Complications of acute appendicitis and of their treatment

Dr Brandon Jackson Department of Surgery University of Pretoria Controversies of Surgery Oct 2015

Pathology and pathogenesis

- Appendix lumen obstruction leads to congestion within the appendix
- Inflammatory exudate and mucous increases luminal pressure
 - Obstruction of lymphatic drainage
 - Oedema
 - Ulceration
 - Bacterial growth
 - Pus
 - Ischaemia of the appendix.
- The loss of integrity
 - bacterial invasion of the submucosa and muscularis propria resulting in acute appendicitis.
- Rarely the initial stages resolves
- Appendix may distend with mucus- mucocele

Appendicitis complications

- Gangrenous Appendicitis: Thrombosis of the appendiceal artery and veins
- Perforation: -complication rates 58 %⁵.

-perforation rate increased at both ends of the age spectrum⁴

• Peri-appendiceal abscess:-most frequent complication.

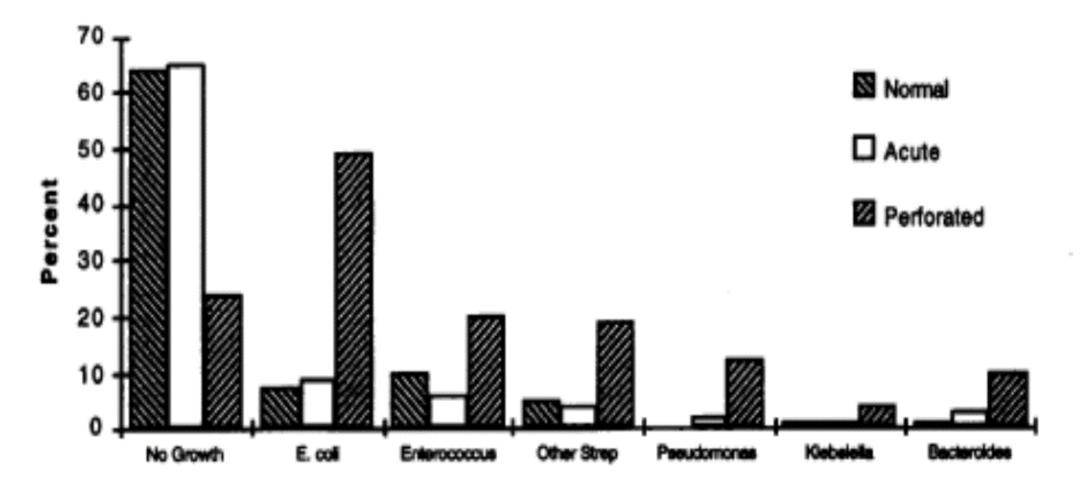
-peri-appendiceal fibrinous adhesions

• Peritonitis: -Bacterial peritonitis in absence of fibrinous adhesions.

-Escherichia coli⁴

- Bowel Obstruction
- Septic seeding of mesenteric vessels:

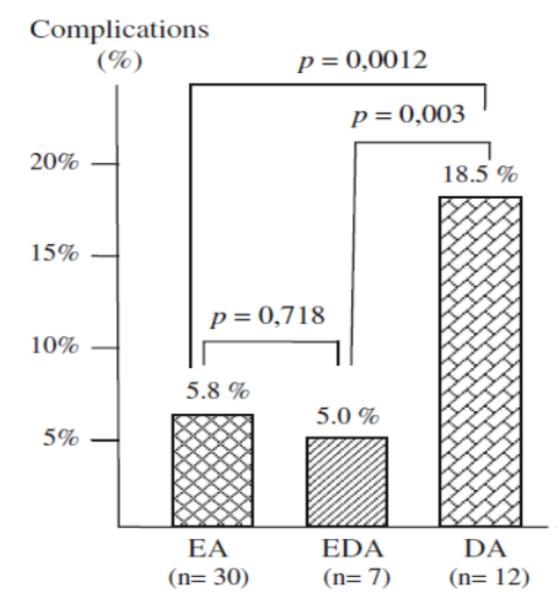
-infection along the mesenteric–portal venous system -pylephlebitis, pylethrombosis, or hepatic abscess


• Appendicitis and Pregnancy:

-1/5 with complicated appendicitis

-perforation rate of 15-20% (esp. first and second trimesters)

-5% risk of fetal loss (20% with perforation)


<u>Distribution of organisms isolated from peritoneal cultures</u> <u>stratified by diagnosis</u>⁴

Timing of Appendicectomy

- A prospective study of 723 patients
- 83% had OA and 17% had LA
- Early appendectomy: <12h
- Early-delayed appendectomies by 12–24 h after presentation: no impact on the perforation rate, operative time, complication rate or length of hospital stay.
- Delaying >24 h:- increased complications rate (18.5 %).
 - increased gangrenous appendices
 - worse grade of inflammation⁵.

