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It is well known that there are infinitely many prime numbers. In number theory,
Dirichlet’s theorem on primes in arithmetic progressions says that if a and d are
two positive integers that have no common factor other than 1, then the arithmetic
sequence (a, a+ d, a+ 2d, . . . , a+ dn, . . .) contains infinitely many prime numbers.

A simple case of Dirichlet’s theorem says that there are infinitely many primes
of the form 3+4n where n is a positive integer. This particular case can be proved
by a straightforward adaptation of Euclid’s classic proof that there are infinitely
many prime numbers.

In this honours project, the student will rigorously prove Dirichlet’s theorem in
general, by using tools from complex analysis.

An L-series is an infinite series of the form
∑∞

n=1 an/n
s, where s is a complex

number and each an is a complex number. The concept of an L-series is at the heart
of modern number theory. The 1990s proof of Fermat’s Last Theorem by Andrew
Wiles and Richard Taylor involved showing a special case of what is now called the
Modularity Theorem, which says that two different types of mathematical object
correspond to the same L-series. The famously unsolved Riemann Hypothesis is
about the zeta function ζ(s), which corresponds to the L-series

∑∞
n=1 1/n

s.
An important type of L-series is a Dirichlet L-series, that is, an L-series of the

form
∑∞

n=1 χ(n)/n
s where the function χ is multiplicative (that is, χ(m)χ(n) =

χ(mn) for positive integers m and n), is periodic with some period d, and is such
that χ(n) = 0 if and only if n and d have a common factor larger than 1. The fact
that χ is multiplicative implies that the L-series can be written as a product rather
than a sum: ∏

p

(
1 +

χ(p)

ps
+

χ(p)2

p2s
+ · · ·

)
=

∏
p

(
1− χ(p)

ps

)−1

,

where the product goes over all prime numbers p; this product is the Euler product.
Dirichlet L-series are the central tool in the proof of Dirichlet’s theorem. Using

Dirichlet L-series, a refinement of the theorem can also be proved: for a given
integer d ≥ 2, the primes are, in a certain sense, “equally distributed” among the
arithmetic progressions (a, a+d, a+2d, . . .) where the positive integer a is less than
d and shares no common factor with d other than 1. For example, there are “as
many” primes of the form 1 + 4n as there are primes of the form 3 + 4n.
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