Adjuvant and neoadjuvant chemotherapy for rectal cancer: Expensive but little gain

Outline

- The problem
- Adjuvant therapy
- Neoadjuvant therapy
- Options
- Conclusion

The problem

- 30 years ago:
 - Local recurrence rates for rectal cancer 25-30%
 - Local recurrence was a disaster
 - Almost untreatable
 - Unpleasant
 - Long duration
- 25 years ago:
 - Radiotherapy ± chemotherapy for all reduced local recurrence by 50%
 - Minimal effect on survival
 - Number needed to treat: 8:1

The problem

- 20 years ago:
 - Improvements in surgical technique reduced local recurrence to below 10% without chemoradiotherapy
 - Chemoradiotherapy still reduced local recurrence by 50%
 - Number needed to treat 20:1
 - Significant side-effects
 - Minimal change in survival

The problem Over the last 20 years

- Detection of earlier lesions:
 - Screening programs
 - Awareness campaigns
 - Early lesions increased from 4% to 20+%
- Concept of threatened margin
- Development of accurate pelvic imaging
- Selective chemoradiotherapy

Problems Today

- Improving survival
- Organ preservation

Adjuvant chemotherapy for rectal cancer

- Adjuvant chemotherapy improves survival in colon cancer
- Surely it would work in rectal cancer
- Well does it?

Disease Free Survival: Rectal cancer 5FU based

				Hazard Ratio		Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Random, 95% Cl	Year	IV, Random, 95% Cl
Grage 1981	-0.562	0.278	2.4%	0.57 [0.33, 0.98]	1981	←
Fisher 1988 (NSABP)	-0.342	0.121	7.3%	0.71 [0.56, 0.90]	1988	
Thomas 1988 (GTSG)	-0.198	0.225	3.4%	0.82 [0.53, 1.28]	1988	
Hafström 1990	-0.446	0.236	3.2%	0.64 [0.40, 1.02]	1990	← →
Krook 1991 (NCCTG)	-0.416	0.144	6.1%	0.66 [0.50, 0.87]	1991	← →
Matsuda 1991 (SGACCS)	-0.128	0.118	7.4%	0.88 [0.70, 1.11]	1991	
Bosset 2006 (EORTC)	-0.139	0.094	8.9%	0.87 [0.72, 1.05]	1993	
QUASAR 2007	-0.386	0.134	6.6%	0.68 [0.52, 0.88]	1994	
CCCSGJ 1995	-0.462	0.108	8.0%	0.63 [0.51, 0.78]	1995	
Kornek 1996	-0.821	0.4	1.3%	0.44 [0.20, 0.96]	1996	←────
lto 1996 (TSGHCFU)	-0.105	0.374	1.5%	0.90 [0.43, 1.87]	1996	←
Yasutomi 1997 (JFMTC 7-2)	-0.117	0.12	7.3%	0.89 [0.70, 1.13]	1997	
Kodaira 1998 (JFMTC 7-1)	-0.329	0.112	7.8%	0.72 [0.58, 0.90]	1998	
Taal 2001 (NACCP)	-0.105	0.165	5.2%	0.90 [0.65, 1.24]	2001	
Kato 2002 (TACSG)	-0.968	0.265	2.6%	0.38 [0.23, 0.64]	2002	←
Cafiero 2003	0.086	0.14	6.3%	1.09 [0.83, 1.43]	2003	+ •
Watanabe 2004 (JFMTC15-2)	-0.288	0.189	4.4%	0.75 [0.52, 1.09]	2004	
Sakamoto 2007 (JFMTC15-1)	-0.117	0.155	5.6%	0.89 [0.66, 1.21]	2007	
Koda 2009	-1.022	0.528	0.8%	0.36 [0.13, 1.01]	2009	←────┤
Hamaguchi 2011	-0.416	0.196	4.1%	0.66 [0.45, 0.97]	2011	•
Total (95% CI)			100.0%	0.75 [0.68, 0.83]		◆
Heterogeneity: Tau ² = 0.02; Chi ²						
Test for overall effect: Z = 5.95 (0.5 0.7 i 1.5 2					
						Favours adjuvant Favours control

Favours adjuvant Favours control

8. Forest plot of comparison: 1 Adjuvant vs No Adjuvant_ALL, outcome: 1.2 Disease Free Survival (DFS).

Petersen SH, Harling H, Kirkeby LT, Wille-Jørgensen P, Mocellin S. Postoperative adjuvant chemotherapy in rectal cancer operated for cure.. Cochrane Database of Systematic Reviews 2012, 3. Art. No.: CD004078. DOI: http://dx.doi.org/10.1002/14651858.CD004078.pub2