<u>Comparison of the complication rate in the early appendectomy (EA), early-delayed appendectomy (EDA) and delayed appendectomy (DA) groups</u>⁵.

Management of Appendicitis

Uncomplicated appendicitis:

- Meta-analysis: lower post-intervention complications with surgery
 - -appendicectomy (0.8%)
 - -antibiotic therapy (10%)⁶.

Complicated appendicitis:

- Meta-analysis: conservative management with or without Interval appendicectomy
- Conservative treatment:
 - Decreased complication and re-operation rate
 - Less wound infections, abdominal/pelvic abscesses, and ileus/bowel obstructions⁷.

Interval Appendicectomy vs. No interval appendicectomy

- The risk of recurrent appendicitis is low compared to the risk of complications from interval appendectomy¹².
- Patients that undergo an interval appendicectomy:
 - -16% will not benefit from interval appendectomy (normal or obliterated appendix)
 - -84% likely benefit from interval appendectomy (persistent acute appendicitis, chronic appendicitis, evidence of inflammatory bowel disease, or neoplasm identified).
- Patients with **appendicoliths** are most likely to benefit from interval appendectomy as this becomes an environment for future infection¹².

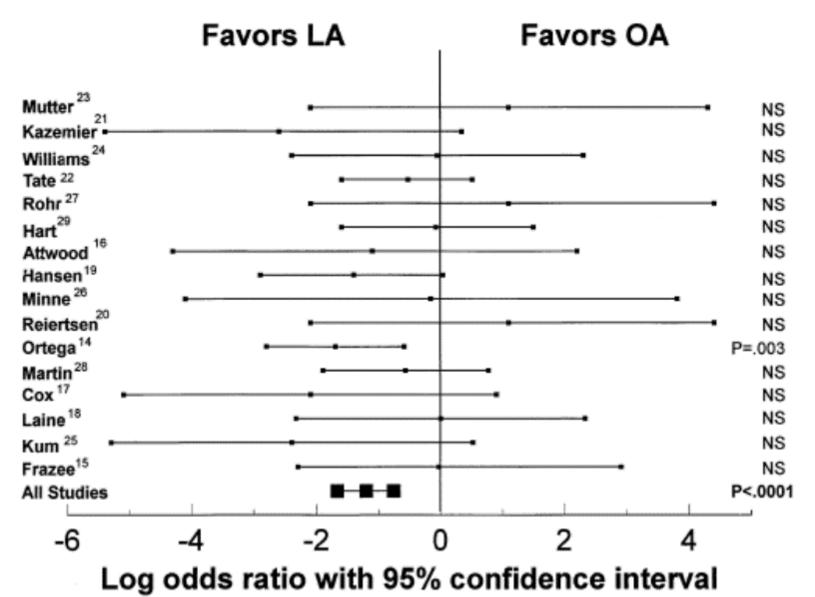
Laparoscopic vs. Open Appendicectomy

- A decreased incidence of wound infections has been considered to be a major advantage of laparoscopic appendectomy.
- Meta-analysis: wound infection rate in the Laparoscopic appendicectomy <50% the rate in the Open appendicectomy group.
- Intra-abdominal abscess incidence is higher in the Laparoscopic appendicectomy group (not statistical significant)⁹.
- ?spillage within the abdominal cavity of infectious contents, promoted by the carbon dioxide pneumoperitoneum

