Difficulties in management of bile duct injuries after laparoscopic cholecystectomy

Martin Smith
University of the Witwatersrand,
Johannesburg
Chris Hani Baragwanath Hospital
Laparoscopic bile duct injuries: 25 years later

Magnitude of the problem

- Incidence 0.1%-0.5%
- Bile leak 0.3%-0.5% (85% from cystic duct)
- 34%-49% of surgeons in USA and British Columbia
- 50%-75% missed during the operation
- 60%-80% delayed recognition
bile duct injury is serious

- leads to considerable morbidity
- inappropriate treatment may cause death
- long-term sequelae may be devastating
- reduces QOL

- 15% of all surgical indemnities are for BDI
- 22%- 71% seek litigation after CBDI
- may ruin a surgeon’s career
survival after bile duct injury

Flum et al. JAMA 2003

3 times higher
2.7 times higher

collected series (15) 602 patients
no of deaths 17 (2.8%)

UP controversies 2015
Impaired Quality of Life 5 Years After Bile Duct Injury During Laparoscopic Cholecystectomy
A Prospective Analysis

Djemila Boerma, PhD,* Erik A. J. Rauwe, PhD,† Yolande C. A. Keulemans, PhD,* Jacques J. G. H. M. Bergman, PhD,† Huug Obertop, PhD,* Kees Huibregtse, PhD,† and Dirk J. Gouma, PhD*

From the Departments of *Surgery and †Gastroenterology, Academic Medical Center, Amsterdam, The Netherlands
Laparoscopic cholecystectomy-related BD injury

- a health and financial disaster - 49 patients

- total cost $ 51,411 : 4.5-26 times of uncomplicated cases
- average 32 days hospital stay
  10 days outpatient care days
- 2 deaths (4%)

A COST ANALYSIS OF OPERATIVE REPAIR OF MAJOR LAPAROSCOPIC BILE DUCT INJURIES

• 43% of injuries were recognised during the index operation
• Referral: median of 14.5 (1-3,662) days
• The inflation-adjusted mean total cost of repair was
  – R215,711 (range R68,764 - 980,830).
  – Theatre costs 22%
  – ICU costs 21%

Hofmeyr SAMJ. 2015:105; 454-457
causes of bile duct related complications

- misidentification of biliary anatomy
- technical errors
  - cystic duct leak
  - thermal injuries
  - bleeding
  - “tenting”
Fig. 1. The Strasberg Classifications of Biliary Injury from Laparoscopic Cholecystectomy. (adapted from *J Am Coll Surg.* 1995;180(1):101–125)
Stewart-Way Classification
Laparoscopic Bile Duct Injuries

Class I

Class II

Class III

Class IV

How does this occur?

Scientific principles from human factor research and cognitive psychology to understand BDI

– misconception leading to misidentification of anatomy
– skills error leading to dangerous dissection

Kanizsa Triangle

creation of visual perceptions as a form of heuristics

once it is there you can’t make an illusion disappear

UP controversies 2015
laparoscopic cholecystectomy

how can we make it a safer procedure?

• training
• identifying the high risk patient
• operative cholangiography
• refinements to operative technique
• built in “stopping rules”
the learning curve

Nuzzo et al Arch Surg 2005

UP controversies 2015
Bile duct injuries
- the learning curve continues

- 30% of BDI -> 200 cases
- no reduction in other complications
  - bleeding and bile leaks from cystic duct

may cause major M&M

Archer et al Ann Surg 2001
who are at risk for bile duct injury?

- elderly, males, obesity
- cholecystitis (previous attacks)
- gallstone pancreatitis
- previous BDS
- Mirizzi syndrome

not for the beginner

No risk factors in 80% of BDI
Routine operative cholangiography?
Protagonists
• reduces incidence of BDI
• early recognition
• less severe injury
• less inclined to misinterpret

Sceptics
• Does not prevent BDI
• BDI frequently occur before IOC
• BDI may occur as a result of IOC
• IOC frequently misses BDI
• BDI may occur after IOC

Ludwig et al Surg Endosc 2002
operative cholangiography

<table>
<thead>
<tr>
<th>collected series</th>
<th>% bile duct injury</th>
</tr>
</thead>
<tbody>
<tr>
<td>• routine</td>
<td>0.20 – 0.39</td>
</tr>
<tr>
<td>• selective</td>
<td>0.30 – 0.60</td>
</tr>
<tr>
<td>• none</td>
<td>0.34 – 0.58</td>
</tr>
</tbody>
</table>

Debru et al Surg Endosc 2005
# Cholangiography and the risk of common bile duct injury

1.5 million laparoscopic cholecystectomies

<table>
<thead>
<tr>
<th>IOC Use Categories</th>
<th>Overall*</th>
<th>Without IOC</th>
<th>With IOC†</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;25% (n = 741 742)</td>
<td>0.52</td>
<td>0.49</td>
<td>0.78</td>
</tr>
<tr>
<td>25%-49% (n = 279 270)</td>
<td>0.54</td>
<td>0.56</td>
<td>0.50</td>
</tr>
<tr>
<td>50%-75% (n = 211 880)</td>
<td>0.51</td>
<td>0.85</td>
<td>0.31</td>
</tr>
<tr>
<td>&gt;75% (n = 337 469)</td>
<td><strong>0.43</strong></td>
<td><strong>1.50</strong></td>
<td><strong>0.26</strong></td>
</tr>
<tr>
<td>All (N = 1 570 361)</td>
<td>0.50</td>
<td>0.58</td>
<td>0.39</td>
</tr>
</tbody>
</table>

*Differences between the overall rate in the greater than 75% IOC use group compared with all other levels of IOC use were statistically significant (P<.001).

