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Almost all of the energy that sustains life on Earth was captured from sunlight

during the process of photosynthesis. In the first step of this process, photons

are absorbed by aggregates of pigment molecules called light-harvesting com-

plexes. In these complexes, pigment molecules are carefully arranged by protein

backbones and are consequently able to absorb excitation at much higher pig-

ment concentration than for the same pigments in solution. The close proximity

of pigment molecules in light-harvesting complexes may cause significant inter-

action between them and consequent delocalisation of excitation over more than

one pigment molecule. These delocalised states are called exciton states. The

electronic degrees of freedom of pigment molecules are modulated by the large

number of vibrational modes in the protein backbone and pigments themselves.

In many light-harvesting complexes, the interaction between pigment molecules

are much stronger than interaction with the vibrational modes. In such systems,

a formalism called Redfield theory, which treats interaction with vibrations per-

turbatively, can be used to calculate exciton dynamics.

In this dissertation, we give an overview of the process of photosynthesis and the
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physical mechanisms underlying light-harvesting. We then derive the Redfield

equation and explain its use in systems containing a single or multiple excita-

tions. We illustrate calculation of Redfield-dynamics by computing the exciton

dynamics in three systems: a six-member ring demonstrating essential features

of exciton dynamics; FMO, a conduit for excitation in green sulphur bacteria and

LHCII, the main light-harvesting complex in green plants.



Samevatting

Eksitondinamika in fotosintetiese molekulêre aggregate

deur

Johan Antowan Nöthling

Studieleier: Dr. T.P.J. Krüger

Medestudieleier: Prof. T. Mančal

Graad: Magister Scientiae

Sleutelwoorde: Eksitondinamika, Redfieldteorie, Fotosintese, Ligversameling

Bykans al die energie wat lewe op Aarde onderhou is vanuit sonligenergie vas-

gevang tydens die proses van fotosintese. In die eerste stap van hierdie proses

word fotone deur aggregate van pigmentmolekules, wat ligversamelingskom-

plekse genoem word, geabsorbeer. In hierdie komplekse verleen ’n proteïen-

raamwerk presiese rangskikking aan die pigmentmolekules, wat gevolglik ener-

gie by veel hoër pigmentkonsentrasie as in oplossing kan absorbeer. Die klein

afstande tussen pigmentmolekules in ligversamlingskomplekse kan sterk interak-

sie tussen hierdie molekules teweegbring en daarom tot delokalisering van op-

wekking oor meer as een pigmentmolekuul lei. Sulke gedelokaliseerde toest-

ande word eksitontoestande genoem. Die pigmentmolekules se elektroniese vry-

heidsgrade word deur die groot hoeveelheid vibrasies in die proteïenstruktuur, en

in pigmentmolekules self, beïnvloed. In baie ligversamelingskomplekse is die in-

teraksie tussen pigmentmolekules veel sterker as die interaksie met vibrasies. In

sulke gevalle gee ’n teoretiese raamwerk, genaamd Redfieldteorie, wat interaksie

met vibrasies as ’n perturbasie hanteer, ’n akkurate beskrywing van eksitondin-

amika.

In hierdie verhandeling gee ons ’n oorsig van fotosintese en die fisiese megan-
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ismes wat dit onderlê. Ons lei dan die Redfieldvergelyking af en verduidelik hoe

dit gebruik kan word om die dinamika van enkeleksiton- of veeleksitonstelsels te

bereken. Ons illustreer die berekening van Redfielddinamika in drie voorbeeld-

stelsels: ’n seslid ring wat belangrike eienskappe in sy dinamika toon; FMO, ’n

energiegeleier in groenswaelbakterieë en LHCII, die hoof ligversamelingskom-

pleks van groen plante.
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“When life gives you lemons...How heavy are they? What happens when we let

two collide? At what rate do they decay? Can we make lemonade that tastes like

coffee?"

- A physicist
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Chapter 1

Introduction

1.1 Photosynthesis: the indispensable process

The very existence of life on earth is astonishing! Living organisms are immensely

complex and ordered systems. Bringing about, and maintaining this complex or-

der requires a very large amount of energy. Almost all of the energy stored in

living organisms, the chemical compounds they produce and their decomposed

forms reached the earth as electromagnetic radiation from the sun. This energy

was absorbed into the biosphere by photosynthesis, a process in which light en-

ergy is captured by living organisms and converted to storable chemical energy.

To get an idea of the scale of photosynthesis, one should consider the global out-

puts of the process. Through photosynthesis, energy is stored at an average rate

of 130 TW [1]; about ten times as fast as the total human population consumes

energy [2]. Organic matter is produced at 1.5×1014 kg per year [3]; about three

hundred times the collective mass of all humans on earth [4]. And molecular oxy-

gen is produced at 4× 1014 kg per year [5]; enough to supply the total human

population for about 190 years [6].
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Photosynthesis: the indispensable process

Photosynthesis provides energy to a range of terrestrial and aquatic ecosystems.

On land, plants are the main primary producers (organisms that produce biomass

from inorganic compounds) [7]. During the process of photosynthesis, plants pro-

duce high-energy biologically usable compounds from CO2. This is known as

CO2-fixation. Some of the energy that was stored by plants during photosynthesis

is passed through the food network to heterotrophs, thereby sustaining virtually

all land animals and many other organisms: the bacteria, protozoa and fungi in the

stomachs of ruminants [8], yeast used to ferment beer [9] and archaea decompos-

ing organic matter in rice fields [10]. Almost all other terrestrial organisms also

depend on photosynthesis; either being photosynthetic primary producers them-

selves or using the energy harvested by photosynthesisers (like the fungi in lichen

that are in a symbiotic relationship with algae or cyanobacteria [11]).

About half of the global CO2-fixation happens in the ocean, mainly by cyanobac-

teria [12]. It is due to the oxygenic photosynthesis by these bacteria that the

earth’s atmosphere is saturated with oxygen today [13]. Many other organisms in

the oceans are photosynthetic: from ordinary kelp [14] to the incredibly patterned

diatoms [15].

Not all life depend on the sun for energy, though. In the ocean, sunlight reaches

only a certain depth, and virtually all photosynthesis is restricted to this "photic

layer" [16]. Near hydrothermal vents, thriving ecosystems of chemoautotrophic

microbes and eukaryotes feeding on them, obtain their energy from the released

heat and energy-rich inorganic chemical compounds released by the vents [17].

A green sulphur bacterium has even been isolated that uses the faint glow emit-

ted by some hydrothermal vents to photosynthesise [18]. Sunlight-independent

organisms are not limited to the deep ocean, but also exist deep under earth’s sur-

face: a chemoautotrophic bacteria was found in South-African gold mines 2.8 km

beneath the surface [19]!
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Overview of photosynthesis in plants

It is remarkable that photosynthesis-independent life forms exist only in such isol-

ated places and on such small scales. It seems as though photosynthesis was not

merely a lucky participant in an evolutionary race, but by far the best energy-

delivering mechanism. Photosynthesis has three apparently unique attributes: it

provides enough energy to account for the global energy needs of life, it is suffi-

ciently dispersed to maintain similar ecosystems over large distances (because of

the uniformity of sunlight), and energy is harvested on the molecular level during

photosynthesis (thereby making microbial photoautotrophy possible).

Most other energy-delivering mechanisms that one could devise fall short on one

of the above features. Typical temperature gradients on earth are too diffuse for

thermal energy to be harvestable at all, nuclear decay processes are spatially very

isolated, wind and tide energy provides too little total energy and is also not har-

vestable on the molecular level. Perhaps photosynthesis really is the only process

able to maintain life as we know it...

It is clear that photosynthesis is an extremely important process! This is reason

enough to study it. In addition, there is a hope that the design principles ex-

isting in photosynthesis can be applied to artificial systems in the drive towards

cleaner, cheaper and more efficient alternative energy sources [20–23]. Further-

more, if the efficiency of natural photosynthesis can be improved, crop yield could

be increased [24–26]. The study of photosynthesis therefore also has commercial

incentive.

1.2 Overview of photosynthesis in plants

This section (1.2) is based on the description of photosynthesis in Campbell and

Reece (2008) [3], except where another citation is given.
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Overview of photosynthesis in plants

During photosynthesis, energy from electromagnetic radiation is converted into

chemical energy. In plants, the process of photosynthesis essentially consists of

a light-dependent phase and light-independent phase. Although the latter is not

directly dependent on light intensity, it does depend on the compounds produced

during the light-dependent phase.

In this thesis, we will focus on the energy-capturing part of the light-dependent

phase. However, a brief overview of the whole process of photosynthesis in plants

will be given. There are some important differences between photosynthesis in

plants, bacteria and algae, but the overview of plant photosynthesis below will

suffice in giving the reader an idea of the overall aim and importance of photosyn-

thesis. Where the differences between photosynthetic systems become relevant,

they will be discussed in the text.

1.2.1 The light-dependent phase

The main outcome of the light-dependent phase is the synthesis of two important

chemical compounds: adenosine triphosphate (ATP) and nicotinamide adenine di-

nucleotide phosphate (NADPH). The hydrolysis of ATP to adenosine diphosphate

is highly exergonic (i.e., with copious release of free energy) [27]. The energy

released by this hydrolysis reaction is used to perform the majority of energy-

requiring processes in organisms. NADPH is a good reducing agent that provides

the reducing power needed in the light-independent phase.

The electron transport chain

Each photosynthesising cell of a plant contains about one hundred [28] ellipsoidal

(∼ 2 µm by 5 µm) organelles called chloroplasts (Fig. 1.1).

Inside the chloroplast, a clear fluid called the stroma surrounds a closed, mem-
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Overview of photosynthesis in plants

Figure 1.1: The chloroplast. ©User: Kelvinsong/ Wikimedia Commons/ CC-BY-SA 3.0.

branous structure. The light-dependent phase takes place in the membrane (called

the thylakoid membrane) and the space enclosed by it (the thylakoid lumen). The

thylakoid membrane forms structures resembling stacks of coins. These stacks,

called grana, are connected by thin thylakoid membrane sheaths called lamellae.

The thylakoid membrane consists of a lipid bilayer and houses the machinery of

the light-dependent phase (Fig. 1.2).

The process of photosynthesis begins when a plant leaf is illuminated by light. A

photon of this light travels into the chloroplast and gets absorbed by pigment mo-

lecules (mostly chlorophyll a molecules) in the pigment-protein complex called

photosystem II. Inside PSII, the excitation is transported between pigment mo-

lecules until it is transferred to a special pair of pigment molecules called P680

(because the pair absorbs light at 680 nm). The excited state of P680 is often

indicated by P680∗. The latter is a strong reducing agent and therefore readily

transfers an electron to an acceptor called pheophytin (Ph). A charge transfer

state P680+Ph− is thus established [29]. The positive charge on P680+ is neut-

ralised by the transfer of an electron from water (see discussion on hydrolysis
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Overview of photosynthesis in plants

Figure 1.2: Cartoon of the thylakoid membrane with the most important machinery necessary for
performing the light-dependent reactions. ©User: Somepics/ Wikimedia Commons/ CC-BY-SA
4.0.

below) and the Ph− rapidly sponsors its extra electron to plastoquinone (PQ) [29].

By attaching two electrons, via this mechanism, and two protons from the stromal

matrix to PQ, PQ is reduced to plastoquinol (PQH2). Plastoquinol then binds to

the thylakoid lumen side of an enzyme called cytochrome b6f. Through a complex

series of redox reactions called the Q-cycle, this enzyme catalyses the reduction

of plastoquinone to plastocyanine and facilitates the release of protons (originally

from the stromal matrix) into the lumen by plastoquinol [30].

