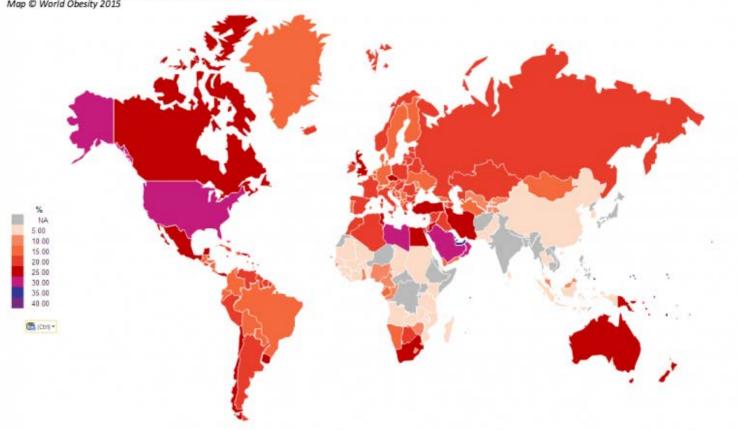
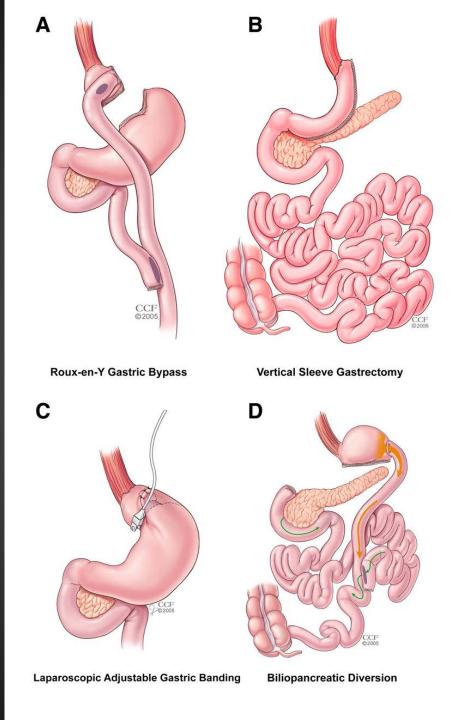
Malabsorptive surgery for morbid obesity is more efficient and cost effective

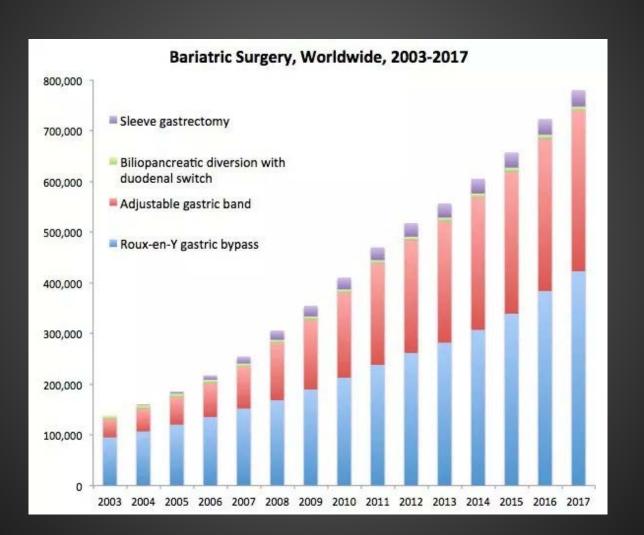

Danie Folscher

Surgeon, George
Honorary Senior Lecturer

<u>Dept of Surgery, UCT and Groote Schuur Hospital</u>

Adult obesity prevalence 2014


Obesity is BMI > 30kg/m2
Estimates from World Obesity Federation and World Health Organization
Map © World Obesity 2015



Bariatric surgery

"Weight loss surgery" (>50% Excess Weight Loss)

Metabolic Surgery in the Treatment Algorithm for Type 2 Diabetes: A Joint Statement by International Diabetes Organizations

Diabetes Care 2016;39:861-877 | DOI: 10.2337/dc16-0236

Francesco Rubino, ¹ David M. Nathan, ²
Robert H. Eckel, ³ Philip R. Schauer, ⁴
K. George M.M. Alberti, ⁵ Paul Z. Zimmet, ⁶
Stefano Del Prato, ⁷ Linong Ji, ⁸
Shaukat M. Sadikot, ⁹
William H. Herman, ¹⁰
Stephanie A. Amiel, ¹ Lee M. Kaplan, ²
Gaspar Taroncher-Oldenburg, ¹¹
and David E. Cummings, ¹²
on behalf of the Delegates of
the 2nd Diabetes Surgery Summit*

At the time this artide went to press, the DSS-II consensus statements and guidelines had been officially endorsed by 45 leading professional societies across the globe, of which 30 are primarily medical (diabetes, endocrinology, and gastroenterology) and 15 are primarily surgical organizations (Table 1). Additional medical and scientific societies are currently considering endorsing these results as well.

