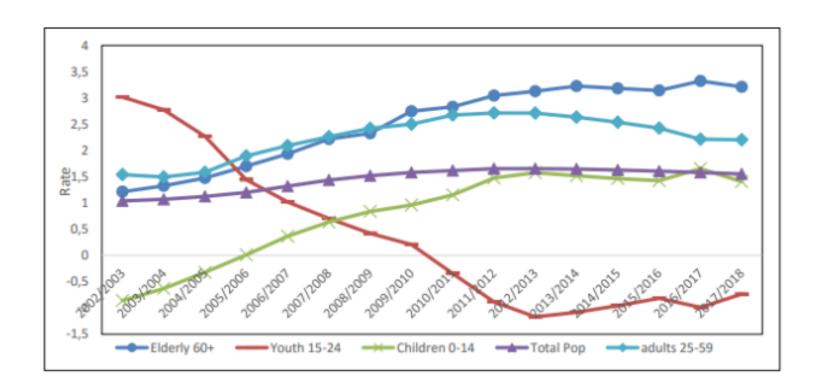
Operative risk in elderly patients with cardiovascular dysfunction.

Dr Hendrick Maakamedi, MBChB, DA(SA), MMed(Anaesth), FCA(SA)

Cardiac Anesthesia Fellow, Canada
University of Pretoria & Steve Biko Academic Hospital

Disclosure

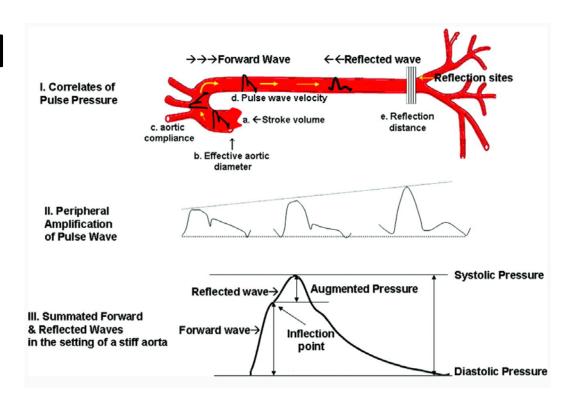
No disclosures related to this talk


Overview

- The Cardiovascular system and the aging Patient
- Clinical and surgical risk factors
- Bio-markers
- Perioperative complications MACE & MINS
- Risk Reduction Strategies
- Conclusion

Background

- 56,5 million South Africans
- Growing elderly population ≥ 60 years estimated at 8,1 % in 2017
- 4,6 million people in SA are estimated to be over the age of 60

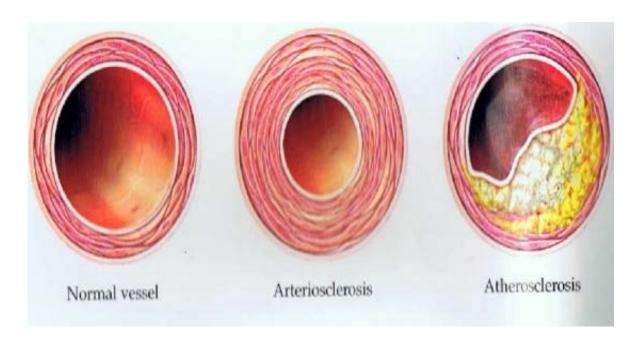

Background

- Older patients are more frail, have multiple comorbidities, and exhibit more severe Coronary Artery Disease(CAD).
- Peri operative Myocardial Infarction(PMI) & Myocardial Injury after Non cardiac Surgery(MINS) is nearly doubled in patients older than 70 years
- Increased risk of procedure-related complications
- Reduced tolerance to operative complications like bleeding & infection
- Age is an independent predictor of cardiac morbidity and mortality

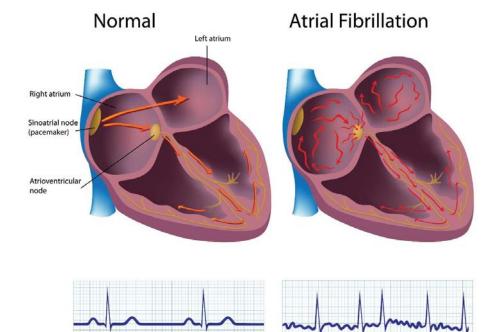
Cardiovascular Changes in the elderly

Systolic hypertension and widened pulse pressure

- Arterial stiffness due to ↑ collagen & ↓ elastin vascular content
- Arteriosclerosis thickening & hardening of arterial walls
- Aortic pulse wave velocity increases
- Increased systolic pressure & reduced diastolic pressure
- Left ventricular hypertrophy
- Diastolic dysfunction