During the reactions described above, PSI is continuously illuminated. By roughly

the same mechanism as for PSII, the special pair of PSI (P700) is excited and a

charge separation achieved. The positive P700+ is neutralised by an electron from

plastocyanine. The electron lost by P700 is used to reduce an iron-sulphur com-

plex called ferredoxin on the stromal side of the thylakoid membrane. An enzyme

called ferredoxin-NADP+ reductase, which is also situated on the stromal side of

the thylakoid membrane, then catalyses the reduction of NADP+ to NADPH and

the simultaneous oxidation of ferredoxin. The NADPH is released into the stroma
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Overview of photosynthesis in plants

for future use by the light-independent reaction.

The main result of the electron transport chain is therefore the absorption of light

energy by the two photosystems (PSII and PSI) and the conversion of this energy

to chemical reducing power by synthesising NADPH. An essential side effect of

the electron transport chain is the pumping of H+ across the thylakoid membrane.

This leads to a proton gradient which is used in the synthesis of ATP (see below).

Hydrolysis

After the charge-separation P680+Ph− in PSII is achieved, the negative charge is

rapidly fed into the electron transport chain [31]. To neutralise the cation P680+,

an electron needs to be extracted from another species. In oxygenic photosyn-

thesis, this electron donor turns out to be water, which is abundant in cells. P680+

is the strongest known biological oxidising agent and is therefore able to oxidise

water:

2 H2O O2 + 4 H+ + 4 e– ·

The above reaction is mediated by an enzyme called the oxygen-evolving complex

(OEC). The exact role and mechanism of this complex are still unclear [32], but it

is responsible for passing electrons, one at a time, to P680+ [33]. The molecular

oxygen produced by hydrolysis is a by-product of photosynthesis and is released

into the atmosphere. Without this release of oxygen, however, the majority of life

forms on earth would not exist! Oxygen is vital for the respiration of most types of

organisms. Respiration is the process through which an organism acquires usable

energy from food and can be considered a slow combustion reaction, therefore

requiring oxygen.
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Overview of photosynthesis in plants

The synthesis of ATP

The photosynthetic hydrolysis of two water molecules passes four electrons to the

electron transport chain and simultaneously releases four protons to the thylakoid

lumen. For the four electrons released, the Q-cycle of cytochrome b6f transfers

eight protons from the stroma to the lumen. During the reduction of two ions

of NADP+ to NADPH, two protons from the stroma are bound. The net effect

of these proton transfers is the addition of twelve protons to the lumen and the

reduction of ten protons from the stroma. The chemi-osmotic [34] transfer of

protons from the lumen back to the stroma through a trans-membrane enzyme

called ATP-synthase, is what drives the synthesis of ATP.

Figure 1.3: ATP-synthase with its main parts. Assembled with Jmol from PDB files 1L2P, 2A7U,
1E79, 1C17.

ATP-synthase consists of four main parts: the F0 motor in the thylakoid mem-

brane, the F1 motor on the stromal side of the membrane, an axle connecting the

two motors like a shaft and a stator connecting the sides of the motors. the F0

motor consist of twelve subunits. Protons from the lumen attach, one at a time,
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Overview of photosynthesis in plants

to the F0 motor and causes it to rotate through 30° per proton that attaches. This

rotation is transferred to the axle and causes it to spin inside the F1 motor. The

F1 motor consists of six subunits which form three dimers. The molecular struc-

ture of the axle is such that it causes specific configuration changes in the three

dimeric subunits of the F1 motor. These changes catalyses the addition of a phos-

phate functional group to adenosine diphosphate (ADP), thereby adding a large

amount of energy to the compound. One full revolution of the F0 motor yields

three ATP molecules. The role of the stator is not yet clear, but it is thought that,

together with the F1 motor, it acts as a counter rotator to the F0 motor [35].

Cyclic electron transport

During the linear electron transport chain discussed above, NADPH is produced.

An alternative process in the light-dependent phase is the cyclic electron trans-

port chain. During this process, ferredoxin reduces plastocyanine again [29], in-

stead of reducing NADP+. Plastocyanine then delivers its electron to PSI+, which

again leads to the reduction of ferredoxin. This cyclic process does not produce

NADPH, but does pump protons into the lumen, thereby creating ATP. Through

cyclic electron transport, the ratio of ATP to NADPH can be increased (the ra-

tio created by non-cyclic electron transport is lower than what is needed by the

light-independent phase).

1.2.2 The light-independent phase

The light-independent phase takes place in the stroma. During this phase, three-

carbon molecules are manufactured that can easily be converted to sugars (like

glucose) to provide the energy necessary for life. The process through which these

three-carbon molecules are synthesised is called the Calvin-Benson-Bassham

9



Overview of photosynthesis in plants

cycle.

The Calvin-Benson-Bassham cycle

The Calvin-Benson-Bassham cycle (often simply called the Calvin cycle) consists

of three main parts. First, carbon from CO2 is fixated by reacting with another

compound called ribulose bisphosphate (RuBP). In the second phase, glyceralde-

hyde-3-phosphate (G3P) is formed by reducing an intermediate species. G3P acts

as the building block in many other metabolic pathways [36]. In the last phase,

the starting material for the cycle is reproduced.

Figure 1.4: The Calvin cycle. CAMPBELL, NEIL A.; REECE, JANE B., BIOLOGY, 8th Edition,
©2008. Reprinted and electronically reproduced by permission of Pearson Education, Inc., Upper
Saddle River, NJ.
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Photosynthesis in other organisms

The Calvin cycle starts with the reaction of ribulose bisphosphate with CO2. This

reaction is catalysed by an enzyme called ribulose bisphosphate carboxylase (Ru-

BisCo). Carbon dioxide reacts, one molecule at a time, in the stoichiometric

ratio 1 : 1 with RuBP, but we will need to consider the reaction of three CO2

molecules to have the correct total amount of carbon for the completion of the

Calvin cycle. For three molecules of CO2, the above reaction produces three mo-

lecules of a highly-unstable six-carbon compound which decomposes very rapidly

to form six molecules of 3-phosphoglycerate, a three-carbon compound with one

terminal phosphate group. ATP from the light-dependent phase is then used to

phosphorylate these molecules and produce six molecules of 1,3-bisphosphogly-

cerate. The only difference between the reactant and product in this reaction is

an extra phosphate functional group on the latter. Three carbon atoms that were

originally in the gaseous phase are now fixated into this solid-phase compound.

In the second phase of the Calvin cycle, 1,3-bisphosphoglycerate is reduced by

NADPH (fabricated during the light-dependent phase) into G3P.

During the third phase, five of the G3P molecules are used to regenerate the same

amount of RuBP as was initially invested by expending another three molecules

of ATP. The remaining molecule of G3P represents the three carbon atoms that

were fixated from CO2 and is exported to other parts of the organism.

1.3 Photosynthesis in other organisms

In this dissertation, we will use the relaxed definition of photosynthesis given

in Henderson’s Dictionary of Biology: photosynthesis is "the use of sunlight to

power biosynthesis in living organisms" [37]. Processes in which ATP is synthes-

ised but carbon is not fixated, are included in this definition.
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Light harvesting in photosynthesis

Just like plants, algae and cyanobacteria can oxidise water and therefore undergo

oxygenic photosynthesis. The process of photosynthesis in these species is very

similar to photosynthesis in plants (for discussions of photosynthesis in algae and

cyanobacteria, see [38] and [39], respectively). Cyanobacteria are the only bac-

teria that use chlorophyll. Other photosynthesising bacteria use bacteriochloro-

phyll. Cyanobacteria are also the only bacteria that oxidise water. All other types

of photosynthetic bacteria undergo anoxygenic photosynthesis

There are four known classes of anoxygenic bacteria: purple bacteria, green-

sulphur bacteria, green non-sulphur bacteria and the gram-positive heliobacteria

[40]. These bacteria use other reducing agents than water to photosynthesise.

Purple bacteria use mainly H2S and produce elemental sulphur as by-product.

1.4 Light harvesting in photosynthesis

To understand photosynthetic light harvesting, one has to appreciate the design

of the harvesting machinery. In the light-dependent phase of plants, algae and

cyanobacteria, light energy is absorbed by photosystems I and II. These two pho-

tosystems are significantly different from each other and from other natural pho-

tosystems. However, the physical principles underlying the light harvesting in the

different photosystems are the same, and only the structure of photosystem II will

therefore be discussed. Excitation dynamics in a general antenna complex will

then be explained.

1.4.1 Structure of PSII

Except for the chlorosomes of green sulphur bacteria, all known photosystems

consist of pigment molecules embedded in a complex assembly of protein struc-
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Light harvesting in photosynthesis

tures. PSII is a dimeric supercomplex where each monomer consists of a core and

peripheral antenna complexes.

Figure 1.5: The proposed general structure of the PSII supercomplex. Here, the X-ray structures of
antenna complexes are overlayed on the lumenal top view of the spinach PSII supercomplex, de-
rived from electron microscopy and single particle analysis. The X-ray structures shown here, are
that of the cyanobacterial core, spinach LHCII and structures adapted from the LHCII monomer
for CP26 and CP29. Taken from Ref. [41] ©Elsevier (2006)

The core contains all the protein structures and cofactors (i.e., non-protein mo-

lecules) that are necessary for splitting water, creating a charge transfer state

and reducing plastoquinone. The proteins D1 and D2 form a heterodimer that

spans the thylakoid membrane and binds the special chlorophyll pair, the pheo-

phytin molecules and the plastoquinones. D1 and D2 are often called the re-

action centre proteins because they facilitate the splitting of water and creation

of a charge separation. The reaction centre is surrounded by the core antennae

chlorophyll-protein (CP) 43 and CP47 which provide conduits for excitation from

the peripheral antenna complexes to the reaction centre [42] and are intimately

related to the oxygen-splitting proteins [43]. The peripheral antenna complexes

in plants consist of the minor antennae CP26, CP29 and CP24 (not shown in

Fig. 1.5) and the major light-harvesting complex II (LHCII). Apart from acting
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Light harvesting in photosynthesis

as energy bridges between LHCII and the reaction centre [44], the minor antenna

complexes may also be involved in regulation of light harvesting: The reversible

phosphorylation of CP29 is thought to influence antennae arrangement to increase

damping in high intensity conditions, protecting the core from excess energy [45].

CP24 plays an important role in the electron transport chain [46], and CP26 is

thought to facilitate grana stacking [47]. LHCII (Fig. 1.6) is a trimeric complex

in which each monomer contains eight chlorophylls a (green), six chlorophylls

b (cyan) and four carotenoids (yellow) [48]. The chlorophyll pigments are re-

sponsible for absorbing sunlight while the carotenoids are mainly responsible for

protecting the light-harvesting apparatus from excess excitation (although they

also absorb energy for the reaction centre) [49].

Figure 1.6: Light-harvesting complex II. Made by Jmol from PDB file 2BHW.
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Light harvesting in photosynthesis

1.4.2 The fate of an excitation

When light is shone on an antenna complex, clusters of pigment molecules (or

individual pigment molecules) are excited. These excitations are transferred from

cluster to cluster within a light-harvesting complex or between different com-

plexes. In this way, light energy that was initially absorbed by the antenna com-

plex is ultimately transferred to the reaction centre. The average time it takes an

excitation to reach a reaction centre is on the order of tens of picoseconds [50]

and the quantum efficiency (i.e., probability of the energy of an absorbed photon

to manifest in a charge-separation state) of the energy transfer is very near to

100% [51]. How this fast transfer rates and high efficiency is achieved has sparked

much research interest (this dissertation included).

The density of pigment molecules in photosynthetic light-harvesting complexes is

remarkable: In solution, and in many artificial systems, chlorophyll fluorescence

is significantly suppressed when the chlorophyll concentration is comparable to

the concentration in chloroplasts [23, 52]. No such suppression is seen in the

fluorescence of the chloroplast [52]. This means that the lifetime of excited states

(which determine the time an excitation has to reach the reaction centre) is not

influenced by pigment aggregation in light-harvesting complexes [53]. This high

working-concentration can be achieved because of precise arrangement of pig-

ment molecules by the protein scaffold. The positions and orientations of pigment

molecules afforded by the protein also optimises energy transfer [54].

