

RADIATION INDUCED SMALL BOWEL DISEASE

Dr Mnguni

Supervisor: Dr Lohlun

Radiation Oncology

INTRODUCTION

- Radiation therapy is not regularly indicated in the treatment of small bowel disease.
- Reasons are complex and related to the relative sensitivity of the small bowel to radiation, its mobility and the difficulty in defining the treated area.
- The small bowel is very susceptible to radiotherapy as doses that cause injury are very close to therapeutic doses.
- We discuss Radiation Induced Small Bowel Diseasepathophysiology, clinical presentation, prevention strategies and treatment.

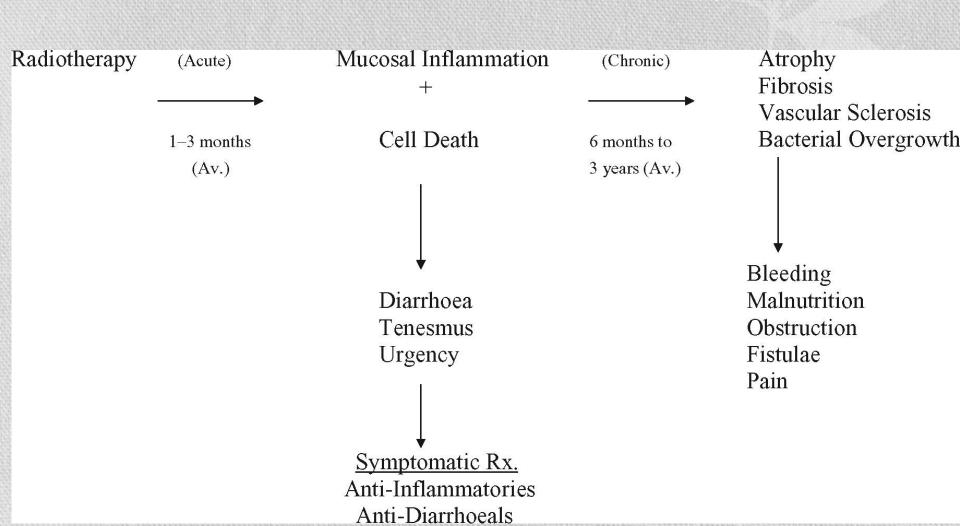
INTRODUCTION

- Small bowel: consists of duodenum, jejunum, ileum
 - Extends from pylorus of stomach to ileocecal junction
 - Joins cecum(first part of large intestine) at ileocecal junction
 - Duodenum is the first and shortest (25cm) part. Most fixed part
 - Together ileum and jejunum 6-7 meters long in cadavers, shorter in living humans due to tonic contractions. Not fixed.
 - Terminal ileum usually lies in the pelvis
 - Small bowel is closely related to colon and rectum
- Radiotherapy indications include GI, Urological, Gynae cancers
- Pts subsequently develop GI side effects/injuries
- NB: injuries may overlap

RT INDUCED SMALL BOWEL DISEASE

- Injury to small bowel resulting from RT, excludes colon & rectum
- Radiation enteropathy / mucositis describes disease process
- Pelvic radiation disease describes the phenomenon of GI injury secondary to RT
- RT induced small bowel disease- is the most accurate description
- Two types of injuries exist: acute and chronic

ACUTE FORM


- Presents during or shortly after a course of radiotherapy
- Acute injury is due to damage to mitotically active intestinal crypt cells.
- Patients notice symptoms during the second week of treatmentwhen tissue damage and inflammation is probably at a maximum
- Symptoms peak by 4th-5th week when histological changes are stable/improving
- Symptoms: colicky abdominal pain, bloating, loss of appetite, nausea, diarrhea and fecal urgency

CHRONIC FORM

- Develops between 18months and 6years after completed course of radiotherapy
- chronic injury affects less mitotically active vascular endothelial and connective tissue cells.
- Chronic enteropathy presents in many different ways including post-prandial pain, acute or intermittent small bowel obstruction, nausea, anorexia, weight loss, bloating, diarrhea, steatorrhea and malabsorption of nutrients