	OR tim	e (min)		erative l (days)		erative (days)		ys to lids	wo	o. of ound ctions	con	np-	abdor abs	tra- minal scess n)	nor	rm to rmal vities ays)
Study	LA	OA	LA	OA	LA	OA	LA	OA	LA	OA	LA	OA	LA	OA	LA	OA
Laine	56.0	32.0	—	_	2.7	2.3	_	_	1	1	1	0	0	0	13.1	18.2
Kazemier	61.0	42.0	35.3*	58.7*	3.7	4.4	2.1	2.2	0	6	8	5	0	1	_	
Hansen	63.0 [†]	40.0^{\dagger}	2.0*	4.0^{\ddagger}	3.0	3.0 [†]	1.5	2.0	25	85	6	3	0	0	7.0	14.0
Cox	58.9	50.6			2.9	3.9		_	Oll	3	4	6	0	0	10.4	19.8
Tate	70.3	46.5	4.7*	5.3*	3.5	3.6	2.2	2.3	71	10	7	7	0	0	10000	
Martin	102.2	81.7		_	2.2	4.3		_	3	6	10	12	3	3	12.2	12.8
Frazee	87.0	65.0	1.2#	2.0#	2.0	2.8	1.7	2.5	1	1	2	3	1	0	14.0	25.0
Kum	43.4	40.1	1.0**	1.3**	3.2	4.2	1.8	1.8	0\$	55	_		0	0	17.0**	30.0**
Attwood	61.0 [†]	51.0 [†]	_	_	2.0^{\dagger}	3.0 [†]	_	_	0	1	0	3	0	0	21.0**	38.0**
Minné	81.7* \$\$	66.8† \$\$	3.7*	4.0*	1.1*	1.2^{\dagger}	_	_	0	0	3	0	2	1	14.0 ^{‡‡}	$14.0^{\ddagger\ddagger}$
Ortega	67.1	58.0	4.1	4.2		_			4	11	79	33	6	0	9.0	14.0
Williams	93.0	87.0	1.0"	1.1"	2.4	2.8	0.98	1.6	1	1	3	2				
Reiertsen	51.0	25.0	5.0*	5.4*	3.5	3.2	_	_	1	0	15	10	2	2	15.0	19.7
Mutter	45.0*	25.0 [†]	4.7*	4.4*	5.3	4.9	1.03	0.875	1	0	2	1	0	0	_	
Hart	73.8	45.0	4.05	5.58	3.23	3.03		_	3##	3##			3	0	9.0	16.2
Rohr	71.0	42.0	_		_				1	0	_		_	_	18.0**	20.0 ^{‡‡}

*Visual analog scale.

[†]Median.


[†]Median dose of narcotics.

⁵Purulent drainage. ¹Discharge from wound and erythema. ⁵Induction-reversal.

*Days of intramuscular narcotic use. **Doses of intramuscular narcotics. **Return to full home activities. **Time to return to work or school.

⁵⁶Time in room.
¹¹Days requiring pain medication.
¹⁹Narcotic injections.
OR, operating room; LA, laparoscopic appendectomy; OA, open appendectomy.

<u>Results of the Mantel-Haenszel meta-analysis for wound infections. LA,</u> <u>laparoscopic appendectomy;OA, open appendectomy⁹.</u>

Laparoscopic (LA) vs. Open Appendicectomy (OA) in Complicated Appendicitis

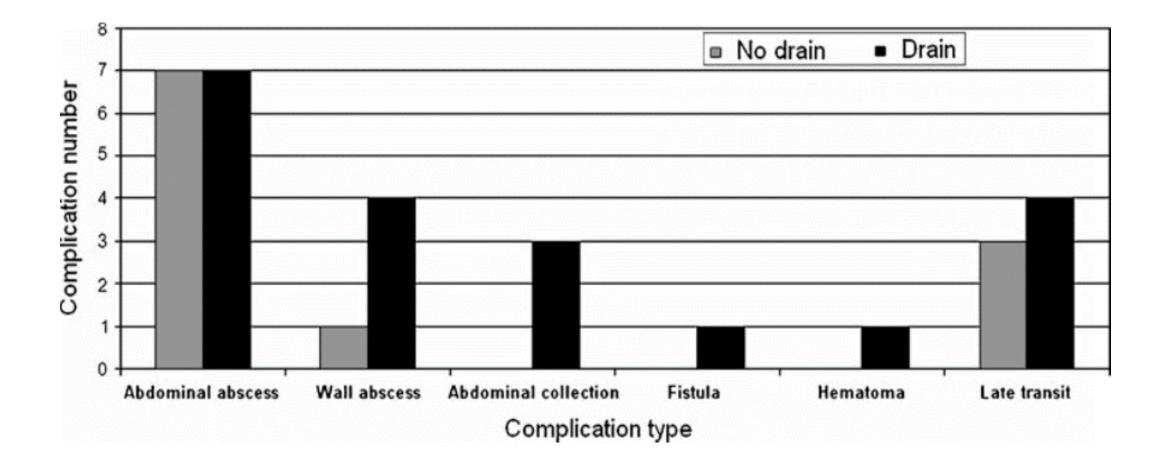
- Controversial
- LA: -higher technical demand