To understand this optimisation, notice that pigment molecules in close proximity

may interact with one another (this interaction, or coupling, will be explained

in Section 2.2). Due to the inter-pigment coupling, the energy landscape of the

quantum states that are realised after excitation by light is very different from that

of isolated pigment molecules. Instead of exciting only one pigment molecule, a
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Light harvesting in photosynthesis

coherent superposition of the excited states of different pigments are formed upon

illumination of an antenna complex (see Section 2.5). An excitation in a dense

cluster of pigment molecules is therefore delocalised over the whole cluster. Such

delocalised excitations are called excitons.

The formation of excitons in light-harvesting systems has two important benefi-

cial features. Firstly, because of delocalisation of excitation, fewer paths have to

be explored when the excitation diffuses to the reaction centre. Secondly, delo-

calisation prevents excitation from getting trapped in energy wells (that may be

present due to crystal defects [54]).

The electronic degrees of freedom are influenced by the large number of vibra-

tional modes in the protein and in the pigment molecules themselves. In Section

2.4, we will see how the excitation dynamics are influenced by these vibrations.

In this dissertation, we will investigate these dynamics—especially in the special

case when the interaction with vibrations is small.

In the next chapter, we give a qualitative description of the mechanisms underly-

ing exciton relaxation. We then derive the Redfield equation, which gives a good

description of exciton dynamics in the weak relevant system–bath coupling limit,

in Chapter three. In Chapter four, we describe a system containing multiple excit-

ations. A computer program that simulates Redfield dynamics in single-exciton

and two-exciton systems is described in Chapter five. In Chapter six, we illustrate

and discuss the Redfield dynamics in three example systems.
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Chapter 2

Introduction to theory

2.1 Overview

It may be surprising to many physicists that quantum mechanics beyond typical

quantum chemistry is needed to fully describe photosynthetic light harvesting. On

the molecular level, plants are disordered systems with many fluctuating degrees

of freedom (at physiological temperatures)—an environment with which we do

not usually associate nontrivial quantum effects. In reality, however, even though

light-harvesting complexes are intricate, the protein scaffold provides the pigment

molecules with positions and orientations that permit quantum coherence between

pigment molecules to exist. The important implications of this coherence to pho-

tosynthetic light harvesting will be discussed in Section 2.5.

Because of their complexity, the pigment-protein complexes have a very large

number of vibrational modes. These vibrations collectively act as thermal reser-

voirs, exchanging energy with the electronic degrees of freedom of the pigments.

The energy exchange between the electronic degrees of freedom and the reservoir

influences the excitation dynamics and needs to be taken into account. In practice,
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Overview

the light-harvesting systems are far too big and far too complex to allow calcula-

tion of the dynamics of all degrees of freedom, and some effective description

of the environment has to be employed. A description of the excitation energy

transfer dynamics therefore needs to be both quantum mechanical (to account for

quantum coherence) and statistical (to account for the relaxation effects of the

large, complex environment). We achieve this by treating electronic excitation

as a small quantum subsystem interacting with a much larger environment. The

total system evolves unitarily in time and can be described by identities such as

the Liouville equation. By making statistical assumptions about the environment,

these identities can be cast into forms that permit calculation of excitation transfer

dynamics (see Chapter 3).

To this end, let us divide the total system in two parts [55]: a subsystem (which

we call the relevant system1) containing only the electronic degrees of freedom,

and a subsystem (which we call the bath) containing all other degrees of freedom.

The total Hamiltonian can then be written in the form

H = HRS +HB +HI, (2.1)

where HRS describes the relevant system, HB describes the bath and HI describes

the interaction between the relevant system and the bath.

Below, we elaborate on each of these partitions.

1The word "system" can cause confusion. We will use the term "relevant system" for the
electronic degrees of freedom and "bath" for all other degrees of freedom such that the union of
relevant system and bath evolves unitarily in time. We will reserve the term "system" exclusively
for this union.
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2.2 The relevant system

Each of the pigment molecules in a light-harvesting complex can be regarded as

a two-level system with a ground state and an excited state [56]. Associated with

each pigment molecule is a transition dipole moment describing the change in

charge density upon excitation of the pigment molecule. The transition dipole

moments of different molecules interact with one another and different pigment

molecules are therefore coupled. The pigments themselves don’t have any net

charge, and the dominant Coulomb interaction between two pigment molecules

is therefore described by the dipole-dipole potential of the two transition dipole

moments. The strength of the coupling depends on the distance and relative ori-

entations of the pigment molecules [57]. The interaction potential energy between

two molecules with transition dipole moments ~µ1 and ~µ2 is:

V12 =
~µ1 ·~µ2−3(~µ1 · R̂)(~µ2 · R̂)

R3 , (2.2)

where R is the distance between molecules 1 and 2 and R̂ is the normalised sep-

aration vector. The Hamiltonian describing an aggregate of pigment molecules in

which exactly one excitation is present is therefore:

Hel = Eg |g〉〈g|+
N

∑
i=1

Eei |ei〉〈ei|+
N

∑
i 6= j

Vi j |ei〉
〈
e j
∣∣ , (2.3)

where the first term is the ground state energy of the relevant system (the energy

of the aggregate when all pigment molecules are in their ground states) and the

second term is a sum of single-excitation energies (only molecule i is in its excited

state). The last term represents the dipole coupling between different pigment mo-

lecules. Eq. 2.3 is not exactly equal to the relevant subsystem Hamiltonian (which,

as we will see in the next section, still requires a bath-reorganisation contribution).
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The bath

Strictly speaking, we should multiply (i.e., take the tensor product) with the bath

identity operator on the right of Eq. 2.3. This operator acts as identity operator

on the bath degrees of freedom. To keep equations from getting cluttered and

losing their essence, multiplication with a bath identity operator will be implied

throughout this dissertation if only relevant system-dependence is shown for full-

system operators. Similarly, if only bath dependence is shown, multiplication with

a relevant system identity operator will be implied.

In light harvesting under natural conditions, the rate of exciton formation (through

photon absorption) is often so low that only one exciton is present at any moment

in time. In these cases, Eq. 2.3 is accurate. If a multiple-exciton description is

required, Eq. 2.3 can easily be extended (see chapter 4).

2.3 The bath

The bath Hamiltonian has a very large number of contributors. Intra-molecular in-

teractions in the pigments and in the protein molecules, inter-molecular potentials

between two pigment molecules, between a pigment molecule and the protein en-

vironment, and between different protein subunits, all contribute to the potential

energy part. The kinetic part of the bath Hamiltonian describes the movement of

the many nuclei and electrons.

We want to describe the dynamics of the relevant system and are not interested

in the dynamics of the bath, except where those dynamics influence the relevant

system. We will see in Chapter 3 that the influence of the bath enters the equa-

tion of motion for the relevant system only through statistical quantities called

bath correlation functions. These quantities can be extracted from experiment-

ally obtained optical spectra [58], and no microscopic knowledge of the bath is

20



Interaction of the relevant system with the bath

necessary. When developing a theoretical approach, however, at least some mi-

croscopical consideration of the bath is required for calculating the correlation

functions. Apart from allowing calculation of correlation functions, microscopic

knowledge of the bath also gives one some physical insights into the effect of the

bath on the system.

One theoretical approach that is often used is the following. Instead of treating

HB exactly, by describing all of the numerous and complex contributions in the

first paragraph of this section, the actual bath is substituted with an effective bath

having almost the same effect on the system. This effective bath is composed of

the kinetic and potential energy parts of the normal harmonic oscillator modes for

all of the above contributions. The effective bath is chosen such that its spectral

density corresponds to the spectral density of the actual bath. A commonly used

effective bath consists of an infinite number of independent quantum harmonic

oscillators [59]. These harmonic oscillators are coupled linearly (see below) to

the relevant subsystem. As we will see later, this harmonic bath determines the

relaxation of the relevant system.

2.4 Interaction of the relevant system with the bath

We will now consider the interaction between the relevant system and one har-

monic oscillator mode of the environment and then extend the ideas to account

for an arbitrary (even infinitely many) environmental oscillators.

Consider an isolated pigment molecule consisting of two identical subunits. For

comparison with Eq. 2.3, we will call this molecule i.
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Interaction of the relevant system with the bath

Figure 2.1: A pigment molecule consist-
ing of two identical subunits. The coordin-
ates of the two subunits measured on the
same coordinate axis are given by q1 and
q2, and δ is the equilibrium shift in each
of these coordinates upon excitation of the
molecule.

One of the vibrational modes of the molecule constitutes stretching and contract-

ing along the axis connecting the two subunits. Let’s consider an effective co-

ordinate Q = q1− q2. The potential energy causing the oscillation is now quad-

ratically dependent on Q. Let the minimum of this potential be indicated by the

black circles when the molecule is in its ground state. Suppose that the structure

of this molecule in its excited state is such that the equilibrium position of each

subunit is shifted a distance δ outwards. The potential minimum (in coordinate

Q) is therefore shifted by d = 2δ . Because of the large masses of the subunits,

one can assume that the oscillations happen on a much slower timescale than the

transition from the ground to the excited state in molecule i (adiabatic approx-

imation). To excite molecule i from the vibrational ground level of its electronic

ground state, one therefore has to apply more excitation energy than the energy

difference Eei−Eg in Eq. 2.3. The energetics accompanying the electronic excit-

ation is depicted in Fig. 2.2. The parameter d in Fig. 2.2, which is equal to 2δ in

Fig. 2.1, describes how strongly the relevant system is perturbed by (or coupled

to) the oscillation. This parameter will be useful later again.
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Interaction of the relevant system with the bath

Figure 2.2: The harmonic oscillator po-
tentials corresponding to the ground and
excited states of a pigment molecule with
two subunits. As indicated by the dashed
line arrows, the molecule is excited to a
higher vibrational level of the electronic
excited state, before relaxing to the ground
vibrational level. The parameter d is
directly related to the coupling strength
between electronic excitation and the mo-
lecular vibration.

In the same way as was discussed above, the relevant system is influenced by

numerous inter- and intra-molecular vibrations. We want to have a collective de-

scription of the interaction of all of these vibrations with the relevant system. Con-

sider the Hamiltonian describing all of the oscillators and their individual coupling

to the relevant system:

Hosc =
(

T +
N

∑
i=1

∑
k

h̄ωki

2
q2

ki

)
|g〉〈g|+

N

∑
i=1

(
T +∑

k

h̄ωki

2
(qki−dki)

2
)
|ei〉〈ei| , (2.4)

with T the kinetic energy of the nuclei, ωki and qki the frequency and coordin-

ate, respectively, of the kth harmonic oscillator coupled to molecule i, and dki the

amount by which a harmonic oscillator is perturbed by the excitation of a pigment

molecule.

From Eqs. 2.3 and 2.4, we can now separate the terms that are static in bath

degrees of freedom or in electronic degrees of freedom into a relevant system
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Qualitative description of excitation dynamics

Hamiltonian and bath Hamiltonian respectively:

HRS = Eg |g〉〈g|+
N

∑
i=1

(
Eei +∑

k

h̄ωki

2
d2

ki

)
|ei〉〈ei|+

N

∑
i, j=1

Vi j |ei〉
〈
e j
∣∣ (2.5)

and

HB = T +
N

∑
i=1

∑
k

h̄ωki

2
q2

ki. (2.6)

The term ∑
k

h̄ωki
2 d2

ki in Eq. 2.6 is called the reorganisation energy of the bath. This

energy is lost when the bath relaxes to the vibrational ground state following an

electronic excitation (which is always vertical; see Fig. 2.2). In the rest of this

dissertation, we will include the reorganisation energy in the excitation energy

Eei .