Overall Survival: Rectal cancer 5FU based

				Hazard Ratio		Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Random, 95% Cl	Year	IV, Random, 95% Cl
Grage 1981	-0.892	0.366	1.4%	0.41 [0.20, 0.84]	1981	
Thomas 1988 (GTSG)	-0.288	0.215	3.5%	0.75 [0.49, 1.14]	1988	
Fisher 1988 (NSABP)	-0.236	0.134	6.8%	0.79 [0.61, 1.03]	1988	
Hafström 1990	-0.342	0.255	2.6%	0.71 [0.43, 1.17]	1990	
Krook 1991 (NCCTG)	-0.342	0.134	6.8%	0.71 [0.55, 0.92]	1991	
Matsuda 1991 (SGACCS)	-0.03	0.119	7.8%	0.97 [0.77, 1.23]	1991	-+-
Bosset 2006 (EORTC)	-0.163	0.105	8.9%	0.85 [0.69, 1.04]	1993	
QUASAR 2007	-0.261	0.13	7.0%	0.77 [0.60, 0.99]	1994	
CCCSGJ 1995	-0.416	0.122	7.6%	0.66 [0.52, 0.84]	1995	
Kornek 1996	-0.868	0.464	0.9%	0.42 [0.17, 1.04]	1996	
Ito 1996 (TSGHCFU)	0.285	0.341	1.6%	1.33 [0.68, 2.59]	1996	
Yasutomi 1997 (JFMTC 7-2)	-0.051	0.133	6.9%	0.95 [0.73, 1.23]	1997	
Kodaira 1998 (JFMTC 7-1)	-0.073	0.125	7.4%	0.93 [0.73, 1.19]	1998	
Taal 2001 (NACCP)	-0.051	0.184	4.4%	0.95 [0.66, 1.36]	2001	- _
Kato 2002 (TACSG)	-0.416	0.327	1.7%	0.66 [0.35, 1.25]	2002	
Cafiero 2003	0.285	0.198	4.0%	1.33 [0.90, 1.96]	2003	+
Watanabe 2004 (JFMTC15-2)	-0.128	0.222	3.3%	0.88 [0.57, 1.36]	2004	
Glimelius 2005 (NGTATG)	-0.1	0.101	9.2%	0.90 [0.74, 1.10]	2005	
Sakamoto 2007 (JFMTC15-1)	-0.094	0.165	5.2%	0.91 [0.66, 1.26]	2007	
Koda 2009	-1.309	0.845	0.3%	0.27 [0.05, 1.42]	2009	←
Hamaguchi 2011	-0.511	0.239	2.9%	0.60 [0.38, 0.96]	2011	
Total (95% CI)			100.0%	0.83 [0.76, 0.91]		•
Heterogeneity: Tau ² = 0.01; Chi ²						
Test for overall effect: Z = 4.11 (P						0.1 0.2 0.5 1 2 5 10 Favours adjuvant Favours control

1. Forest plot of comparison: 1 Adjuvant vs No Adjuvant_ALL, outcome: 1.1 Overall Survival (OS).

Petersen SH, Harling H, Kirkeby LT, Wille-Jørgensen P, Mocellin S. Postoperative adjuvant chemotherapy in rectal cancer operated for cure.. Cochrane Database of Systematic Reviews 2012, 3. Art. No.: CD004078. DOI: http://dx.doi.org/10.1002/14651858.CD004078.pub2

Concerns

- Data extracted from studies of rectal and colon carcinoma
- Inadequate staging modalities
- Out-dated chemotherapeutic regimens
- Differing surgical approaches
- Small sample sizes
- Will adjuvant therapy work after preoperative chemotherapy?

Fluorouracil-based adjuvant chemotherapy after preoperative chemoradiotherapy in rectal cancer: long-term results of the EORTC 22921 randomised study

- 10 years of follow-up
- Randomised
- Clinical T3 or T4 rectal carcinoma
- No benefit of postoperative adjuvant chemotherapy after preoperative chemoradiotherapy

Potential problems with adjuvant chemotherapy

- Long delay from diagnosis to starting therapy
 May be up to 6 months
- Neoadjuvant therapy may selectively kill sensitive cells before adjuvant therapy is given
- Pre-operative radiotherapy alters staging
 - Who should get adjuvant therapy?

