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Problem statement 

• Fatigue in LP turbine blades has been recognised to be one of the primary causes of steam turbine 
blade failures worldwide 

• During start-up operation, blades experience vibration and resonances at critical speeds which 
produce high dynamics stresses resulting in high cycle fatigue damage. 

• Life assessment and prevention of fatigue failures requires the development of a fatigue life model 

• Probabilistic model eliminates overly conservative assumptions and allows for uncertainty in key 
variables to be accounted 
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Fatigue life modelling flow chart  
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Experimental materials characterisation 
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Tensile test specimen 

• Material properties required as inputs for the finite element and fatigue life prediction 
models  

• 12% chromium martensitic stainless steel X22CrMoV12-1 

 

Fatigue specimen MTS fatigue test equipment 

• Prior to fatigue testing, tensile testing to determine 
monotonic properties 

• Load controlled uniaxial fatigue testing 

• Fatigue cycles tested were fully reversed tension-
compression and tension-tension with a mean stress 
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Experimental materials characterisation 
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• Statistical modelling using linear regression analysis  

• Goodness of fit revealed high coefficient of determination, R2 

• Sample run-outs not considered 
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Finite element modelling and analysis 
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• Geometrical scanning to determine the blade 
topology 

• Free-standing last stage LP blade 

• Cyclic symmetric model based on principal of 
sub-structuring 

• Higher order 3D 20-node solid elements 

• 225009 nodes and 74891 elements 

• Surface-to-surface contact  



Eskom Power Plant Engineering Institute 8 

Finite element modelling and analysis 
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• Modal analysis to characterise blade natural frequencies and mode shapes 

• Pre-stressed mode 

• Campbell diagram identified potential resonance 

• FEM validated against full scale spin test data on LP rotor and OEM results 
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Finite element modelling and analysis 
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 • Transient stress response assessed at resonance for twenty-four variations in blade damping 

• A pressure excitation was formulated through approximations from the static steam forces 
during a turbine start-up 
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Probabilistic fatigue life modelling 
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• Uncertainty and variability in the material fatigue strength parameters and the stochastic nature 
of the transient stress in the blade root due to variability in blade damping is investigated by 
random variable simulations using a statistical analysis algorithm written in MATLAB.  

• Random curve fitting routines were used to ensure the selection of the random variables used in 
fatigue life calculations is stochastic in nature 

• Random vectors are then chosen from a multivariate normal distribution with mean 𝜇 and 
covariance Σ to create multivariate normal random curves based on the fitted data 
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Probabilistic fatigue life modelling 
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• Results represent the number of repetitions, which for this case is turbine start-ups, 
required to initiate a fatigue crack which was defined as the failure point. 

• Fatigue repetitions shown to follow a straight line indicating normality in the data. 
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Conclusion 
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• The probabilistic fatigue life model was successfully implemented to 

determine the fatigue life of a blade during a turbine start-up.  

• The method is shown to adequately quantify variability in material strength 
parameters and varying root stress  

• High dynamic stresses associated to low levels of damping had a low 
probability of occurrence however in the event they occurred they were 
shown to have a significant impact on the overall fatigue life 

• The probabilistic results findings reinforced those of the discrete life model 
but showed that the discrete life solution to be more conservative in 
predicting the life of the blade.  
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