The Hamiltonian for the interaction between the relevant system and the bath

depends on both system and bath operators and can be written as:

HI =
N

∑
i=1

∑
k

h̄ωkiqkidki |ei〉〈ei| . (2.7)

Notice that the interaction Hamiltonian is linear both in bath operators (the qk)

and relevant system operators (the |ei〉〈ei|).

2.5 Qualitative description of excitation dynamics

We are now in a position to discuss, qualitatively, what happens to an excitation

in a light-harvesting complex.

In Section 1.4.2, the general characteristics of an excitation in a photosynthetic

light-harvesting complex were discussed. We will now elaborate on that descrip-

tion by using the ideas presented in this chapter.

24



Qualitative description of excitation dynamics

When a photon is absorbed by a light-harvesting complex, a group of pigment

molecules are excited simultaneously. This simultaneous excitation is made pos-

sible by the close proximity, and therefore strong coupling, of pigment molecules

to one another. In the language of quantum mechanics, a superposition (or linear

combination) of the excited states of individual molecules is formed. Due to the

quantum nature of light absorption, one photon can excite only one pure state and

the energy of this coherent superposition of molecules is therefore equal to the en-

ergy of the photon that was absorbed. Since the superposition state has to have a

definite energy, it should be an eigenstate of the total Hamiltonian. The part of the

bath described by Eq. 2.6 cannot be excited directly by light and the excited state

will consequently be, almost exactly, an eigenstate of the system Hamiltonian2.

These eigenstates are called excitons since they are, fundamentally, electron-hole

bound states. In photosynthetic light harvesting, the electron and hole are located

on the same pigment molecule, and photosynthetic excitons are therefore of the

Frenkel type [57].

If the relevant system were closed, the eigenstate that was excited upon light ab-

sorption would evolve unitarily and the state’s population would remain constant.

Of course, the system is not isolated, and the environment plays a crucial role

in transporting absorbed energy through the light-harvesting complex. To under-

stand the role of the environment, it is important to note that the excitons couple,

like individual pigments, linearly to the oscillator bath. Fig. 2.2 is therefore still

a valid representation of excitation from the ground state if we let |e〉 denote an

exciton state and Q a collective bath coordinate. As explained in Section 2.4, the

electron densities of pigments involved in an exciton state shift very rapidly to the

electron density of the excited state when an exciton is created. The nuclei, on

2In reality, the many vibrations in the bath cause small fluctuations in the energy difference
between the ground state and excited states. These states are consequently not exact eigenstates of
the system Hamiltonian.
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Qualitative description of excitation dynamics

the other hand, change their positions much more slowly—so slow that they are

essentially still in the same positions directly after excitation as they were before.

Because of this slow change, a non-ground vibrational level of the exciton state

gets populated first before the system relaxes slowly to the lowest vibrational level

of the exciton state.

In reality, not all excitons in an ensemble are in the lowest vibrational level. In

Section 3.2, we will assume that the bath is always in thermal equilibrium. The

populations of different vibrational levels therefore conform to the Boltzmann

distribution. In this distribution, the probability for the system to be in the ith

vibrational level, with energy εi, is given by

pi =
e−εi/kT

∞

∑
i=0

e−εi/kT
. (2.8)

At room temperature (i.e., the temperature at which photosynthesis normally takes

place), the lowest vibrational level has by far the highest population, but vibra-

tional levels with higher energy play an important role in describing the excitation

dynamics of a system. To understand this, consider two exciton states α and β ,

where the electronic transition energy of α is higher than that of β (see Fig. 2.3)
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Qualitative description of excitation dynamics

Figure 2.3: The harmonic
oscillators coupled to the ex-
citons α and β . For simpli-
city, the ground state oscillat-
ors are not shown. Q repres-
ents a collective nuclear co-
ordinate.

Excitation can be transferred between exciton states α and β only if the energy

lost by α as it falls to the electronic ground state3 equals the energy required

to excite β to the electronic excited state. In Fig. 2.3, exciton α in its lowest

(zeroth) vibrational level can fall to the (zeroth) vibrational level of the electronic

ground state and simultaneously excite β from this level to the second vibrational

level of its electronic excited state. Of course, it is also possible for α to fall to

a higher vibrational level of the electronic ground state and excite β to a lower

vibrational level. Many such possible de-excitation–excitation possibilities exist

in real-world systems and the overlap of an emission spectrum (for the excitation

donor) and absorption spectrum (for the acceptor) determines the rate of excita-

tion transfer. In the rest of this dissertation, we will think of the excitation being

transferred between exciton states and will not describe the mechanism of simul-

taneous excitation and de-excitation every time.

In Fig. 2.3, energy can only be transferred to α from the second vibrational level

of β . Assuming that the density of vibrational states for the two excitons are equal,
3It is not correct to speak about an exciton "falling to the ground state" or "being excited": an

exciton can only be created or annihilated. Since a correct description will be much longer and
technical, we will not be pedantic.

27



Bases for describing excitation dynamics

the probability of transferring excitation from β to α , relative to the probability

of transferring excitation from α to β can be obtained from Eq. 2.8:

p2

p0
= e(ε0−ε2)/kT . (2.9)

In the absence of fluorescence or other decay channels, this transfer of excitation

between states α and β would occur indefinitely. If we had a very large number of

identical systems, an equilibrium will be reached in which the numbers of excitons

α (Nα ) and β (Nβ ) will remain constant. This equilibrium will be reached when
Nα

Nβ
= e(ε0−ε2)/kT (i.e., when the net transfer rates are zero).

2.6 Bases for describing excitation dynamics

In order to evaluate the excitation dynamics determined by Hamiltonians 2.5, 2.6

and 2.7 in a real-world system, we need to express these Hamiltonians in a suitable

basis. Two bases seem to be natural choices:

Site basis

The site basis is the set of states {|ei〉}, where the system is in state |ei〉 when

only the ith pigment molecule is excited and all other pigments are in their ground

states. The site basis is orthonormal: for a system in the pure state |ei〉, the pop-

ulation of that site (〈ei |ei〉) is one and the populations of all other states are zero.

One can therefore write
〈
e j
∣∣ei
〉
= δ ji.

Since the site energies of pigment molecules and couplings between them can

be determined from spectroscopy and quantum-chemistry computations, the site

basis is the natural basis for expressing the Hamiltonian.
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Eigenbasis

Any complete set of eigenvectors of the system Hamiltonian forms an eigen-

basis. Unlike the site basis, an orthonormal eigenbasis does not necessarily

consist of a unique set of vectors. One can find an orthonormal eigenbasis

by diagonalizing the site-basis system Hamiltonian. The matrix A that satisfies

A−1Hsite basis
RS A = Hdiagonal

RS contains a complete set of eigenvectors as columns.

The diagonal entries of Hdiagonal
RS are the eigenvalues of HRS and the columns

of A (in order) are the eigenvectors of the corresponding eigenvalues. In light-

harvesting complexes, the excitons occupy the eigenstates of the system Hamilto-

nian and the eigenbasis is therefore also called the exciton basis.

2.7 Most common formalisms for computing excit-

ation dynamics

2.7.1 Förster resonance energy transfer

Förster resonance energy transfer (FRET) describes the nonradiative transfer of

energy from an excited chromophore (pigment molecule) to a non-excited chro-

mophore through dipole-dipole coupling. Delocalisation of excitation over mul-

tiple chromophores is not allowed in FRET. The efficiency of transfer depends on

the distance between the chromophores, the relative orientation of their transition

dipole moments and the spectral overlap of the donor’s emission spectrum and the

acceptor’s absorption spectrum. FRET is an approximate theory that works well

for chromophores on which excitation is localised. This is the case when the inter-

chromophore coupling is weak relatively to the coupling between chromophores

and the environment. This regime is called the weak resonance-coupling limit. In
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this limit, fluctuations from the environment are so strong that any already-weak

inter-chromophore coupling is annihilated. In almost all light-harvesting systems,

the coupling between chromophores is not weak and excitation is delocalised over

several pigments. The predictions from FRET therefore differ significantly from

what is observed experimentally. An adjusted version of FRET, called generalised

Förster theory, allows for strong inter-chromophore coupling in a cluster of chro-

mophores with weak coupling between the clusters. A strong resonance-coupling

limit approach like Redfield theory (Section 2.7.2) has to be applied when calcu-

lating transfer dynamics within such clusters, however.

2.7.2 Redfield theory

The Redfield equation, which determines the time-evolution of the relevant sys-

tem in the Redfield theory framework, will be derived in Chapter 3. The Redfield

theory is a second-order perturbation theory in which the interaction Hamiltonian

is handled as a perturbation. This theory assumes strong inter-chromophore coup-

ling relatively to the chromophore-environment coupling. Redfield theory is there-

fore applicable in the opposite limit than FRET. Most of the predictions of Red-

field theory agree well with what is observed experimentally in light-harvesting

systems (see Chapter 6). Discrepancies between the theoretical prediction and ex-

perimental observation can be significant enough, however, to warrant the use of

more accurate methods.

2.7.3 Modified Redfield theory

All ideas in this section were taken from Ref. [60]. In modified Redfield theory,

which was first derived by Zhang et al. [61], the diagonal part of the interaction

Hamiltonian in the exciton basis {|k〉} is handled non-perturbatively. The off-
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diagonal elements can be written as [60]

H ′ = ∑
k 6=k′
|k〉HI

kk′
〈
k′
∣∣ , (2.10)

and their magnitudes depend on two factors: the overlap of the two exciton wave

functions and the coupling of the pigments to the bath. In systems for which

the average overlap between different exciton wave functions is small, the per-

turbation approach (on the off-diagonal elements of H ′) is valid even for strong

coupling to the bath. Systems for which the average exciton wave functions over-

lap is small include systems with high static disorder or those in which the spectra

of the chromophores are well-separated. Both of these characteristics are often

found in light-harvesting systems.

2.7.4 Reduced hierarchy equation approach

The Reduced hierarchy equation approach is a non-perturbative approach that can

be used to calculate excitation dynamics over all ranges of pigment-environment

coupling strength and reduces to the Redfield and Förster formalisms in their re-

spective limits [62]. This approach is computationally intensive [63, 64] and the

theory not as perspicuous as Redfield theory.
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Chapter 3

Redfield formalism

Excitation dynamics in molecular aggregates are often described by making use

of the Redfield formalism. In this chapter, we derive the Redfield equation, which

predicts excitation dynamics in this formalism. To this end, we first introduce

some preliminary concepts necessary for the derivation.

3.1 Preliminary concepts

3.1.1 The density matrix

An example

Not all quantum states can be expressed as wave functions. Pure states (which can

be expressed as wave functions) are always eigenvectors of Hermitian operators.

In reality, systems often consist of a large number of particles that occupy different

pure states with a given classical distribution. These mixed quantum states are not

single wave vectors in any Hilbert space and subsequently have to be expressed

statistically.

32



Preliminary concepts

To see how we express these states, let us suppose that we have a large ensemble

of systems and that the only difference between the systems is that half of the

ensemble is initially in the pure state |φ〉 and the other half in the pure state |ψ〉.

Before performing any measurements, we do not know which members of the

ensemble are in which state. Suppose also that the pure states can be expressed

as |φ〉 = ca |a〉+ cb |b〉 and |ψ〉 = cd |d〉+ ce |e〉. When we make a measurement

of the observable, say Â, that has eigenvectors |a〉 , |b〉 , |d〉 and |e〉, we find that

in half of the cases (for the members of the ensemble which were in state |φ〉) we

obtain result a and b with probability c2
a and c2

b respectively. Overall, we obtain

a, b, d and e with probabilities 1
2c2

a, 1
2c2

b, 1
2c2

d and 1
2c2

e respectively.