Cardiovascular Changes in the elderly

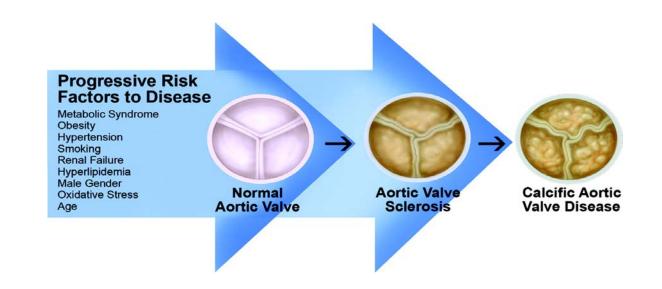
- Atherosclerosis vs Arteriosclerosis
 - The aging process is associated with a chronic low-grade


inflammation that predisposes the vasculature to

Atherosclerosis and

o Endothelial dysfunction.

Atrial Fibrillation in the elderly


- Pacemaker cells are progressively lost with advancing age
- Sick sinus syndrome.
- This makes **atrial fibrillation** the default rhythm for the elderly.
- Heart block and ventricular ectopy

Aortic Valve Sclerosis and Stenosis

9804 96-1/Add 9621 86-1/Add

- Prevalence of valvular heart disease (VHD) increases with age
- Degenerative valve disease thought to be the most common VHD in the elderly.
- Aortic valve (AV) sclerosis is the most common valvular abnormality associated with increased aging

Pre-Operative Cardiac Risk Assessment

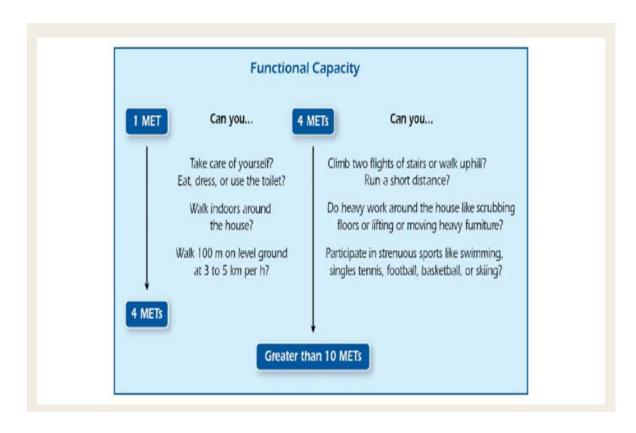
- Clinical risk indices
 - oclinical risk factors,
 - osurgery-specific risk
 - Exercise capacity
- Cardiac Stress Testing
- Cardiac Bio-markers

Functional Capacity

• Exercise tolerance reflects quality of biological age

One of the most important predictors of perioperative outcome in the

elderly surgical patient.


Expressed in metabolic equivalents (METS)

• Oxygen consumption (Vo₂) approximately 3.5 ml.kg⁻¹.min⁻¹.

Functional Capacity

 Patients unable to perform > 4 METS during most normal daily activities have increased perioperative short-term and long-term cardiac risk.

- excellent (>10 METS)
- **good** (7-10 METs)
- moderate (4-6 METs)
- poor (< 4 METs) or
- unknown

Cardiac Stress Testing

- Exercise or pharmacological (dobutamine or dipyridamole)
- Combines information on
 - LV function at rest,
 - o heart valve abnormalities, and the
 - o presence and extent of stress-inducible ischaemia
- high negative predictive value
- Stress testing is recommended before high-risk surgery, if
 - o more than two clinical risk factors and
 - poor functional capacity (<4 METs)
- Testing should only be performed if its results might influence perioperative management.