PATHOGENESIS

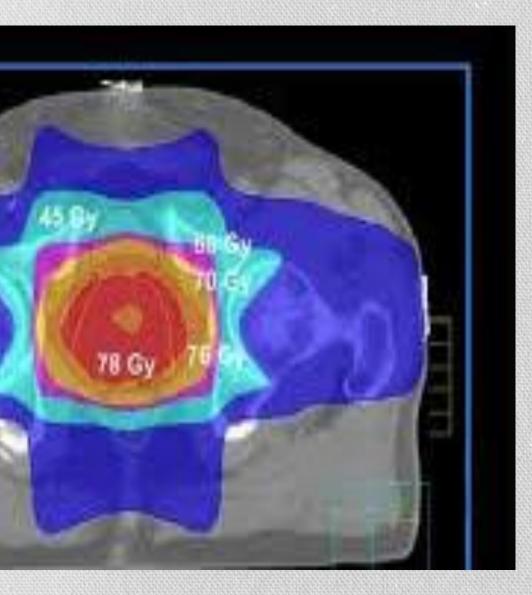
- Complex injury type- repetitive injury, different healing
- Changes in small bowel
 - inflammation/cell death
 - persistent cytokine activation in submucosa
 - fibrosis of connective tissue with arteriolar endarteritis
 - tissue ischemia, mucosal friability, neovascularization, progressive fibrosis
 - multiple areas of dysfunction, stricturing disease
- Clinical presentation depends on
 - degree/extent of tissue damage
 - site of injury

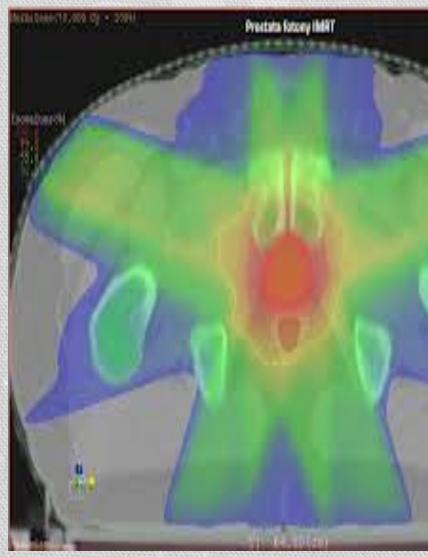
PATHOGENESIS

- Intestinal damage is related to
 - radiation regime
 - size of treatment field
 - site of treatment field
 - area of normal bowel that is exposed
 - use of concurrent chemo
 - presence of radiation implants
- Decreased blood flow to bowel wall increases the risk of radiation injury.

PATHOGENESIS

- Patients at increased risk
 - Hypertension, DM, generalised atherosclerosis
 - Previous surgery
 - chemotherapy (Doxorubicin, Methotrexate, 5Fu, Bleomycin- all increase sensitivity to RT)
 - ? Irritable bowel disorder (limited data)
 - Thin elderly females (more intestines in the pelvic area)

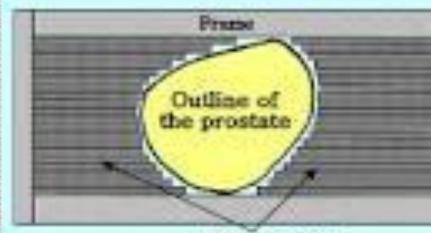



CLINICAL PRESENTATION

- Gastrointestinal symptoms
 - commonest for oncology patients
 - impact quality of life
 - under-reported
- NB educate patients on S/E and self reporting
- Symptoms under recognized by doctors
- Alarm features rectal bleeding, weight loss → prompt gastro referral
- Surgeons need to be aware
 - prior radiotherapy is a risk factor for strictures and adhesions
 - Patients can present with sub-acute or intermittent bowel obstruction

PREVENTION STRATEGIES

- Use of modern imaging and radiotherapy techniques to minimize radiation exposure to normal tissues
 - IMRT(multiple beams, nonuniform dose across field)
 - image guided techniques (cone beam CT prior to Rx)
 - patient position (prone/decubitus) and positioning devices (belly board)
 - Full bladder
- Consider circadian rhythm effects
 - patients treated in the morning have more GI side effects, similar oncological therapeutic response
 - logistical problem limited capacity for evening treatments
- Use of Statins and ACE inhibitors
 - In vitro studies show anti-inflammatory/fibrotic/thrombotic potential of statins in irradiated human cells
 - ACE inhibitors play a role in blood pressure homeostasis