How can we characterise this system in the eigenbasis of Â? We should certainly

report the probability of obtaining a certain eigenvalue, but this information is not

sufficient. To predict the evolution of the ensemble, for example, we should also

know that |a〉 and |b〉 cooperate through a linear combination to form the pure

state |φ〉. We can quantify this cooperation by calculating the quantity cac∗b =

〈a |φ〉〈φ |b〉. For ca,cb ∈ R, this quantity has a maximum value when |ca|= |cb|

(i.e., maximum cooperation between states |a〉 and |b〉) and is zero when either

ca = 0 or cb = 0 (i.e., no cooperation at all). We can also extract phase information

from this quantity: If cac∗b = i
2 , we can infer that ca is leading by e

iπ
2 . We can

condense all of this information into a matrix, which we call the density matrix.

We put the probabilities of obtaining eigenvalues on the diagonal and fill in the

rest of the matrix with the cooperation factors:

ρ =


1
2c2

a cac∗b 0 0

cbc∗a
1
2c2

b 0 0

0 0 1
2c2

d cdc∗e

0 0 cec∗d
1
2c2

e

 . (3.1)
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Calculation of the density matrix in general

The density matrix contains all information we can possibly extract from the sys-

tem. In general, we can construct a density matrix for any state (both pure and

mixed) by the following method. Suppose a quantum system can be found in

state |ψ1〉 with probability p1, in state |ψ2〉 with probability p2, in state |ψ3〉 with

probability p3 etc. We then define the density operator as

ρ̂ = ∑
i

pi |ψi〉〈ψi| . (3.2)

The (density) matrix associated with this operator is calculated by projecting the

operator to a basis set {|bn〉}:

ρkl = ∑
i

pi 〈bk |ψi〉〈ψi |bl〉 . (3.3)

The diagonal elements of the density matrix are the populations of the basis vec-

tors (the expectation value of that basis state) and the off-diagonal elements are

the coherences between different basis vectors (indicating the average amount of

quantum coherence between them). All entries of the density matrix depend on

the basis in which it is expressed and it is not always trivial to see whether a state

is pure.

Properties of the density matrix

To determine whether a state is pure, we calculate the trace of the density matrix.

The trace is simply the sum of all the diagonal elements. The state represented by

a density matrix is pure if and only if tr(ρ2) = 1. In the next chapter, we’ll also
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make use of the cyclic property of the trace operation:

tr(ÂB̂Ĉ) = tr(ĈÂB̂) = tr(B̂ĈÂ) (3.4)

The density matrix gives us an easy way of calculating the expectation value of an

operator. If the system is in the state described by ρ then, for an operator Â acting

on the system,

〈Â〉= tr(Âρ̂). (3.5)

3.1.2 Interaction picture

There are three reference frames ("pictures") that are often used in quantum mech-

anics: the Schrödinger picture in which the state vectors (or basis vectors in the

case of mixed states) carry all time-dependence, the Heisenberg picture in which

states are stationary and operators carry the time-dependence, and the interaction

(Dirac) picture in which both state vectors and operators evolve in time. The in-

teraction picture is useful when we want to investigate the time-evolution due to

an interaction between two subsystems. One can think of the interaction picture

as a reference frame that moves through phase space in such a way that we only

observe the tugs and pulls on the system due to the interaction. The interaction

picture also has some mathematical advantages that will be useful later.

For defining operators and states in the interaction picture, we partition the total

Hamiltonian in two parts: Ĥ0 = ĤRS + ĤB and ĤI (see Eq. 2.1). We then define

the interaction picture operators and states from their Schrödinger counterparts:

|ψ(t)〉I = eiĤ0t/h̄ |ψ(t)〉S (3.6)
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and

ÂI(t) = eiĤ0t/h̄ÂS(t)e−iĤ0t/h̄. (3.7)

By substituting definition 3.6 into Eq. 3.2, it is easy to see that the density operator

does indeed transform according to Eq. 3.7.

One can transform between the interaction picture and Schrödinger picture by

using the Heisenberg equation,

d
dt

Â(t) =
i
h̄

(
Ĥ0Â(t)− Â(t)Ĥ0

)
+ eiĤ0t/h̄

(
∂ Â
∂ t

)
e−iĤ0t/h̄. (3.8)

In the following sections we will denote the density operator as ρ̂ ′(t) in the inter-

action picture. For other operators, we will indicate time-dependence explicitly,

like in Â(t), if and only if these operators are in the interaction picture1. We will

also drop the operator hat in the next section.

3.1.3 Liouville-von Neumann equation

We can easily write down the time-dependence of the density matrix from Eq. 3.2:

ρ(t) = ∑
i

pie−iHt/h̄ |ψi〉〈ψi|eiHt/h̄

= e−iHt/h̄
∑

i
pi |ψi〉〈ψi|eiHt/h̄

= e−iHt/h̄
ρeiHt/h̄.

The first derivative of this equation is known as the Liouville-von Neumann equa-

1The full density matrix evolves unitarily in time, but the reduced density matrix in Section
3.2 does not. Only indicating time-dependence explicitly will therefore not always be a sufficient
indication that the density matrix is in the interaction picture.
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tion:
∂

∂ t
ρ =− i

h̄
[H,ρ]. (3.9)

To obtain the time derivative of a state in the interaction picture, let us differentiate

Eq. 3.7 for the density matrix:

∂

∂ t
ρ

I(t) =
i
h̄
[H0,ρ

I]+ eiH0t/h̄
(

∂

∂ t
ρ

S(t)
)

e−iH0t/h̄ (3.10)

and substitute from Eq. 3.9 (with the notation we introduced above):

∂

∂ t
ρ
′(t) =

i
h̄
[H0,ρ

′]+ eiH0t/h̄
(
− i

h̄
[H0 +HI,ρ]

)
e−iH0t/h̄. (3.11)

Note now that eiH0t/h̄ commutes with H0 and that we are therefore left with

∂

∂ t
ρ
′(t) =

i
h̄
[H0,ρ

′]− i
h̄
[H0,ρ

′]+ eiH0t/h̄
(
− i

h̄
[HI,ρ]

)
e−iH0t/h̄, (3.12)

which is equivalent to

∂

∂ t
ρ
′(t) =− i

h̄
[HI(t),ρ ′(t)]. (3.13)

This equation is the interaction picture form of the Liouville-von Neumann equa-

tion.

With this information, we are now equipped to derive the Redfield equation.

3.2 Derivation of the Redfield equation

The Redfield model is often used to describe the dynamics of a small quantum

system that interacts significantly, but weakly, with a large number of other de-
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grees of freedom. It provides an approximate, coarse-grained description of the

relevant part of the system, while treating the large number of other degrees of

freedom statistically.

For the derivation in this section, we will follow the approach of Refs. [65, 66].

In deriving the Redfield equation, we first integrate Eq. 3.13 formally to obtain

ρ
′(t) = ρ

′(0)− i
h̄

t∫
0

dτ[HI(τ),ρ
′(τ)], (3.14)

and again substitute this result back into the right hand side of Eq. 3.13:

∂

∂ t
ρ
′(t) =− i

h̄
[HI(t),ρ ′(0)]−

1
h̄2

t∫
0

dτ[HI(t), [HI(τ),ρ
′(τ)]]. (3.15)

We now take a trace over the bath degrees of freedom on both sides of Eq. 3.15.

This amounts to averaging over these degrees of freedom. We are left with an ex-

pression for the reduced density matrix ρS that describes only the system degrees

of freedom:

∂

∂ t
ρ
′
S(t) =−

i
h̄

trB[HI(t),ρ ′(0)]−
1
h̄2

t∫
0

dτtrB[HI(t), [HI(τ),ρ
′(τ)]]. (3.16)

Up to now we have not made any approximations and Eq. 3.16 is therefore exact.

This equation is not of much use, however, since the dynamics of the reduced

density matrix still depends explicitly on the value of the full density matrix at

previous times.

We can assume that the interaction is introduced at t0 = 0 and that the full density

matrix at t0 can therefore be written as ρ ′(0) = ρ ′S(0)ρ
′
B(0), where the tensor
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product is implied. Because we can choose t0 to indicate the time at which the

interaction starts, this is not really an approximation.

The first real approximation we introduce is the Born approximation. We assume

that the bath consists of a vast number of degrees of freedom and that the state

of the bath remains essentially unchanged by interaction with the system. If we

assume that the bath was initially in thermal equilibrium, this equilibrium is main-

tained at all times. We can therefore substitute ρ ′(τ) with ρ ′S(τ)ρ
′
B(0) in Eq. 3.16:

∂

∂ t
ρ
′
S(t) =−

i
h̄

trB[HI(t),ρ ′S(0)ρ
′
B(0)]−

1
h̄2

t∫
0

dτtrB[HI(t), [HI(τ),ρ
′
S(τ)ρ

′
B(0)]].

(3.17)

We have now eliminated the complexity of the full density matrix from the dynam-

ics of the reduced density matrix. The dynamics at time t still depends, however,

on the dynamics at all prior times (ρ ′S(t) depends on the ρ ′S(τ) in the integration

kernel).

We also assume that the dissipative effect of the bath is so strong that the relevant

system has a very short memory. This is known as the Markov approximation. In

essence, the Markov approximation assumes that excitons equilibrate among the

different vibrational levels rapidly (see Fig. 2.3) and that the relevant system can

therefore not "deduce" its past from the occupancy of vibrational levels. Since the

system at time t does not have a memory of itself at a prior time τ , we can replace

ρ ′S(τ) with ρ ′S(t) in the integration kernel:

∂

∂ t
ρ
′
S(t) =−

i
h̄

trB[HI(t),ρ ′S(0)ρ
′
B(0)]−

1
h̄2

t∫
0

dτtrB[HI(t), [HI(τ),ρ
′
S(t)ρ

′
B(0)]].

(3.18)

We will also assume that the interaction Hamiltonian in the Schrödinger picture
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has the form

HI = ∑
i

QS
i QB

i , (3.19)

where QS
i and QB

i are system and bath operators respectively. In Section 3.4 we

will show that the interaction Hamiltonian (for the model described in Chapter 2),

indeed has this form.

In the interaction picture of H0, Eq. 3.19 becomes:

HI(t) = ∑
i

eiH0tQS
i QB

i e−iH0t

= QS
i (t)Q

B
i (t).

(3.20)

With this form of the interaction Hamiltonian, the first term of Eq. 3.18 equals

− i
h̄ ∑

i
QS

i (t)ρ
′
S(0)trB(QB

i (t)ρ
′
B(0))+

i
h̄ ∑

i
ρ
′
S(0)Q

S
i (t)trB(QB

i (t)ρ
′
B(0)), (3.21)

where we used the facts that QS
i (t) and QB

j (t) commute, the trace operation acts

only on the bath operators and the trace is invariant under rotation of its arguments.

We will show in Section 3.4 that the bath operators are simply nuclear coordinates

(of which we can define the reference frames as we wish, of course). In particu-

lar, we define the bath operators in such a way that their equilibrium expectation

values, trB(QB
i (t)ρ

′
B(0)), are zero. The first term in Eq. 3.18 then falls away.
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Substituting Eq. 3.20 into Eq. 3.18 and expanding the commutators yields

∂

∂ t
ρ
′
S(t) =−

1
h̄2 ∑

i, j

t∫
0

dτtrB
{

QS
i (t)Q

S
j(τ)Q

B
i (t)Q

B
j (τ)ρ

′
S(t)ρ

′
B(0)

−QS
j(τ)Q

B
j (τ)ρ

′
S(t)ρ

′
B(0)Q

S
i (t)Q

B
i (t)

+ρ
′
S(t)ρ

′
B(0)Q

S
j(τ)Q

S
i (t)Q

B
j (τ)Q

B
i (t)

−QS
i (t)Q

B
i (t)ρ

′
S(t)ρ

′
B(0)Q

S
j(τ)Q

B
j (τ)

}
.

