MANAGEMENT OF COAGULOPATHY AFTER TRAUMA OR MAJOR SURGERY

19th ANNUAL CONTROVERSIES AND PROBLEMS IN SURGERY Thabo Mothabeng General Surgery: 1 Military Hospital

sa military health service

Department: Defence REPUBLIC OF SOUTH AFRICA

NE OF THE MOST FRUSTRATING SITUATIONS ever encountered by the operating surgeon is an open wound in a patient whose blood will not clot and cannot be made to clot. By far the most extreme example is a bleeding diathesis complicating laparotomy. This event is an all-too-common occurrence in the patient who has sustained a major intraabdominal injury or who has a disease process or operation which has been attended by a massive hemorrhage. The coagulopathy can seldom be reversed satisfactorily. Thus, the usual outcome is continued bleeding and thereby death through exsanguination. HH Stone et al. Ann Surg. May 1983; 197(5): 532–535.

sa military health service

Coagulopathy of Trauma

The blood loss is usually underestimated!

What is this Coagulopathy?

Various terminology

- Trauma Induced Coagulopathy (TIC)
- □ Acute Coagulopathy of Trauma Shock (ACoTS)
- Acute Traumatic Coagulopathy (ATC)

Acute Coagulopathy

- Bloods ability to clot is impaired
- Increased fibrinolysis

sa military

- There may be thrombotic states
- Prolonged or excessive bleeding

Acute Coagulopathy of Trauma

Complicates trauma and major surgery

- Hypoperfusion is crucial
- Control of bleeding is difficult when coagulopathy is established
- □ Immediate/ Early Onset
 - One in four trauma patients
 - Four fold increase in mortality

sa military health service Department: Defence REPUISUIC OF SOUTH AFRIC

Characteristics of Coagulopathy

- □ Immediate effect; before hemodilution
- Proportional to injury
- **Hypoperfusion** initiates
- □ Hypothermia and acidemia augment
- Clot strength reduced (Coagulopathy)
- Clot formation minimally delayed
- □ Fibrin polymerization impaired (Fibrinolysis)
- Platelet dysfunction augments (?Delayed)

Association with ISS

Injury Severity Score	Incidence of ACoTS
15 - 29	21%
30 - 44	41%
45 - 59	59%
60 - 75	79%

May. J Trauma 2003; 54

Departm Defence

Key Initiators

- 1. Tissue damage (Endothelial damage)
- 2. Hypoperfusion (Shock)
- 3. Hemodilution
- 4. Hypothermia
- 5. Acidosis
- 6. Inflammation

LETHAL TRIAD OF TRAUMA

Hypothermia

- Reduced function of all factors
- \blacktriangleright Activity reduced by 50% at T^o less than 33°C
- Impaired platelet aggregation

Johnston. J Trauma 1994; 37

- Fibrinolysis is stimulated.
- Rohrer et al found that aPTT

	37 Degrees	34 degrees	31 degree	
	36seconds	39	46	
Decreases activation of nlatelets				

Acidosis

Reduced activity and activation of coagulation factors

Meng. J Trauma 2003

- Increased degradation of fibrinogen
- Impaired function of plasma proteases
- Corrected by administration of buffer solutions

 \checkmark This does not correct coagulopathy

Shock

Prime driver of early coagulopathy

- Direct tissue trauma
- Systemic hypoperfusion
- Prolonged clotting times

BASE DEFICIT	<6MMOL/L	>6MMOL/L
% PROLONGED CLOTTING TIMES	2%	20%

Hemodilution

- Direct loss of coagulation factors
- Haemorrhage quickly reduce
 - Fibrinogen (10g)
 - Platelets (15ml)
- Losses are then replaced with fluids
 - Crystalloids or colloids
 - Causing dilutional coagulopathy
- Paradigm shift in resuscitation!

THE "BLOODY VICIOUS CYCLE"

- Injury severity score > 25
- pH<7.10 + Systolic BP<70 mmHg
- Core temperature <34°C

WHEN ALL 3 PRESENT: INCIDENCE OF COAGULOPATHY = 98%

Underlying Diseases and Drugs

- Coagulation defects e.g. von Willebrand disease
- Liver disease
 - Thrombopoietin and haemostatic proteins
 - Reduced Vit K dependent coagulation factors (II, VII, IX and X)
 - Inhibited platelet aggregation.
- Renal disease
 - Impaired platelet function
- Oral anticoagulants

sa military health service Department: Defence REPUBLIC OF SOUTH AFRIC

Vitamin K Antagonists

- □ Increased incidence of use: 2.3% (2002) to 12.8% (2006)
- □ Related to 50% mortality in young patients
- □ Prothrombin concentrate complex (PCC) & Vit K.