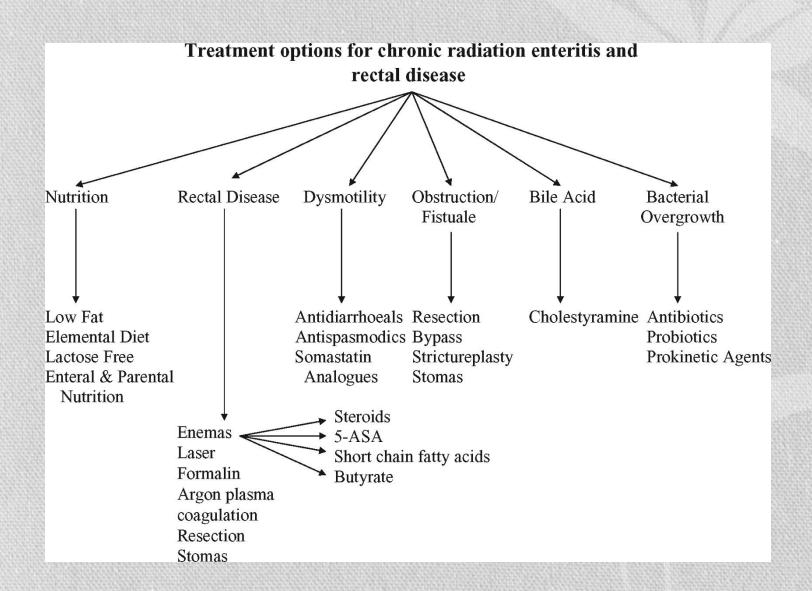


40 independently positioned Tungsten leaves.

Sketch of a multileaf collimator.

TROC lewes | CAT | Colore | Catron | Ca

PREVENTION STRATEGIES


- Use of pro-biotics
 - help restore indigenous gut flora NB for normal mucosa function
 - emerging evidence they may have radio-protective effect
- Surgical techniques
 - absorbable mesh slings- in early postop period these prevent the small bowel becoming adhered into the pelvis
 - space-occupying silicone prosthesis have been used to exclude the small bowel from pelvis
 - repeat surgery post radiotherapy to remove implants, alternatively inflatable implants may be used

QUANTEC

- V15< 120cc individual bowel loops
- Normal tissue constraint guidelines in clinical practice

TREATMENT

- Acute setting
 - Supportive- eg. loperamide, octreotide
 - Dietary lactose free diet, low fat
- Chronic setting
 - Supportive Rx- symptom based eg. antimotility, analgesics, anti-emetics
 - antibiotics for small bowel bacterial overgrowth
 - Cholestyramine for bile salt malabsorption
 - Dietician consult- patients need sufficient caloric intake, vitamin & mineral supplements
 - In some patients parenteral support is necessary
 - Hyperbaric oxygen- decreases tissue hypoxia, encourage angiogenesis
 - Endoscopic therapies- argon plasma coagulation, enteroscopy

TREATMENT

- Surgery in post radiotherapy setting
 - Contoversy: resection vs bypass
 - Resection with primary anastamosis-?bowel ends viability and fistula formation
 - Bypassing- leave behind diseased bowel, prone to perforation+ sepsis+fistula formation+ blind loop syndrome
 - Challenging surgery due to adhesions & fibrosis
 - Difficult wound healing
 - Patients with strictures & bowel obstruction need surgery
 - Patients with extensive bowel involvement are at increased risk for high output stoma
 - Surgical candidates need thorough evaluation pre-op
 - Need dedicated/ interested surgeons as part of the team

CONCLUSION

- •New radiotherapy techniques decrease inadvertent exposure to adjacent normal tissue
- Preventative agents including ACE inhibitors and statins are an area of new research
- Treatment in acute phase is mostly supportive
- •In the chronic phase the key is to recognize and refer patients for specialist advice, eg gastroenterologist with interest in the field
- •Patients need a targeted workup for the symptoms they have
- •The small subset who require surgery should be directed to surgeons with experience in dealing with this challenging situation