Partner diabetes organizations that helped develop and have ratified	Country
the DSS-II consensus statements and guidelines: American Diabetes Association (ADA)	USA
International Diabetes Federation (IDF)	International
Diabetes UK (DUK)	IK.
Chimese Diabetes Society (CDS)	China
Diabetes India (DI)	India
Salata maa (sv)	
Other organizations that formally endorse the DSS-II consensus	
statements and guidelines (to date): American Association of Clinical Endocrinologists (AA(E)	USA
American College of Surgeons (ACS)	USA
American College of Surgions (ACS) American Gastroenterological Association (AGA)	USA
American Society for Metabolic and Bariatric Surgery (ASMBS)	USA
Argentinian Society of Diabetes (SAD)	Argentina
Argentinian Society for Bariatric and Metabolic Surgery (SACO)	Argentine International
Asia-Pacific Bariatric and Metabolic Surgery Society (A PBMSS)	International
Association of British Clinical Diabetologists (ABCD)	Con.
Australian Diabetes Society (ADS)	Australia
Belgian Diabetes Association (ABD)	Belgium
Brazilian Society of Diabetes (SBD)	Brazil
Brazilian Society of Baristric and Metabolic Surgery (SBCBM)	Brazil UK
British Obesity and Metabolic Surgery Society (BOMSS)	-
Czech Society for the Study of Obesity (CSSO)	Crech Republic
Chilean Society of Endocrinology and Diabetes (SCED)	Chie
Chilean Society for Bariatric and Metabolic Surgery (SCCBM)	
Endocrine Society	USA
European Association for the Study of Obesity (EASO)	International
French Society of Diabetes (SFD)	France
French Society of Bariatric and Metabolic Surgery (SOFFCO)	France
German Diabetes Society (DDG)	Germany
German Society for Obesity Surgery (CA-ADIP)	Germany
Heilenic Diabetes Association (HDA)	Greece
International Federation for the Surgery of Obesity & Metabolic Disorders (FSO)	International
Israel Diabetes Association (IDA)	Israel
Italian Society of Baristric & Metabolic Surgery (SICOB)	Italy
Italian Society of Diabetology (SID)	Italy
Japan Diabetes Society (JDS)	Japan

Table 1-International societies that have ratified and/or endorsed the DSS-II

consensus statements and quidelines

This table indicates the societies that, at the time this article went to press, had officially ratified and/or endorsad the DSS-II consumous statements and guidelines. Additional international medical and scientific societies are currently considering endorsing these results as well.

Society of American Gastrointestinal and Endoscopic Surgeons (SAGES) USA

Mexico

Saudi Arabia

South Africa

Latin American Association of Diabetes (ALAD) Mexican College of Baristric and Metabolic Surgery (CMICOEM)

Qatar Diabetes Association (QDA) Saudi Diabetes and Endocrine Association (SDEA)

Society for Endocrinology (SfE)

Spanish Society of Diabetes (SED)
The Obesity Society (TOS)

Mexican Society of Nutrition and Endocrinology (SM NE)

Society for Surgery of the Alimentary Tract (SSAT) South African Society for Surgery Obesity and Metabolism (SASSO)

Spanish Society for Baristric and Metabolic Surgery (SECO)