-longer operative time,

-higher reported incidence of intra-abdominal collections

- Retrospective study (1999-2004)
- The incidence of intra-abdominal collection rates for LA= 5.7% & OA= 4.3% (p = 0.473).
- Laparoscopic appendicectomy for complicated appendicitis is therefore feasible and safe and has less risk of wound infection (p<0.001)¹⁰

Laparoscopic (LA) Vs. Open Appendectomy (OA) for Complicated appendicectomy¹⁰


Characteristics	LA group $(n = 175)$	OA group $(n = 69)$	p Value	
Gender (M/F)	75/100	35/34	0.27	
Age (y), mean \pm SD	46.3 ± 18.4	42.7 ± 19.1	0.17	
Operative time (min), median (interquartile range)	55.0 (45-65)	70 (60-80)	< 0.001*	
Length of hospital stay (d), median (interquartile range)	5 (4-7)	6 (5-9)	< 0.001*	
Cases of wound infection, n (%)	1 (0.6)	7 (10)	< 0.001*	
Cases of intraabdominal collection, n (%)	10 (5.7)	3 (4.3)	0.47	

F, female; LA, total laparoscopic appendectomy for complicated appendicitis, including 24 conversion cases; M, male; OA, open appendectomy for complicated appendicitis after diagnostic laparoscopy. *Statistically significant.

Drain vs. No drain

- LA for complicated acute appendicitis with no-drain has a lower overall complication rate,
- No-drain=7.7% vs. Drain=18.5% (p=0.01),
- Complications are mainly low-grade.
- Abdominal wall abscesses are significantly more frequent in the drain group.
- Therefore the advantage of the laparoscopic, i.e. the reduced wound infection rate, is eliminated by routinely inserted drains¹¹.

Details of surgical complications and drains (n=320)¹¹

NOTES (natural orifice transluminal surgery)

- A prospective study was done on 13 transvaginal-hybrid NOTES appendectomies.
- 1 developed an intra-abdominal abscess (with a vaginal fungal infection)
- 1 developed an infected hematoma
- Both occurred after a perforated appendicitis.
- No sexual dysfunction for up to 2 years or child-delivery complications
- Intraoperative and early postoperative data seem comparable to that of Laparoscopic appendicectomy.
- NOTES also prevents abdominal wall trauma like trocar hernias.
- NOTES appendectomy is an alternative to Laparoscopic appendicectomy¹³.

Summary of Post-operative complications

Early complications (first week postoperatively)

- Wound infection: Most common early complication following appendicectomy for perforated appendicitis.
- Intra-abdominal abscesses:- esp. in gangrenous or perforated appendicitis

- responsible for the majority of reported deaths after LA⁴

- Postoperative ileus
- Port site haematoma: for LA can be avoided by removing ports under vision¹
- Postoperative bleeding:- trocar injury to the epigastric vessels (LA)

-from inadequate hemostasis during the operative procedure

-from unrecognized injury to a major vessel during laparoscopic appendectomy.

Management: transarterial embolization or exploration

• Postoperative leak

Late complications (>1 week post appendicectomy)

- adhesional obstruction,
- faecal fistula
- incisional hernias
- Urinary tract disorders (retention and infection)-25% of all complications and is slightly more common in perforated appendicitis.
- **Postoperative pneumonias** More than half of are associated with the presence of perforation⁴.
- **Miscellaneous complications:** pseudomembranous enterocolitis, pulmonary embolus, acute renal failure, myocardial infarction, DVT, and common iliac artery laceration secondary to laparoscopic trocar insertion⁴.