CA Dossett. Arch Surg 2011

GH Guyatt. Chest 2012

D Keeling. Br J Haematol 2011

High doses of PCC reverse rivaroxaban, not dabigatran

S Kaatz. Am J Hematol 2012

Pathophysiology

Medscape

Source: Expert Rev of Hematol © 2011 Expert Reviews Ltd

Pathophysiology

Fibrinolysis

Department: Defence

Classical Coagulation Tests

- Platelet count
- Haematocrit
- > INR
- Prothrombin time

sa military

- Activated partial thromboplastin time
- Fibrinogen
- Platelet function analysis

Classical Coagulation Tests

- No consensus on what values
- Test first 20 seconds of clot mechanism
- No correlation with bleeding or clotting factor activity
- Plasma based test not whole blood (in vivo)
- May not detect fibrinolysis
- Takes 45 to 75 minutes
 - Schochl H, Scand J Trauma Resusc Emerg Med. 2012;20:15.

"Closer to the Ideal"

- Thromboelastography (TEG)
- □ Rotational thromboelastography (ROTEM)
 - □ Replacing TEG
 - Information in 5 to 10 minutes
 - Measure of entire clotting mechanism (in vivo haemostasis)
 - □ 64% accuracy vs. 10% of CCT
 - Predict need for massive transfusion

Schochl H, 2012.

Davenport R, 2011

Viscoelastic Haemostatic Assay

Viscoelastic Haemostatic Assay

Measures 5 parameters

-R time:

• Coagulation factor activity

-K time:

- Speed of clot formation
- Alpha angle:
 - Fibrin formation
- Maximal Amplitude (MA):
 - Platelet function
- Whole blood lysis:

Figure 4. Thromboeslastograph (TEG) tracing. The reaction time (R) represents the time to onset of clot formation. K time is a measure of the speed to reach a certain level of clot strength. α angle represents the rate of clot formation. The maximum amplitude (MA) measures the clot strength. Reprinted with permission from Kiraly, J Trauma 2006;61:57–64.

Management: Key Steps

- Permissive hypotension
- Blood and blood products
- Temperature control and Rewarming
- Correction of acidosis
- Calcium homeostasis
- Pharmacological treatment
 - Tranexamic acid
 - Antifibrinolytic
 - Prothrombin complex concentrate (PCC)

sa military health service

Predicting massive transfusion

- INR Greater than 1.2
- □ Base deficit Less than -6 mmol/L
- □ Systolic blood pressure Less than 90 mmHg
- □ Injury severity score Greater than 15
- □ Haemoglobin Less than 11 g/dL
- □ FAST exam Positive for haemorrhage
- Blood pH Less than 7.25
- □ Body temperature Less 35.5 celsius
- □ Heart rate Greater than 120 bpm

End points of resuscitation

VHA directed management
Give FFP, cryoprecipitate and platelets as indicated

- Massive Transfusion Protocol
- ➤Targets
 - > INR
 - Fibrinogen
 - > Platelets

< 1.5 > 1 gm/L > 50 x 10⁹/L

sa military health service Department: Defence REPUBLIC OF SOUTH AFRIC.

Fibrinogen

 Affected early and most of all factors
Depleted in many bleeding patients
Poor outcome, reversed by administration Rourke. J Thrombo Haemost 2012; 10

Tranexemic Acid

Standard of care in most trauma units Benefit when administered early

H Shakur. Lancet 2010; 376

Recombinant Factor VIIa

Boffard K et al

	BLUNT	PENETRATING
NUMBER	143	134
PLACEBO	74	64
rFVIIa	69	70
REDUCTION RBC UNIT	REDUCED: 2.6UNIT	REDUCED: 1UNIT
MASSIVE TRANSFUSION	REDUCED BY 33%	REDUCED BY 19%

sa military health service Department: Defence REPUBLIC OF SOUTH AFRICA

Recombinant FVIIa

- Binds directly to surface of activated platelets
- Enhances
 - Enhances thrombin generation
 - Fibrin clot formation
 - Producing a stable clot

Prothrombin Complex Concentrate

- □ PCC or a complex of factors , II, Ⅶ, Ⅸ, Ⅹ
- Off label use in trauma
- Reduce transfusion requirements
- □ Reversal of oral anticoagulants

Combination of fibrinogen and PCC:

- Fibrinogen levels are the first to decline haemorrhage
- Use of PCC can

sa military

- Reduce risk of TRALI
- Reduce risk of viral infections.
- Reduce blood loss
- Shorten time to coagulation
- \rightarrow Maintain fibrinogen level of > 1.5 g/L

Leir. J Trauma 2008

Calcium homeostasis

➢ Necessary for fibrin clot stabilisation.

- Hypocalcaemia (< 0.9 mmol/ L) should be treated</p>
- Hypocalcaemia is aggravated by rapid infusion of blood products
- Chelation of calcium by the anticoagulant citrate
- Low levels associated with higher mortality and increased need for blood transfusion.

Cherain, WJS 2014

sa military

h service

Thank You!

sa military health service Department: Defence REPUBLIC OF SOUTH AFRICA