Rubino 2016

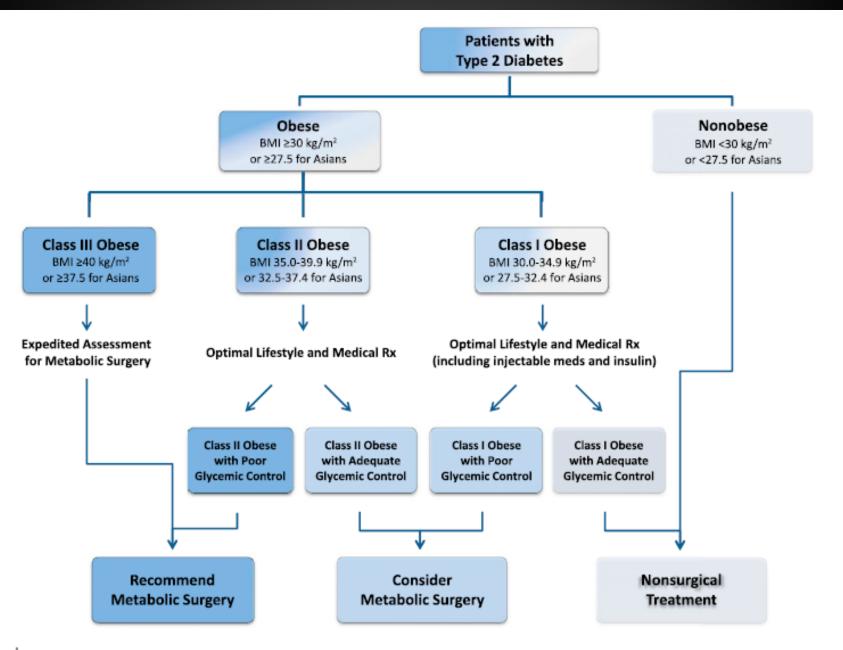
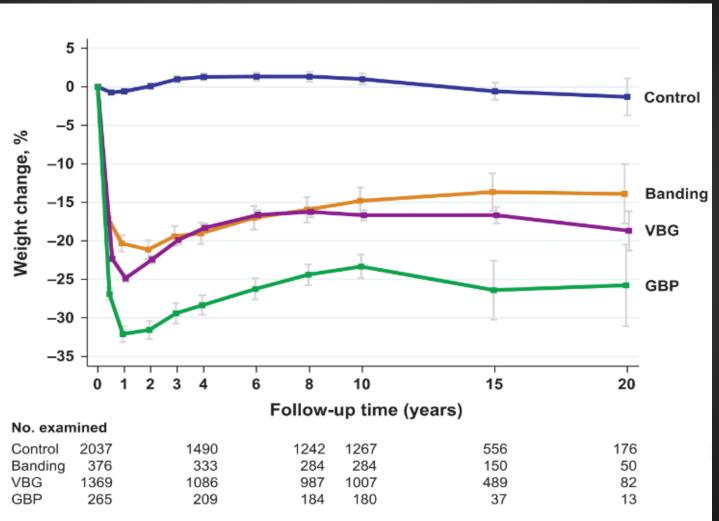


Figure 4—Algorithm for the treatment of T2D, as recommended by DSS-II voting delegates. The indications above are intended for patients who are appropriate candidates for elective surgery. meds, medications.


Bariatric surgery

"Weight loss surgery" (>50% Excess Weight Loss)

"Metabolic Surgery" (Partial or complete resolution of comorbidities, especially Type II Diabetes)

With sustained effect and efficacy

Weight loss

Weight loss

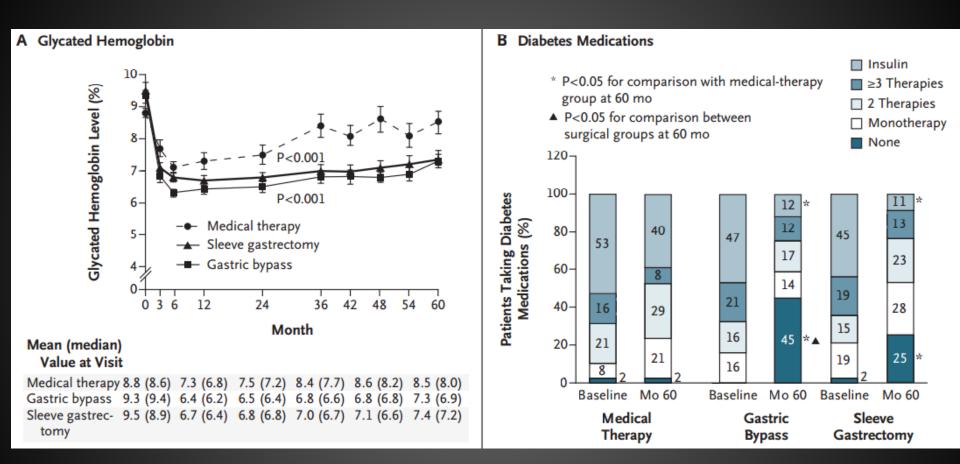

Figure. Long-term Excess Weight Loss After Gastric Bypass and Gastric Band Procedures