†Differences between CBD rates with and without IOC were all statistically significant (P<.001).
verdict - operative cholangiography

- **routine**: continue if that’s the way you were taught
- **selective**: ? doubt about anatomy
- **none**: extra care to define biliary anatomy
How can we prevent bile duct injury?

There is no substitute for meticulous dissection of Calot’s triangle with the emphasis on identifying the cystic duct / infundibulum junction.

“the critical view of safety”
(Steven Strasberg)

UP controversies 2015
**Figure 4.** Different appearances of the cystic plate. (A) Critical view of safety (CVS) is seen from in front of the gallbladder as usually shown. The cystic plate is very thin. (B) CVS is seen with the gallbladder reflected to the left so that a posterior view of the triangle of Calot is shown. The cystic plate is thicker and whitish. Both views fulfill criteria for CVS.
Technical approaches to the Anatomy

• Critical view of safety – **routine approach**

• Infundibulum approach – **sometimes of value but avoid when significant inflammation present**

• Start by identifying the cystic duct – common bile duct junction - **avoid**

• Subtotal cholecystectomy – **in very selective cases**
Management of bile duct injury

The ideal scenario

- early detection
- maximum information on biliary anatomy
- specialised multi-disciplinary unit
Principles of Repair

- Tension free hepatico-jejunostomy
- Mucosa to mucosa anastomosis
- Well vascularised BD
laparoscopic cholecystectomy

recognition of bile leaks / duct injuries

• intra-operative
• early post-operative
• delayed presentation

key to successful outcome
intra-operative detection of bile duct injury

only 20-50%

telltales of an injury?

- unexplained bile leak
- unexpected structure is divided
- division of large cystic duct
- major bleeding is encountered
- non-filling of intra-hepatic ducts on IOC
IOC showing non filling of intra-hepatic ducts
intra-operative detection

**partial defect**
- primary repair
- avoid T- tube
- drain

**complete transection**
- hepatico-jejunostomy
  (HPB surgeon)
- drain and refer
successful outcome after bile duct repair

<table>
<thead>
<tr>
<th>the surgeon factor</th>
<th>success rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>“injuring” surgeon</td>
<td>17-27%</td>
</tr>
<tr>
<td>specialist surgeon</td>
<td>79-95%</td>
</tr>
</tbody>
</table>

Steward & Way  Arch Surg 1995
Flum et al JAMA 2003

UP controversies 2015
successful outcome after bile duct repair

<table>
<thead>
<tr>
<th>the surgeon factor</th>
<th>success rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>• “injuring” surgeon</td>
<td>17-27%</td>
</tr>
<tr>
<td>• specialist surgeon</td>
<td>79-95%</td>
</tr>
</tbody>
</table>

50-75% repairs are still done by primary surgeon!

Steward & Way  Arch Surg 1995
Flum et al JAMA 2003
Clinical Scenarios

• Early:
  – Bile Leak from drain site
  – Ascites
  – Abnormal LFT’s / Obstructive jaundice

• Late:
  – Consequence of biliary stricture
post operative bile leak from drain site

evidence of bile collection

- yes
  - imaging
  - drainage
- no
  - observe
  - MRCP/fistulogram
    - Persist
    - 1 week
    - 500 ml
  - Review IOC

ERCP  PTC
bile ascites

US/CT

drainage

MRCP

Percutaneous (early)

laparoscopic laparotomy (late)
MRCP

ERCP

UP controversies 2015
multiple clips = complete transection
management of bile duct injury

biliary ascites

US/CT

drainage

MRCP

complete transection partial

PTC ERCP
Partial transection with persistent leak
Incomplete Injury
major bleeding

selective angiography

embolization

UP controversies 2015
Hepatico-jejunostomy
Timing of definitive bile duct repair

protagonists for early repair (< 1-2 weeks)

• shorter duration of treatment
• less costly
• improve QOL
• equivalent results to delayed repair

Specialised HPB units

- Steward and Way Arch Surg 1995
- Boerma et al Ann Surg 2001
- Sicklick et al Ann Surg 2005
Early repair (< 1-2 weeks) contraindicated

- sepsis not under control
- confluence and vascular injury
- significant diathermy injury
- surgical expertise not available
Recognition and management of bile leak and bile duct injury: take home message

- intra-operative suspicion of BDI; “call a friend”
- unwell patients > 48 hrs = bile leak
- over rather than under investigate
- early referral to specialized centre
- attention to detail in the consenting process
- make careful notes in anticipation of a law suit