(3.22)

Using the cyclic property of the trace and the fact that QS
i (t) and QB

j (t) commute,

we obtain

∂

∂ t
ρ
′
S(t) =−

1
h̄2 ∑

i, j

t∫
0

dτ

[(
QS

i (t)Q
S
j(τ)ρ

′
S(t)−QS

j(τ)ρ
′
S(t)Q

S
i (t)
)
trB
{

QB
i (t)Q

B
j (τ)ρ

′
B(0)

}

+
(
ρ
′
S(t)Q

S
j(τ)Q

S
i (t)−QS

i (t)ρ
′
S(t)Q

S
j(τ)

)
trB
{

QB
j (τ)Q

B
i (t)ρ

′
B(0)

}]
.

(3.23)

The traces in Eq. 3.23 are two-times correlation functions

trB
{

QB
i (t)Q

B
j (τ)ρ

′
B(0)

}
= 〈QB

i (t)Q
B
j (τ)〉, (3.24)

where 〈. . .〉 indicates an expectation value (average).

We next assume that the correlation functions 〈QB
j (τ)Q

B
i (t)〉 do not depend

on the absolute time, but only on the time that passed since an excita-
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tion (t ′ = t− τ). We also assume that the correlation functions Ci j(t ′) =

〈QB
i (t)Q

B
j (τ)〉 = 〈QB

i (t
′)QB

j (0)〉 decay exponentially, and very fast compared to

the dynamics of the relevant system. We can therefore make the approximation

that Ci j(t ′) is nonzero only when t ′ is smaller than a critical time, tR, called the

correlation time of the bath.

Changing the variable of integration to t ′ (the limits do not change), Eq. 3.23 then

becomes:

∂

∂ t
ρ
′
S(t) =−

1
h̄2 ∑

i, j

t∫
0

dt ′
{(

QS
i (t)Q

S
j(t− t ′)ρ ′S(t)−QS

j(t− t ′)ρ ′S(t)Q
S
i (t)
)
〈QB

i (t
′)QB

j (0)〉

+
(
ρ
′
S(t)Q

S
j(t− t ′)QS

i (t)−QS
i (t)ρ

′
S(t)Q

S
j(t− t ′)

)
〈QB

i (0)Q
B
j (t
′)〉
}
.

(3.25)

We now assume that t >> tR. This means that we calculate the relevant system

dynamics over times that are much longer than the timescale of bath dynamics

(this is why Redfield theory is called a coarse-grained description). Since t >> tR,

and the correlation functions are zero in this regime, the upper integration limit

in Eq. 3.25 can be extended to infinity. The terms in the integrand can also be

grouped together to form commutators:

∂

∂ t
ρ
′
S(t) =−

1
h̄2 ∑

i, j

∞∫
0

dt ′
{
[QS

i (t),Q
S
j(t− t ′)ρ ′S(t)]Ci j(t ′)

+[ρ ′S(t)Q
S
j(t− t ′),QS

i (t)]Ci j(−t ′)
}
.

(3.26)
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We now transform Eq. 3.26 to the Schrödinger picture by using the Heisenberg

equation (Eq. 3.8):

∂

∂ t
ρS(t) =−

i
h̄
[HRS,ρS(t)]−

1
h̄2 ∑

i, j

∞∫
0

dt ′e−iH0t/h̄
{
[QS

i (t),Q
S
j(t− t ′)ρ ′S(t)]Ci j(t ′)

+[ρ ′S(t)Q
S
j(t− t ′),QS

i (t)]
}

eiH0t/h̄Ci j(−t ′),

(3.27)

where we used [H0,ρS(t)] = [HRS,ρS(t)], since HB and ρS commute.

The last steps now are to express this equation in the eigenbasis of the relevant

system Hamiltonian and simplify the result. To this end, suppose that |α〉 and |β 〉

are eigenvectors of this basis with eigenvalues α and β . It therefore holds that

〈α|e−iH0t/h̄ = 〈α|e−iαt/h̄ ·e−iHBt/h̄, since HRS and HB commute. In the eigenbasis

representation Eq. 3.27 therefore becomes

〈α| ∂

∂ t
ρS(t) |β 〉=−

i
h̄
〈α| [HRS,ρS(t)] |β 〉

− 1
h̄2 ∑

i, j

∞∫
0

dt ′
{
〈α|e−iαt/h̄[QS

i (t),Q
S
j(t− t ′)ρ ′S(t)]e

iβ t/h̄ |β 〉Ci j(t ′)

+〈α|e−iαt/h̄[ρ ′S(t)Q
S
j(t− t ′),QS

i (t)]e
iβ t/h̄ |β 〉Ci j(−t ′)

}
.

(3.28)

Now, notice that

− i
h̄
〈α| [HRS,ρS(t)] |β 〉=−

i
h̄
〈α|(α−β )ρS(t) |β 〉 (3.29)
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and

〈α|e−iαt/h̄[QS
i (t),Q

S
j(t− t ′)ρ ′S(t)]e

iβ t/h̄ |β 〉

= 〈α|
(
QS

i e−iHRSt ′/h̄QS
je

+iHRSt ′/h̄
ρS

− e−iαt ′/h̄QS
je

iHRSt ′/h̄
ρSQS

i
)
|β 〉 .

(3.30)

We can multiply with identities ∑
γ

|γ〉〈γ| (where the summation is over the entire

eigenbasis) throughout to obtain

〈α|
(
QS

i e−iHRSt ′/h̄
∑
γ

|γ〉〈γ|QS
je

iHRSt ′/h̄
∑
δ

|δ 〉〈δ |ρS

− e−iβ t ′/h̄QS
je

iHRSt ′/h̄
∑
ν

|ν〉〈ν |ρS ∑
µ

|µ〉〈µ|QS
i
)
|β 〉

= ∑
γ

∑
δ

〈α|QS
i |γ〉〈γ|QS

j |δ 〉〈δ |ρS |β 〉ei(δ−γ)t ′/h̄

−∑
γ

∑
δ

〈α|QS
j |δ 〉〈δ |ρS |γ〉〈γ|QS

i |β 〉ei(δ−α)t ′/h̄.

(3.31)

Similarly, for the second commutator in Eq. 3.28 we obtain

〈α|e−iαt/h̄[ρ ′S(t)Q
S
j(t− t ′),QS

i (t)]e
iβ t/h̄ |β 〉

= ∑
γ

∑
δ

〈α|ρS |γ〉〈γ|QS
j |δ 〉〈δ |QS

i |β 〉ei(δ−γ)t ′/h̄

−∑
γ

∑
δ

〈α|QS
i |δ 〉〈δ |ρS |γ〉〈γ|QS

j |β 〉ei(β−γ)t ′/h̄.

(3.32)
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With these expressions, we obtain the Redfield relaxation equation

∂

∂ t
ραβ (t) =−

i
h̄

ωαβ ραβ (t)−∑
δ ,γ

Rαβγδ ργδ (t), (3.33)

where

ωαβ = α−β (3.34)

and

Rαβγδ =− 1
h̄2

∞∫
0

dt ′
{

Λδβαγe−iωδβ t ′+Λδβαγe−iωαγ t ′

−δδβ ∑
s

Λαssγe−iωsγ t ′−δγα ∑
s

Λδ ssβ e−iωδ st
′}
,

(3.35)

with

Λδβαγ = ∑
i

∑
j
〈α|QS

j |δ 〉〈γ|QS
i |β 〉Ci j(t ′), (3.36)

and δαβ the Kronecker delta.

Eq. 3.33 describes the dynamics of the reduced density matrix because of relaxa-

tion by the environment. The Redfield relaxation tensor, Eq. 3.35, determines the

rate of transfer between populations (for Raabb), between populations and coher-

ences (Raabc and Rbcaa) and between coherences (Rabcd and Rabab). One further

approximation brings us to the secular Redfield equation which we will use in the

next chapters.

3.3 Secular approximation

The following explanation of the secular approximation is given by Olšina and

Mančal [67].
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In the interaction picture, the Redfield equation (Eq. 3.33) is

∂

∂ t
ρ
′
αβ

(t) =−∑
γ,δ

Rαβγδ ρ
′
γδ
(t)ei(ωγδ−ωαβ )t/h̄. (3.37)

To solve this equation, we integrate on both sides of the equality. The exponential

ei(ωγδ−ωαβ )t/h̄ will then cause the integrand on the right-hand side to oscillate if

ωγδ −ωαβ 6= 0. If the energy difference between different exciton states are large

enough for the factors ei(ωγδ−ωαβ ) to vary much faster than the factor Rαβγδ ρ ′
γδ
(t),

one expects all terms for which ωγδ −ωαβ 6= 0 to oscillate so fast that their in-

tegrals average to zero. We make this approximation explicit by setting all Rαβγδ

equal to zero except those for which α = γ and α = δ or in which α = β and

γ = δ . In the secular approximation regime, we do not allow transfer between

populations and coherences or between different coherences (Rαβγδ where at least

two of α,β ,γ,δ are unique).

3.4 Application to photosynthetic light harvesting

In many photosynthetic light-harvesting complexes, the coupling between pig-

ment molecules is strong enough compared to the pigment-environment coupling,

that the Redfield equation can be used to calculate the excitation dynamics. In

principle, we can solve the set of coupled differential equations given by Eq. 3.33

if we have the initial state of the light-harvesting complex. In practice, this is done

by calculating ∂

∂ t ραβ (t) for short sequential time steps and multiplying the time

derivative for each time step by the corresponding density matrix element at the

start of the interval. This method is explained in more detail in Chapter 5.

All of the variables and operators appearing in the Redfield equation, except two,

have been discussed in the previous sections. In Eq. 3.19, we introduced the
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interaction Hamiltonian in the form

HI = ∑
i

QS
i QB

i . (3.38)

For the sake of keeping the derivation in Section 3.2 general, we did not explain

the operators QS
i and QB

j . We will do so now.

In Section 2.4, we showed that the interaction Hamiltonian for the light-harvesting

systems is given by

HI =
N

∑
i=1

∑
k

h̄ωkiqkidki |ei〉〈ei| . (3.39)

Comparing this equation with Eq. 3.38, it is clear that

QS
i = |ei〉〈ei| and QB

i = ∑
k

h̄ωkidkiqki. (3.40)

The factors 〈α|QS
i |δ 〉 are therefore simply

〈α|QS
j |δ 〉= 〈α |ei〉〈ei |δ 〉 (3.41)

and the correlation functions 〈QB
i (t
′)QB

j (0)〉 are

〈QB
i (t
′)QB

j (0)〉= 〈∑
k

h̄ωkidkiqki(t ′)∑
l

h̄ωl jdl jql j(0)〉. (3.42)

3.5 Simplification of bath correlation functions

In the bath model discussed in Chapter 2, each electronic degree of freedom was

coupled to a large number of independent harmonic oscillators. This model is
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often called the spin-boson model (i.e., a two-level system coupled to a bosonic

bath).

An equivalent way of thinking about the spin-boson model is the so-called mul-

timode Brownian oscillator model (MBO) [59]. In this model, the relevant system

is linearly coupled to a finite set of harmonic oscillators. In turn, these harmonic

oscillators (which we call the primary oscillators) are coupled linearly to a large

(or infinite) number of other harmonic oscillators (which we call the free oscillat-

ors, since they are not coupled to the relevant system). A schematic of this model

is shown in Fig. 3.1.

Figure 3.1: A schematic of the quantum
multimode Brownian oscillator model.
The straight vertical lines indicate linear
coupling and the grey bar represents the
primary oscillator mass. Oscillators are
represented by springs. The secondary os-
cillators are allowed to have different fre-
quencies and masses.

Notice that the bath coordinates enter the derivation of the Redfield equation

through commutators of the relevant system-bath interaction Hamiltonian (see Eq.