Adjuvant therapy

- Some guidelines still recommend adjuvant therapy for:
- Node positive
- Anyone who has had preoperative radiotherapy
- Less than 15 nodes in specimen
- No level 1 evidence

Ongoing trials

• NCT01941979: phase III trial

 FOLFOX vs observation in patients with T3-4, N1, M0 who were treated with preoperative chemoradiotherapy and showed poor response

• Biomarkers

CWorld Journal of
Clinical Oncology

Submit a Manuscript: http://www.wjgnet.com/esps/ Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx DOI: 10.5306/wjco.v6.i6.225 World J Clin Oncol 2015 December 10; 6(6): 225-236 ISSN 2218-4333 (online) © 2015 Baishideng Publishing Group Inc. All rights reserved.

REVIEW

Adjuvant chemotherapy for rectal cancer: Is it needed?

Kristijonas Milinis, Michael Thornton, Amir Montazeri, Paul S Rooney

Neoadjuvant chemotherapy

- Options:
 - Chemotherapy alone
 - With radiotherapy
 - As a sensitiser
 - As full dose therapy after chemoradiotherapy
 - Short course radiotherapy and delay to surgery

Neoadjuvant Chemotherapy alone

Table 1 Studies of neoadjuvant chemotherapy alone in rectal cancer						
Study	Key inclusion criteria	#pts	Treatment	pCR rate	Outcomes	
Ishii,	T3 or T4	26	Irinotecan, 5-FU,	3.8%	5-year DFS-74%	
<i>et al.</i> (35)			Leucovorin ×8 weeks		5-year OS-84%	
Uehara,	MRI-defined poor risk:	32	CAPOX,	13%	R0 resection rate-90%	
<i>et al.</i> (36)	T4, N2, CRM ≤1 mm,		bevacizumab ×12 weeks			
	extramural invasion >5 mm					
Hasegawa,	T4 or N+	25	CAPOX,	4%	R0 resection rate - 92%	
<i>et al.</i> (37)			bevacizumab ×12 weeks		DFS at 31 months-68%	
Cercek,	No radiation, resected primary	20	FOLFOX +/- bevacizumab	35%	N/A	
<i>et al.</i> (38)						
Schrag,	ТЗ	32	FOLFOX +	25%	R0 resection rate-100%	
<i>et al.</i> (39)			bevacizumab ×8 weeks		4-year LR—0%	
					4-year DFS-84%	
pCR, pathologic complete response; DFS, disease free survival; OS, overall survival; CRM, circumferential resection margin; LR,						

pCR, pathologic complete response; DFS, disease free survival; OS, overall survival; CRM, circumferential resection margin; LR, local recurrence.

- Very small numbers
- Not randomised

Neoadjuvant chemoradiotherapy followed by chemotherapy

Table 3 Studies of neoadjuvant chemoradiation followed by chemotherapy							
Study	Key inclusion criteria	# pts	Treatment pCR rate		Outcomes		
Zampino, <i>et al.</i> (54)	T3, T4 or N+	51	ChemoRT with capecitabine → capecitabine ×6 weeks	18% (9/50)	R0 resection—100% 5-year DFS—85.4%		
Gao, <i>et al.</i> (55)	T4, bulky (>5 cm), <6 cm from anal verge, N+, elevated CEA	36	ChemoRT with CAPOX → CAPOX ×3 weeks	36%	R0 resection – 100% Downstaged – 81%		
van DijK, <i>et al.</i> (56)	Metastatic rectal cancer	50	Short course radiation → CAPOX + bevacizumab for up to 18 weeks	26% (11/43)	R0 resection of primary—91% (39/43) 2-year OS—80% LR rate after R0 resection—6% (2/36)		
Garcia-Aguilar, <i>et al.</i> (51)	T3, T4 or N+	144	Chemoradiation with 5-FU	18%	R0 resection-97%		
			Chemoradiation with 5-FU → FOLFOX ×4 weeks	25%	R0 resection – 96%		
pCB, pathologic complete response: DES, disease free survival: CEA, carcino-embryonic antigen: LB, local recurrence,							

oCR, pathologic complete response; DFS, disease free survival; CEA, carcino-embryonic antigen; LR, local recurrence.

Very small numbers Not randomised

Conclusion

- Current management has little impact on survival
- Local recurrence has been reduced
- Radiotherapy results in significant long term side-effects
- Early neoadjuvant chemotherapy may improve survival but data is currently not available.