<u>References</u>

- Chandrasekaran TV and Johnson N. Acute appendicitis. Surgery. 2014. 32 (8): 413-417.
- Berry J and MALT RA. Appendicitis Near Its Centenary. Ann. Surg. 1984; 200 (5):567-576.
- Leite NP, Pereira JM, Cunha R, Pinto P and Sirlin C. CT Evaluation of Appendicitis and Its Complications: Imaging Techniques and Key Diagnostic Findings. AJR. 2005; 185:406–417.
- Hale DA, Molloy M, Pearl RH. F.A.C.S., David C. Schutt, M.D., and David P. Jaques. Appendectomy: A Contemporary Appraisal. ANNALS OF SURGERY. Vol. 225, No. 3, 252-261.
- Giraudo G, Baracchi F, Pellegrino L, Dal Corso HM and Borghi F. Prompt or delayed appendectomy? Influence of timing of surgery for acute appendicitis. Surg Today. 2013; 43:392–396
- Kirby A, Hobson RP, Burke D, Cleveland V, Ford G, and West RM. Appendicectomy for suspected uncomplicated appendicitis is associated with fewer complications than conservative antibiotic management: A meta-analysis of post-intervention complications. Journal of Infection. 2015. 70: 105-110.
- Simillis C, Symeonides P, Shorthouse AJ and Tekkis PP. A meta-analysis comparing conservative treatment versus acute appendectomy for complicated appendicitis (abscess or phlegmon). Surgery 2010; 147: 818-29.
- Klingler A, Henle KP, Beller S, Rechner J, Zerz A, Wetscher GJ, et al. Laparoscopic Appendectomy Does Not Change the Incidence of Postoperative Infectious Complications. Am J Surg. 1998; 175:232–235.
- Golub R, Siddiqui F and Pohl D. Laparoscopic Versus Open Appendectomy: A Metaanalysis. Am Coll Surg 1998;186:545–553.

- Yau KK, Siu WT, Tang CN, Cheung Yang GP, KaWah Li M. Laparoscopic Versus Open Appendectomy for Complicated Appendicitis. J Am Coll Surg 2007;205:60–65.
- Allemann P, Probst H, Demartines N and Schäfer M. Prevention of infectious complications after laparoscopic appendectomy for complicated acute appendicitis—the role of routine abdominal drainage. Langenbecks Arch Surg (2011) 396:63–68.
- Lugo JZ, Avgerinos DV, Lefkowitz AJ, Seigerman ME, Zahir IS and Lo AY. Can Interval Appendectomy be Justified Following Conservative Treatment of Perforated Acute Appendicitis?Journal of Surgical Research. 2010. 164: 91–94.
- Knuth J, Heiss MM and Bulian DR. Transvaginal hybrid-NOTES appendectomy in routine clinical use: prospective analysis of 13 cases and description of the procedure.Surg Endosc. 2014; 28:2661–2665
- Hughes MJ, Harrison E, and Brown SP. Post-Operative Antibiotics after Appendectomy and Post-Operative Abscess Development: A Retrospective Analysis. SURGICAL INFECTIONS. 2013; 14 (1): 56-62.
- Shawn D, Obinna O, Corey W, Frankie B, Susan W, et al. Irrigation Versus Suction Alone During Laparoscopic Appendectomy for Perforated Appendicitis: A Prospective Randomized Trial. Annals of Surgery: 2012; 256 (4) 581–585.

Introduction

- first described in the 16th century as perityphlitis (inflammation of the connective tissue around the caecum).
- 1886: Reginald H. Fitz- pathogenesis starting with acute inflammation of the appendix to peritonitis and iliac-fossa abscess.
- Fitz also recommended surgical for most cases.
- 1889: McBurney described the clinical findings.
- Appendicectomy is still the mainstay of treatment.

Post-operative antibiotics?

- Surgical Infection Society (SIS) Guidelines: post-operative antibiotic regimen adjusted according to the appearance of the appendix at operation.
- For perforated and gangrenous/inflamed appendicitis with intraperitoneal contamination, as many as five days of antibiotics is recommended.
- For gangrenous/inflamed appendicitis with no evidence of intraperitoneal contamination, no more than one day of antibiotics is recommended.
- For **simple inflamed** appendicitis and normal appendices, no antibiotics should be administered after surgery.

Irrigation Vs. Suction

- Prospective, randomized trial
- With perforated appendicitis
- No difference in abscess rate, 19.1% with suction only and 18.3% with irrigation
- In the patients who developed an abscess, there was no difference in duration of hospitalization, days of intravenous antibiotics, duration of home health care, or abscess-related charges.
- Conclusions: There is no advantage to irrigation of the peritoneal cavity over suction alone