3.18). Since the free oscillator coordinates are not coupled directly to the elec-

tronic degrees of freedom, the only correlation functions in the Redfield equation

of a system with an MBO bath, are therefore the ones containing the coordinates

of the primary oscillators.

Now suppose that, for each pigment molecule, the excited state is coupled to a

single primary oscillator (because the spin-boson model is equivalent to the mul-

timode Brownian oscillator model, such a choice is always permitted). It is often

assumed in literature that excitations couple independently, with the same coup-
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ling constants, to identical baths. The correlation function above then becomes

〈QB
i (t
′)QB

j (0)〉= h̄2
ω

2d2〈qi(t ′)q j(0)〉, (3.43)

where qi is the coordinate of the primary oscillator that couples directly to excit-

ation on site i, ω is the angular frequency and d the coupling parameter for this

oscillator (see Section 2.4).

The primary oscillator is the link between the free bath and the relevant system,

and the effect of these two subsystems on each other should therefore be chan-

nelled through the primary oscillator. All the dynamics of the bath that have an

influence on the system can be therefore be obtained by a characterisation of the

primary oscillator coordinate. The bath correlation functions provide such a char-

acterisation. The exact form of the correlation function depends on the spectral

density of the bath. Later, we will use the correlation function of an overdamped

Brownian oscillator (as explained in Chapter 5).
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Chapter 4

Multiexcitonic systems

In the previous chapters, we considered the case of a single excitation in a light-

harvesting system. Under natural conditions, however, light intensity is often

strong enough for more than one excitation to be present simultaneously [49, 68].

As noted by Abramavicius et al. [68], interactions of these excitons cause dis-

sipation of energy through singlet-singlet or singlet-triplet annihilation (see Refs.

[57,69] for discussions of annihilation). As also noted by Abramavicius et al. [68],

consideration of multiple-exciton interactions are important for the description of

coherent control of excited state dynamics in photosynthetic light harvesting [70].

In addition, simulation of nonlinear optical spectroscopy experiments (like fluor-

escence depolarisation, hole-burning, pump-probe etc.) requires a theory that

takes into account the interactions of multiple excitons [71]. Knowing the initial

multiple-exciton dynamics (i.e., before the interactions occur) in light-harvesting

systems is important to determine where, and how frequently, interactions occur.

Developing a formalism for calculating such dynamics will be the focus of this

chapter.

For the sake of simplicity, we will consider only the case where two excitations
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are simultaneously present, but all the ideas that are developed here can easily be

extrapolated to systems containing more than two excitations.

4.1 Two-exciton Hamiltonians

Suppose that pigment molecules i and j are excited. We denote this compound

state by |eI〉 =
∣∣eie j

〉
=
∣∣e jei

〉
, where i and j are never equal and pair (i, j) is

unique for each value of I. To account for these double-excitation states, we

should add to the system Hamiltonian (Eq. 2.3) their excitation energies and coup-

lings:
N(N−1)/2

∑
I=1

EeI |eI〉〈eI| and
N(N−1)/2

∑
I 6=J

VIJ |eI〉〈eJ| , (4.1)

where EeI is the excitation energy of state I and VIJ is the coupling between states I

and J. Notice that there are N(N−1)
2 unique ways to excite two sites in a molecular

aggregate with N sites.

The two-excitation energies and couplings can easily be expressed in terms of

their single-excitation counterparts. To do this, notice first that the reorganisation

term ∑
k

h̄ωki
2 d2

ki in Eq. 2.5 forms part of the energy needed to excite a pigment

molecule in an aggregate. As is often done in literature [72], we will assume

that each excitation in a two-excitation state couples independently to the bath.

This means that the excitation energies of the two pigment molecules in a two-

excitation state are also independent. The energy of the two-excitation state |eI〉=∣∣eie j
〉

is therefore simply

εI = εi + ε j. (4.2)

The coupling between two-excitation states can also be obtained from the single-

excitation couplings: Notice that independent coupling of pigment molecules to
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Bases for describing excitation dynamics

the bath means that the interpigment coupling is not affected by the creation of a

two-excitation state. For I = (i, j) and J = (k, l) we therefore have that

VIJ =
1
2
[
δikVjl +δ jkVil +δilVjk +δ jlVik

]
, (4.3)

where the factor 1
2 compensates for double-counting (because Vjl =Vl j).

The bath Hamiltonian remains the same as in the single-excitation case. Because

pigment molecules couple independently to the bath, the two-exciton contribution

to the interaction Hamiltonian is simply

H2-ex
I =

N(N−1)/2

∑
I=1

∑
K

h̄ωKIqKIdKI |eI〉〈eI| , (4.4)

where

h̄ωKIqKIdKI = h̄ωkiqkidki + h̄ωk jqk jdk j if I = (i, j). (4.5)

4.2 Bases for describing excitation dynamics

In Section 2.6, we described the site basis and exciton basis for single-excitation

systems. Extension of the bases to multi-excitation systems is straightforward.

Site basis

The site basis of a two-excitation system is the set of states {|eI〉 =
∣∣eie j

〉
=∣∣e jei

〉
| i 6= j}, where the system is in state |eI〉 if the ith and jth pigment mo-

lecules are excited and all other pigment molecules are in their ground states.

Just like in the single-excitation case, the site basis for a two-excitation system is

orthonormal (i.e., 〈eI |eJ〉 = δIJ). It is important to notice that the total site-basis
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population of a two-excitation system is one, but that the populations of individual

sites add to two (since there are two excitations).

Eigenbasis

As was the case for the single-excitation eigenbasis, the two-excitation eigenbasis

is formed from a set of orthonormal eigenvectors of the two-excitation Hamilto-

nian. Such vectors can, again, be found from the columns of the matrix that

diagonalise the two-excitation Hamiltonian.

4.3 Dynamics of multiexcitonic systems

Almost all of the concepts in Chapter 2 can be extended directly to multiexcitonic

systems. The only difference is that the Hamiltonian eigenstates are now two-

exciton states. The mechanism through which the bath relaxes the relevant system

remains exactly the same: The two-exciton states couple linearly to the bath. This

interaction causes irreversible relaxation of the two-exciton states until their ener-

gies are described by the Boltzmann distribution.

The Redfield equation was derived in Chapter 3 without ever specifying the num-

ber of excitations in the system, and is therefore valid for systems with any number

of excitations (as long as the coupling between pigment molecules in such a sys-

tem is much stronger than coupling to the bath). The two-exciton Redfield dynam-

ics is therefore calculated in the same way as single-exciton Redfield dynamics,

except that we now use the two-exciton basis states and two-exciton correlation

functions.

For calculating the single-exciton Redfield dynamics, we used the correlation
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Towards a single-exciton description of a multiexcitonic system

functions (see Sections 3.4 and 3.5):

〈QB
i (t
′)QB

j (0)〉= h̄2
ω

2d2〈qi(t ′)q j(0)〉. (4.6)

The two-excitation correlation functions can easily be found from the single-

excitation correlation functions:

〈qI(t ′)qJ(0)〉= 〈
(
qi(t ′)+q j(t ′)

)
·
(
qk(0)+ql(0)

)
〉, (4.7)

where I = (i, j) and J = (k, l).

Since the bath coordinates at different sites are uncorrelated (see Section 4.1),

〈qI(t ′)qJ(0)〉 equals zero if the sites constituting I and J are all unique, and it is

equal to
(
〈qi(t ′)qi(0)〉+ 〈q j(t ′)q j(0)〉

)
if I = J = (i, j). If only site i is shared

between I and J, then 〈qI(t ′)qJ(0)〉= 〈qi(t ′)qi(0)〉 .

4.4 Towards a single-exciton description of a mul-

tiexcitonic system

Calculating the exciton dynamics of a system becomes drastically more tedious

when the number of excitons increases. For a system with N sites and n 6 N

excitons, one has to calculate the dynamics of
( (N!)
(N−n)!n!

)2 density matrix ele-

ments! This quantity (as a function of number of excitons, n) is shown in Fig.

4.1 for four natural light-harvesting complexes: FMO, an excitation conduit in

green sulphur bacteria, containing eight bacteriochlorophylls; LH1 and LH2, bac-

terial light-harvesting complexes containing 32 and 27 bacteriochlorophylls, re-

spectively; and LHCII, the main light-harvesting complex in plants, containing 14

chlorophylls.
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Figure 4.1: The num-
ber of density matrix ele-
ments as a function of num-
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FMO monomer (8 pigments),
LHCII monomer (14 pig-
ments), LH2 (27 pigments),
LH1 (32 pigments).

It is clear that even the calculation of two-exciton dynamics in some light-

harvesting complexes (like LH1 and LH2) is computationally arduous.

Based on phenomenological reasoning, it is reasonable to expect that, for the case

of two completely localised excitons (i.e., for a system in the Förster limit), the

populations of individual sites are described by the equation

d
dt

Pi = ∑
l 6=i

Pl(1−Pi)Ril−Pi ∑
l 6=i

(1−Pl)Rli, (4.8)

where Ril is the single-exciton transfer rate from site l to site i.

The terms (1−Pi) would then prevent double excitation of site i: if i were occu-

pied fully, no population would be transferred to this site.

If Eq. 4.8 were correct, computation of multi-excitation Förster dynamics would

be significantly simplified! Furthermore, similarities between Förster-type and

Redfield-type dynamics1 could mean that a similar equation exists to determine

multiexcitonic Redfield-type dynamics. This would reduce the number of density

matrix elements from
( (N!)
(N−n)!n!

)2 to N; a significant improvement!

1In both cases, no individual site is allowed to have a population of more than one.
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Towards a single-exciton description of a multiexcitonic system

At the start of the research leading to this dissertation, we compared the results

of a simulation based on Eq. 4.8 and a simulation based on the full two-exciton

master equation

d
dt

Pi j =−Pi j
(
∑

l
∑
m

Rlm←i j
)
+
(
∑

l
∑
m

PlmRi j←lm
)
. (4.9)

These two equations appeared to yield identical dynamics, and we assumed, there-

fore, that Eq. 4.8 was correct. We could also derive Eq. 4.8 analytically if we

made the assumption that Pab = PaPb (see Appendix B). Notwithstanding much

effort, we were unable to validate this assumption...

A year later, we tested Eq. 4.8 again and showed that this equation, in fact, pro-

duces only approximately correct dynamics at finite temperatures. We realised

then that we tested only a special case of this equation initially—the case of in-

finite temperature when the rates Ri j and R ji are equal. In reality, the forward and

backward rates are not equal, but their ratio is given by the Boltzmann factor as

explained in Section 2.5. The discrepancy between dynamics predicted by Eq. 4.8

and Eq. 4.9 proves that the assumption Pab = PaPb in Appendix B is invalid. In

retrospect, the invalidity of this assumption should have been anticipated: only for

two particles diffusing freely, would the probability of simultaneous occupation

of sites a and b at time t be the product of probabilities of having site a excited at

t, and having site b excited at t.

The analogy between Redfield-type energy transfer and Förster-type transfer is

also not as strong as we initially believed. In the Redfield case, any two-exciton

state can be written as a linear combination of direct products of single-exciton

states, ∑
a,b

cab |a〉 |b〉. Terms such as |a〉 |a〉 are also allowed in such an expansion

[68]. In the Redfield case, single-exciton states are therefore allowed to have

populations greater than one (as long as no pigment molecule has a population
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greater than one).

We cannot exclude the possibility for two-exciton dynamics to be expressed as the

dynamics of single-exciton states, but from the discussion above, such a descrip-

tion will probably differ significantly from the form of Eq. 4.8.
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Chapter 5

Simulation

We wrote a computer program that calculates the Redfield-dynamics of single-

exciton and two-exciton systems. This program was written in the GNU Octave

language (for more detail about this language, see Ref. [73]). In this chapter we

discuss the workings of this program.