Gastric Bypass		Follow-up, y	No. of Patients	Mean % EWL (95% CI)	
	Study Type	rement up, y		(5575 C.)	1
Hall et al. 15 1990	RCT	3	85	63.6a	
Skroubis et al. 16 2006	RCT	2	62	72.6 (68.6-76.6)	
Nguyen et al. 17 2009	RCT	2	94	68.9 (65.7-72.1)	
Adams et al, 6 2012	Matched cohort	5	379	58.0 (55.6-60.4)	
Kalfarentzos et al. 23 2006	Cohort	3	59	68.3 (63.9-72.7)	
Courcoulas et al, 7 2013	Cohort	3	1581	67.7ª	-
Porles et al, 26 1995	Case series	5	317	58.0 (55.1-60.9)	-
Sekhar et al, 28 2007	Case series	2	783	69.3 (68.1-70.5)	
Czupryniak et al, ²⁷ 2007	Case series	2	68	77.8 (72.4-83.2)	
Yan et al, ²⁹ 2008	Case series	2	50	51.1	
Hauser et al, ³⁰ 2010	Case series	2	66	56.0	•
Sastric Band					
O'Brien et al, 19 2005	RCT	2	198	49.5 (46.9-52.1)	<u>.</u>
van Dielan et al, 18 2005	RCT	2	50	54.9 (48.4-61.4)	
Suter et al, ²⁰ 2005	RCT	2	156	54.5	•
Gravante et al, ²¹ 2007	RCT	2	356	56.0 (52.3-59.7)	
Mathus-Vliegen et al, ²² 2007	RCT	5	44	41.6 (33.9-49.3)	
Nguyen et al, 17 2009	RCT	2	79	41.8 (37.4-46.2)	
Basdevant et al, 24 2007	Cohort	2	876	46.1	•
Phillips et al,8 2009	Cohort	3	228	41.1 (37.8-44.4)	-
Van Nieuwenhove et al, ²⁵ 2011	Cohort	5	656	46.2 (44.3-48.1)	-
Courcoulas et al,7 2013	Cohort	3	567	38.1ª	•
Ponce et al, ³¹ 2005	Case series	3	68	62.0 (60.6-63.4)	-
Favretti et al, 32 2007	Case series	5	765	37.3 (35.5-39.1)	+
Ray and Ray, 33 2011	Case series	4	66	58.0	•

When standard deviation was not reported, confidence interval could not be calculated. The vertical rule at 50% excess weight loss (EWL) indicates the historical surgical consensus threshold delineating success. RCT indicates randomized clinical trial.

a Median.


Weight loss


	Mean (95% CI)					
	GB	AGB	SG	Control	Overall	
BMI		nas		Carrier Co.	OHU BI	
Year 1						
RCT						
Estimates	-14.53 (-16.82 to -12.25)	-10.48 (-13.70 to -7.25)	-16.20 (-24.45 to -7.95)	b	-13.53 (-15.51 to -11.55	
No. of studies/erms	9/15	3/3	1/1	0/0	12/22	
OBS						
Estimates	-14.32 (-19.02 to -9.62)		-12.14 (-14.02 to -10.26)	-1.01 (-5.26 to 3.23)	-11.79 (-13.89 to -9.69)	
No. of studies/erms	27/37	24/27	17/18	3/4	57/87	
Year 2						
RCT						
Estimates	-14.47 (-16.98 to -11.97)				-13.23 (-15.36 to -11.11	
No. of studies/arms	6/10	2/2	0/0	0/0	8/15	
OBS Extirates	-12.93 (-17.39 to -8.47)	-8.75 (-10.37 to -7.13)	-13.39 (-19.52 to -7.26)	0.10 (-7.39 to 7.60)	-11.80	
No. of studies/erms	12/16	14/16	5/5	1/2	(-13.92 to -9.69) 29/40	
Your 3						
RCT						
Estimates	h	-9.20 (-15.85 to -2.54)	h	b.	-9.20 (-15.85 to -2.54)	
No. of studies/arms OBS	0/0	1/2	0/0	0/0	1/2	
Estimates	-16.78 (-20.57 to -12.99)	-11.43 (-18.14 to -4.72)	-21.88 (-27.96 to -15.79)	b	-15.48 (-18.79 to -12.18	
No. of studies/erms	6/9	7/8	2/2	0/0	17/21	
Your 4						
RCT						
Estimates	h .	h	h	h	b	
No. of studies/erms	0/0	0/0	0/0	0/0	0/0	
OBS Estimates	-17.86 (-22.20 to -13.53)	-6 30 (-19 63 to 6 22)			-17.00	
No. of				0/0	(-20.80 to -13.19	
Year 5	5/8	1/1	0/0	u/u	8/11	
RCT						
Estimates		-11.40 (-28.08 to 5.28)		b	-11.40 (-28.08 to 5.28)	
No. of studies/arms	0/0	1/1	0/0	0/0	1/1	
OBS						
Estimates	-15.96 (-20.52 to -11.40)	-12.36 (-16.92 to -7.79)	-16.10 (-28.22 to -3.98)		-14.32 (-17.19 to -11.49	
No. of studies/erms	4/7	4/7	1/1	0/0	10/16	

