to standard balloon trend towards higher amputation rate in DEB. Balloon withdrawn

• Siablis D et al JACC INTV 2014;7(9);1048-1056

Drug eluting stents (DES)

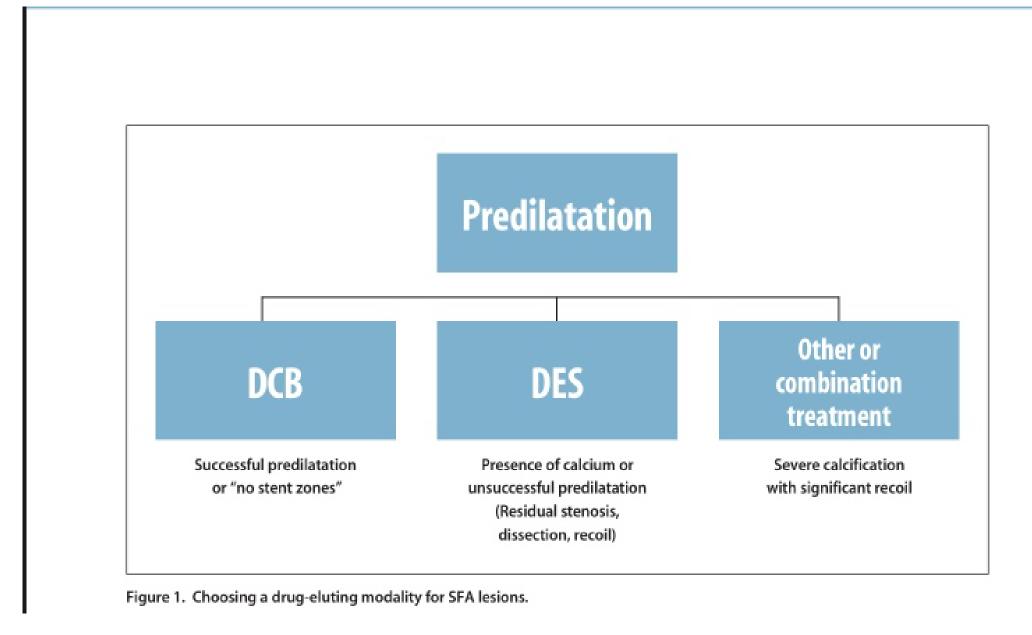
- ZILVER PTX trial ¹— comparing DES to BMS -- largest randomized trial with 5 year follow-up
- 1 year primary patency 84.4%
- 4 year primary patency 75% vs 57.9%
- 5 year primary patency 72.4% vs 53%

SIROCCO² Trial 1 and 11

Sirolimus stent- no reduction in restenosis and no difference in any of the end points

STRIDES ³TRIAL – Everolimus – 3month drug release– primary patency 94% at 6/12 and 68% at 12/12.

- 1 Dake MD et al Circulation 2016
- 2 Duda SH et al J Vasc Interv Radiol 2005;16:331-338
- 3 Lemmer J et al JVS 2011;54(2):394-401


Drug eluting stents in infra-popliteal disease

- Meta-analysis of drug eluting stents for infra-popliteal disease— 5 trials with 611 patients
- DES vs angioplasty/BMS
- At a median follow-up at 12 months DES reduced target vessel revascularization, restenosis, and amputation

Fusaro M et al JACC INTV 2013;6(12):1284-1293

Consider when to use drug elution

- DES and DEB have been shown to be superior to bare counterparts
- A significant SFA lesions require stenting
- DCB and BMS not shown superiority to DES results
- DCB for calcified lesions ?
- Will still need long term results.

Ansel G, Phillips JA 2014 suppl Endovascular Today

Conclusions

- Drug coated balloons and stents have superior results as compared to plain balloon angioplasty and bare metal stents
- Early results are encouraging
- They are expensive
- We need longer data and more specific indications