Clinical Risk Indices

Revised Cardiac Risk Index(RCRI) developed by Lee et al in 1999

Widely & most commonly used/recommended
Six predictors of risk

Cardiac morbidity and death increase with higher scores

Myocardial Infraction and Cardiac Arrest(MICA) Risk Calculator, 2011

Gupta et al, 2007 NSQIP database
>250 hospitals, 211 410 patients
Five (5) predictors of risk

Its predictive value exceeds that of the RCRI

Clinical Risk Indices

ACS NSQIP risk calculator, 2013

A web-based tool consisting of 21 patient-related factors eight surgical procedures

American Society of Anesthesiologists (ASA) Functional Class

Revised Cardiac Risk Index, Lee et al, 1999

Risk Factors	Points
History of ischemic heart disease	1
High-risk type of surgery	1
History of congestive heart failure	1
History of cerebrovascular disease	1
Preoperative treatment with insulin	1
Preoperative serum creatinine >2.0 mg/dL	1

RISK OF MAJOR CARDIAC EVENT

<u>Points</u>	<u>Class</u>	Risk
0		0.4%
1		0.9%
2	Ш	6.6%
3 or more	IV	11%

М	ai	0	r
	,	_	•

Recent myocardial infarction (<30d)

Unstable or severe angina

Decompensated congestive heart failure

High-grade atrioventricular block

Symptomatic ventricular arrhythmias in the presence of underlying heart disease

Supraventricular arrhythmias with uncontrolled ventricular rate

Severe valvular disease

Intermediate

Mild angina pectoris

Prior myocardial infarction by history or pathological Q waves

Compensated or prior congestive heart failure

Diabetes mellitus

Minor

Advanced age

Abnormal ECG

Rhythm other than sinus

Low functional capacity

History of stroke

Uncontrolled systemic hypertension

National Surgical Quality Improvement Program(NSQIP)

 Developed to assess the risk of intraoperative/postoperative myocardial infarction or cardiac arrest,

 Using the American College of Surgeons National Surgical Quality Improvement Program (NSQIP) database

Myocardial Infarction or Cardiac Arrest risk Prediction Calculator(MICA)

Cardiovascular Surgery

- Type of surgery
- Functional status
- Abnormal creatinine

Development and Validation of a Risk Calculator for Prediction of Cardiac Risk After Surgery

Prateek K. Gupta, MD; Himani Gupta, MD; Abhishek Sundaram, MBBS, MPH; Manu Kaushik, MD; Xiang Fang, PhD; Weldon J. Miller, MS; Dennis J. Esterbrooks, MD; Claire B. Hunter, MD; Iraklis I. Pipinos, MD; Jason M. Johanning, MD; Thomas G. Lynch, MD; R. Armour Forse, MD, PhD; Syed M. Mohiuddin, MD; Aryan N. Mooss, MD

- American Society of anaesthesiologists Class
- Increasing age

• The MICA risk calculator is available at www.surgicalriskcalculator.com

Gupta et al, Circulation 2011; 124: 381-387

Guidelines

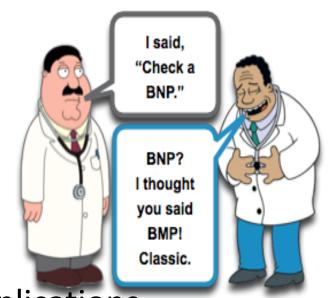
Canadian Cardiovascular Society Guidelines, 2017

ACC/AHA, 2014

European Society of Cardiology ESC/ESA, 2014

Cardiac biomarkers

- Natriuretic Peptides
 - o Brain natriuretic peptides (BNPs) and
 - N-terminal fragment of proBNP (NT-proBNP)
- Highly-sensitive(hs) Troponin T

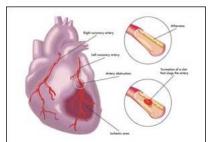


Cardiac Biomarkers —BNP/NT-proBMP

- Natriuretic Peptides(NP)
 - Brain Natriuretic Peptide(BNP)
 - N-terminal of proBNP(NT-proBNP)
- Released from cardiomyocytes in response to
 - o ischemia
 - o myocardial stretch, etc