Puzziferri JAMA 2014

Diabetes remission

Diabetes remission

Complications (early)

	Reoperation	Readmission
RYGB	2,5%	5,1%
LAGB	0,6% (3Y) >20%(5-10y)	2,0%

0,6%

VSG

Rubino Diabetes Care 2016

5,5%

Complications

VSG

- Leaks
- Strictures
- Bleeding
- GORD
- Malabsorbtion

GBP

- Leaks
- Bleeding
- Internal hernia
- Protein malabsorbtion
- Nutritional deficiencies
- Marginal ulcer

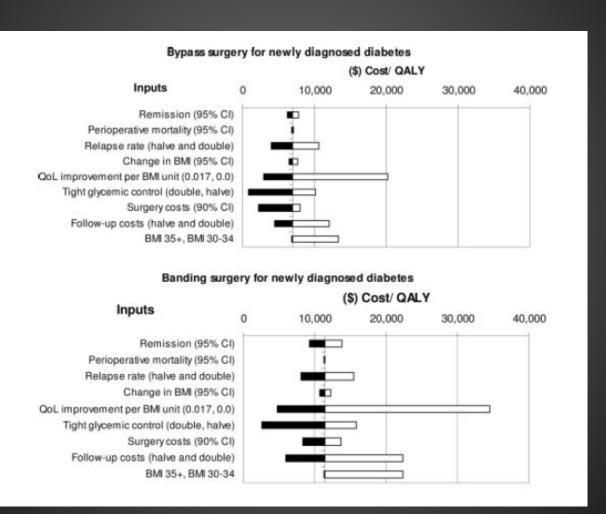
Complications

LRYGB LSG (10906 pts) (4816 pts)

Leak: 1,9% 2,3%

Mortality: 0,4% 0,2%

Zelmer metaanalysis Am J Surg 2014

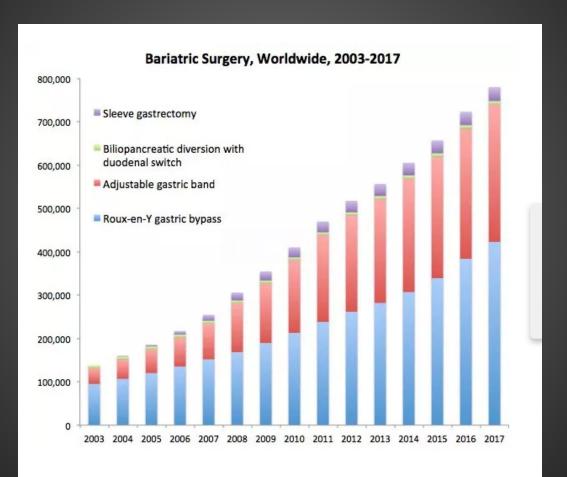

RYGB

vs BPD: better resolution of comorbidities but more (and much more severe) metabolic complications in BPD group.

RYGB

vs LAGB: greater diabetes remission, higher risk of postoperative complications but lower risk of long-term reoperations.

vs VSG: higher diabetes remission rates, better lipid control, better quality of life and higher incidence of postoperative complications.



Cost-effectiveness of bariatric surgery

Table 2—Life-years gained and cost-effectiveness ratios (relative to no surgery) for baseline analyses

	Total costs*	Remaining life-years	QALYs*	Cost-effectiveness ratio (\$/QALY)†
Patients with newly diagnosed diabetes				_
No surgery (standard care)	\$71,130	21.62	9.55	
Bypass surgery	\$86,665	23.34	11.76	
Incremental (vs. no surgery)	\$15,536	1.72	2.21	\$7,000
Banding surgery	\$89,029	22.76	11.12	
Incremental (vs. no surgery)	\$17,900	1.14	1.57	\$11,000
Patients with established diabetes				
No surgery	\$79,618	16.86	7.68	
Bypass surgery	\$99,944	17.95	9.38	
Incremental (vs. no surgery)	\$20,326	1.09	1.70	\$12,000
Banding surgery	\$96,921	17.80	9.02	
Incremental (vs. no surgery)	\$17,304	0.94	1.34	\$13,000

^{*}Costs and QALYs are discounted at a 3% annual rate. †Cost-effectiveness ratios are rounded to the nearest \$1,000/QALY.