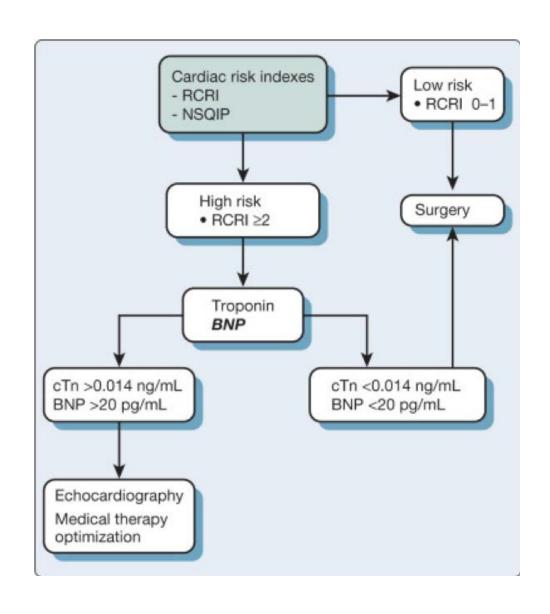
- BMP > 92 ng/ml
- NT-proBNP > 300 ng/ml
- When added to clinical risk indices, BNP & pro-BNP increase the predictive ability for mortality, MI & heart failure, Rodseth et al (1)

Biomarkers


The Predictive Ability of Pre-Operative B-Type Natriuretic Peptide in Vascular Patients for Major Adverse Cardiac Events

An Individual Patient Data Meta-Analysis

- If the RCRI is ≥1, the patient's age is ≥65 with significant cardiac disease,
 the next step is to measure the patient's NT-ProBNP or BNP
- If the NT-ProBNP is ≥300 ng/l or BNP is ≥92 ng/l, then there should be an

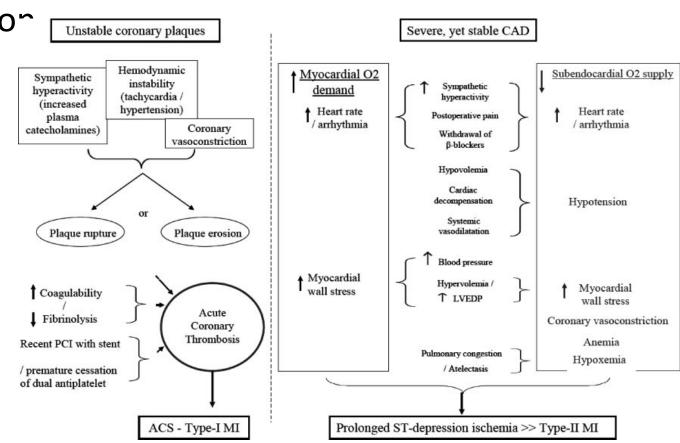

EKG ordered and troponins should be measured daily for 48-72 hours.

Cardiac Bio-makers – hs Troponin T

- Increased levels of TnT indicate the presence of myocardial injury
- Ability to identify patients with PMI even in the absence of symptoms or ECG changes
- high sensitivity for detection of small amounts of myocardial necrosis
- Peak levels > 0.03 ng/ml are diagnostic of myocardial injury after non-cardiac surgery (MINS) — increased 30 day mortality

Preoperative Risk Stratification, BNP, cTnT

Cardiac Morbidity and Mobility

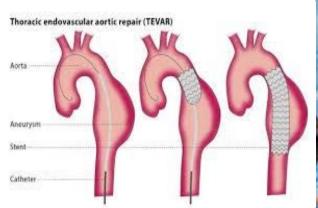

- MACE Major adverse cardiac events
 - Non-fatal Perioperative Myocardial Infarction(PMI)
 - Myocardial Injury after Non cardiac Surgery(MINS)
 - Congestive cardiac failure
 - Cerebrovascular accident
 - Cardiac Death

MINS – myocardial injury after non-cardiac surgery

 an elevation of postoperative troponin with an ischemic origin without other criteria for myocardial infarction

Perioperative Myocardial Infarction(PMI)

- Myocardial Oxygen Supply-Demand Imbalance
- Stable coronary plaque
- Prolonged ST-segment depression
 - Tachycardia & Hypertension
 - Hypotention
 - Pain
 - Anemia
 - Hypoxaemia
 - Hypercoaguability


Operative

Open/operative/invasive

Minimally invasive

- Endoscopic
- Laparoscopic
- Thoracoscopic
- Endovascular

\beta-Blockers

Continuation of beta-blockers peri-operatively in patients on long-term beta-blocker therapy

Class I recommendation

Statins

Patients already on statin therapy long term should continue statin therapy perioperatively

Class I recommendation

Medical Optimization

Aspirin

ASA should be stopped a minimum of 3 days (median 7) before surgery.