Source: MedMarket Diligence, LLC; Report #S835

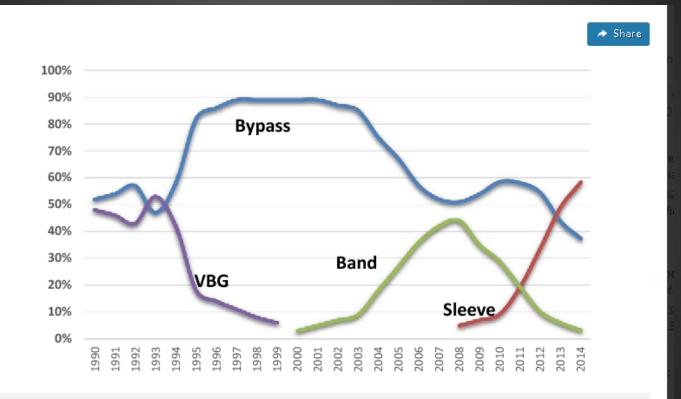


Fig. 4. Combined analysis of available literature data on utilization of bariatric surgery since 1990. Source: Pope [13] (1990–1997), Trus [14] (1990–2000), Santry [15] (1998–2002), Nguyen [16] (2003–2008),

Pu	blish	ned	July	2016
	PATTO	100		n= 0 0

	2011	2012	2013	2014	2015
Total	158,000	173,000	179,000	193,000	196,000
RNY	36.7%	37.5%	34.2%	26.8%	23.1%
Band	35.4%	20.2%	14%	9.5%	5.7%
Sleeve	17.8%	33%	42.1%	51.7%	53.8%
BPD/DS	0.9%	1%	1%	0.4%	0.6%
Revisions	6%	6%	6%	11.5%	13.6%
Other	3.2%	2.3%	2.7%	0.1%	3.2%
Balloons					~700 cases
V-Bloc					18 cases

ASMBS total bariatric procedures numbers from 2011, 2012, 2013, 2014 and 2015 are based on the best estimation from available data (BOLD, ASC/MBSAQIP, National Inpatient Sample data and outpatient estimations).

WEIGHT LOSS AND RESOLUTION OF COMORBIDITIES AFTER SLEEVE GASTRECTOMY: A REVIEW OF LONG-TERM RESULTS

D. M. Felsenreich, F. B. Langer, G. Prager

Division of General Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria

2018 review of all long term studies to date

WEIGHT LOSS AND RESOLUTION OF COMORBIDITIES AFTER SLEEVE GASTRECTOMY: A REVIEW OF LONG-TERM RESULTS

D. M. Felsenreich, F. B. Langer, G. Prager

Division of General Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria

- 2018 review of all long term studies to date
- 21-27% new GORD

WEIGHT LOSS AND RESOLUTION OF COMORBIDITIES AFTER SLEEVE GASTRECTOMY: A REVIEW OF LONG-TERM RESULTS

D. M. Felsenreich, F. B. Langer, G. Prager

Division of General Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria

- 2018 review of all long term studies to date
- 21-27% new GORD
- T2DM relapse after 3-5 years

WEIGHT LOSS AND RESOLUTION OF COMORBIDITIES AFTER SLEEVE GASTRECTOMY: A REVIEW OF LONG-TERM RESULTS

D. M. Felsenreich, F. B. Langer, G. Prager

Division of General Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria

- 2018 review of all long term studies to date
- 21-27% new GORD
- T2DM relapse after 3-5 years
- Conversion rate 20-29% (8-9y)
 25-37% (>10y)

Choice of procedure 21. RYGB is a well-standardized surgical procedure, and among the four accepted operations for metabolic Grade U; LoC 100% surgery, it appears to have a more favorable risk-benefit profile in most patients with T2D.

Malabsorptive surgery for morbid obesity is more efficient and cost effective

Danie Folscher
Surgeon, George
Honorary Senior Lecturer
Dept of Surgery, UCT and Groote Schuur Hospital