Angiotensin Converting Enzyme(ACE)Inhibitors

Should be stopped 24 hrs prior to surgery reduce risk of intraoperative hypotension which is an independent intraoperative predictor for MACE

B-Blockers

Continuation of beta-blockers peri-operatively in patients on long-term beta-blocker therapy

Class I recommendation

Avoid hypotension & bradycardia

Start 30 days pre-op(ideally)

Heart rate 60 – 70 beats/min

Statins

Patients already on statin therapy long term should continue statin therapy perioperatively

Class I recommendation

Medical Optimization

Aspirin

ASA should be stopped a minimum of 3

Angiotensin Converting Enzyme(ACE)-Inhibitors

Should be stopped 24 hrs prior to

β-Blockers

Continuation of beta-blockers per operatively in patients on long-term beta-blocker therapy

Class I recommendation

Statins

Patients already on statin therapy long term should continue statin therapy perioperatively

Class I recommendation

<u>Medical</u> Optimization

Aspirin

ASA should be stopped a minimum of 3

Angiotensin Converting Enzyme(ACE)-Inhibitors

Should be stopped 24 hrs prior to surgery reduce risk of intraoperative hypotension which is an independent

\beta-Blockers

Continuation of beta-blockers peri-operatively in patients on long-term beta-blocker therapy

Statins

Patients already on statin therapy long term should continue statin therapy perioperatively

Class I recommendation

Medical Optimization

Aspirin

ASA should be stopped a minimum of 3 days (median 7) before surgery.

tensin Converting Enzyme(ACE)-Inhibitors

Should be stopped 24 hrs prior to surgery reduce risk of intraoperative hypotension which is an independent intraoperative predictor for MACE

B-Blockers

Continuation of beta-blockers perioperatively in patients on long-term beta-blocker therapy

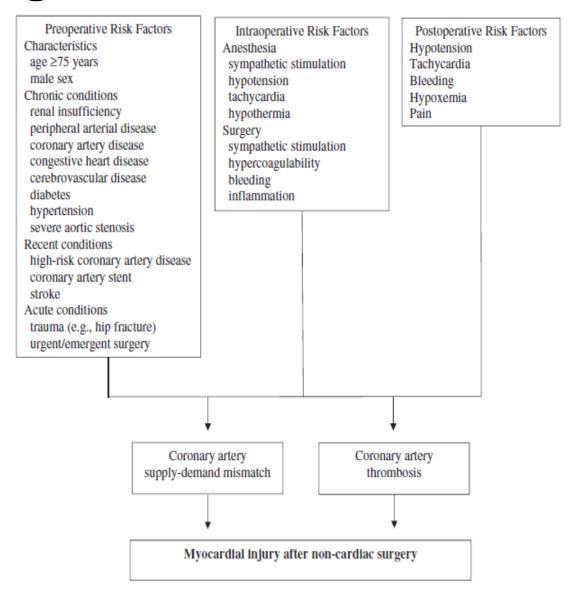
Class I recommendation

Statins

Patients already on statin therapy long term should continue statin therapy perioperatively

Class I recommendation

Medical Optimization


Aspirin

ASA should be stopped a minimum of 3 days (median 7) before surgery.

Angiotensin Converting Enzyme(ACE)-Inhibitors

Should be stopped 24 hrs prior to surgery reduce risk of intraoperative hypotension which is an independent intraoperative predictor for MACE

- Avoid/treat:
 - Hypotension
 - Tachycardia
 - o Bleeding
 - o Hypothermia
 - o Pain
 - o Hypoxaemia

Conclusion

- Elderly patients tend to accumulate more severe cormorbidities
- Age is an important risk predictor for major cardiac adverse outcomes
- Functionally independent patients have less risk for complications
- Clinical risk indices are available, but have their limitations
- Biomakers increase the predictive ability of clinical risk indices, but come with a cost