5.1 Inputs

The program requires the following inputs: temperature, average reorganisation

energy and average correlation time of the bath, the electronic Hamiltonian1, and

an initial density matrix. For calculating two-exciton dynamics, the program

requires the initial density matrix in two-excitation site basis or two-excitation

exciton basis, but still requires the electronic Hamiltonian in single-excitation

site basis2. From this single-excitation site-basis Hamiltonian, the program cal-

1The Hamiltonian that has the form of Eq. 2.5 (i.e., with the reorganisation energy included).
2This is the natural basis for the Hamiltonian since the coupling between pigment molecules

can be calculated from structural studies [74]. Attempts are also made at calculating site energies
from structural data (see, for example, ref. [75]).
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culates the single-excitation exciton-basis Hamiltonian, two-excitation site-basis

Hamiltonian and two-excitation exciton-basis Hamiltonian.

5.2 Algorithm and output

Single-exciton dynamics

The site-basis electronic Hamiltonian is first diagonalised. The eigenstates and ei-

genvalues obtained from the diagonalisation procedure, which comes predefined

with Octave, are the exciton states and exciton energies, respectively. The differ-

ence between the diagonal elements in the exciton-basis Hamiltonian are the ω’s

in Eq. 3.33. The same unitary transformation that was used for the diagonalisation

of the electronic Hamiltonian is also used to transform the initial density matrix

to the exciton basis.

The evolution of the exciton-basis density matrix over a time t is performed by

first calculating the Redfield tensor, Eq. 3.35, for a finite set of points in time

{ti|i > 1} such that ti < ti+1 and ∀ i : ti+1− ti = dt. The Redfield tensor Rαβδγ(ti)

is calculated by substituting the correlation function Ci j(ti) into Eq. 3.35. We used

the overdamped harmonic oscillator correlation function for this program [67].

This correlation function is often used in simulations, because it can be calculated

analytically and depends on only three physical parameters: the temperature, bath

correlation time and the bath reorganisation energy.

The next step in calculating the evolution is to separate the populations and co-

herences from the initial exciton-basis density matrix. The separate evolution is

allowed because of the secular approximation (see Section 3.3). The populations
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and coherences are then evolved over t by the Redfield equation

∂

∂ t
ραβ (ti+1) =−

i
h̄

ωαβ ραβ (ti)−∑
γ,δ

Rαβγδ (ti+1)ργδ (ti). (5.1)

After each iteration of Eq. 5.1, the populations and coherences are stored. If

the site basis was chosen as the output basis, the populations and coherences are

recombined into a density matrix, which is transformed to the site basis and dis-

mantled into populations and coherences again for storage.

Two-exciton dynamics

The two-exciton dynamics are expressed in the two-exciton site basis or two-

exciton eigenbasis (see Section 4.2). The algorithm for calculating two-exciton

dynamics is the same as described above for the single-exciton case. The two-

excitation Hamiltonian is calculated, however, as described in Section 4.1. The

two-excitation correlation functions are obtained from the single-excitation cor-

relation functions as described in Section 4.3.
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Chapter 6

Dynamics in molecular aggregates

(examples)

In this chapter, we demonstrate the calculation of Redfield dynamics in three ex-

ample systems. We first consider a very simple system: a six-chromophore ring.

This provides a clear illustration of how the single-excitation and two-excitation

site-basis Hamiltonians are assembled, their exciton states and exciton energy

levels found and their excitation dynamics interpreted. We then calculate the Red-

field dynamics for two photosynthetic complexes (FMO and LHCII) and compare

these dynamics with published results.
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Six-pigment ring with nearest neighbour coupling

6.1 Six-pigment ring with nearest neighbour coup-

ling

6.1.1 Exciton states and exciton energies

Consider a ring of six pigment molecules in which only nearest neighbours are

coupled and the coupling is identical for all neighbouring pairs (Fig. 6.1).

Figure 6.1: Six-chromophore ring with
equal nearest neighbour coupling.

The site-basis Hamiltonian for the ring is

H =



1 0.1 0 0 0 0.1

0.1 1 0.1 0 0 0

0 0.1 1 0.1 0 0

0 0 0.1 1 0.1 0

0 0 0 0.1 1 0.1

0.1 0 0 0 0.1 1


, (6.1)

where the diagonal elements are the site energies (in the same order as the pigment

numbers in Fig. 6.1) and the off-diagonal elements are the coupling strengths

between sites (a strength of 0.1 was chosen arbitrarily).

The eigenvalues (exciton energies) and corresponding eigenvectors of this

Hamiltonian can be found computationally by a diagonalisation procedure. The
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first matrix below contains the eigenvalues and the second matrix the correspond-

ing eigenvectors as columns.



3

2

2

−1

0

0


,



1 1 −1 −1 −1 −1

1 0 −1 1 0 1

1 −1 0 −1 1 0

1 −1 1 1 −1 −1

1 0 1 −1 0 1

1 1 0 1 1 0


. (6.2)

The exciton state with the lowest energy (−1) is therefore 1√
6

(
−|1〉+ |2〉− |3〉+

|4〉− |5〉+ |6〉
)
.

Since the six pigment molecules have the same site energies, the degeneracy in

two of the exciton energy levels is not surprising. It is also reasonable to expect

all pigment molecules to contribute equally to any equilibrium state of the system.

This equal contribution is reflected directly in the first and fourth eigenvectors,

where the magnitudes of each eigenvector’s elements are equal. The second and

third eigenvectors have the same energies and any vector in their span is therefore

an eigenvector of the Hamiltonian (Eq. 6.1). Since all these eigenstates have the

same energy, they have the same probability of being realised in an ensemble of

systems. Even though the sites do not contribute equally to these eigenvectors, the

ensemble average of these vectors corresponds to equal contribution by all sites.

The same argument holds for the last two eigenvectors in Eq. 6.2.

To compose the two-excitation site-basis Hamiltonian, we first need to enumerate

the two-excitation site-basis states (see Section 4.2). Let’s choose (1,2) to be state

1, (1,3) to be state 2, (1,4) as state 3 etc. From Section 4.1, we know that the
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energy of state 1 is ε1+ε2, where ε1 is the site energy of chromophore 1. We also

know from Section 4.1 that the coupling between the two-excitation site-basis

states 1 and 2 is V23, the single-exciton coupling between pigment molecules 2

and 3. The two-excitation Hamiltonian for this system therefore has the form

H =


2 0.1 0 . . .

0.1 2 0.1 . . .

0 0.1 2 . . .
...

...
... . . .

 . (6.3)

The exciton states and exciton energies are found in the same way as we did in the

single-exciton case.

6.1.2 Exciton dynamics

The exciton dynamics of the six-member ring were calculated from an initial state

in which the populations of sites 1, 2, 3 and 4 were 0.3, 0.3, 0.2 and 0.2, respect-

ively, and there was no coherence between any sites. This initial state was chosen

arbitrarily, but the essential properties of excitation dynamics is captured by the

evolution of the system from this initial state. These dynamics are shown in Fig.

6.2.

The site-basis Hamiltonian (Eq. 6.1) is not diagonal. Initial exciton-basis pop-

ulations (Fig. 6.2a) are therefore different from the site-basis populations (Fig.

6.2b). The site-basis states are linear combinations of the exciton states and the

initial density matrix in exciton basis therefore contains non-zero coherences (Fig.

6.2c). The exciton states relax to the Boltzmann distribution with rates determined

by the Redfield equation. In the equilibrium state of the system, all the sites con-

tribute equally (Fig. 6.2b). This confirms the observation we made earlier that,
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even for non-symmetric states, pigments contribute equally at equilibrium. When

the system is in equilibrium, pure (exciton) states are populated. The loss of co-

herence between exciton states in Fig. 6.2c is therefore not surprising. Fig. 6.2d

depicts the coherences between site-basis states. The coherences between these

states were chosen to be zero initially. Coherences between the sites are then in-

duced until the linear combinations that produce these coherences are equal to the

exciton states.

Oscillations in the real parts of coherences between excitons (shown in Fig. 6.2c)

is of little physical significance. They arise simply from complex rotation by the

non-interaction part of the full Hamiltonian (i.e., H0 in the partitioning of Section

3.1.2). In the absence of relevant system-bath coupling, this rotation would have

caused unitary time evolution.

Oscillations in the site-basis populations arise because of the transfer of excitation

between exciton states. An easy way of understanding this occurrence is by con-

sidering three imaginary exciton states: state 1 having a high contribution from

site j, state 2 having a low contribution from j and state 3, again having a high

contribution from j. If population flows along the pigment molecule pathway

1→ 2→ 3, oscillation of population j would be observed. In a regular system,

such as our six-pigment ring, where excitation is delocalised over the whole struc-

ture, significant oscillation is not surprising. When such oscillations are observed,

one can think of the excitation as a wave pulse travelling through the system.

The oscillations in Fig. 6.2d is due to the complex evolution by the non-interaction

Hamiltonian, as well as the wavelike transfer of energy discussed above.
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Figure 6.2: The excitation dynamics in a six-member ring of pigment molecules. a The exciton-
basis populations, b site-basis population, c exciton-basis coherences (real parts), d site-basis
coherences (real parts).

6.2 Fenna-Matthews-Olson complex

The Fenna-Matthews-Olson (FMO) complex is a pigment-protein complex found

in green sulphur bacteria [76]. Many species of these bacteria live in extremely

dark environments [77] (such as far below the photic zones in the oceans [18]).
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To harvest the small amount of light energy available, these bacteria possess large

membranous sacks, called chlorosomes, each containing about 200 000 bacterio-

chlorophyll (BChl) c molecules [78]. In these organisms, harvested excitation en-

ergy is transported from the baseplate of a chlorosome to reaction centres through

the FMO complexes [76]. The FMO complexes therefore act as molecular wires

for excitation energy rather than light-harvesters themselves. The photosynthetic

apparatus of green sulphur bacteria is shown in Fig. 6.3.

Figure 6.3: The pho-
tosynthetic apparatus of
green sulphur bacteria.

The FMO-complex is a trimeric complex in which each monomer contains seven

BChl a molecules arranged as shown in Fig. 6.4 [76].1

Figure 6.4: The seven
chlorophyll a molecules
in an FMO monomer
and their contributions
to the exciton states (of
which the energies are
shown on the right).
Taken from Ref. [68]
©(2008)National
Academy of Sciences,
U.S.A..

1There is strong evidence for the presence of an eighth chlorophyll molecule in FMO [79], but
the importance of this chlorophyll is still unclear [80, 81]. As is done in most research papers, we
will consider the FMO monomer as consisting of seven chlorophyll molecules.
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6.2.1 Single-exciton dynamics

It is thought that the orientation of FMO is such that BChls 1 and 6 are nearest to

the baseplate and BChls 3 and 4 are linked to the reaction centre [82]. It is natural

to expect, therefore, that the excitation from the chlorosome will excite an initial

state in FMO for which excitation is predominantly delocalised over sites 1 and 6.

Since the exact initial state is not known, we simulated the dynamics of systems

in which only site 1, or only site 6, is initially excited. Site energies and coup-

lings (calculated for the trimeric structure of FMO in the green sulphur bacterium

Chlorobium tepidum) were obtained from Ref. [83]. The site-basis Hamiltonian

is shown in Appendix C. We used a reorganisation energy of 35 cm−1. This reor-

ganisation energy, which is also used by Ishizaki and Fleming [82], was found as

best-fit parameter by Read et al. for the green sulphur bacterium Prosthecochloris

aestuarii [84]. The positions of pigment molecules are almost identical in P. aes-

tuarii and C. tepidum [85], but the significant spectral differences [85] might be an

indication of different average reorganization energies. Like Ishizaki and Flem-

ing [82], we will assume the difference in reorganisation energies between these

two bacterial species to be negligible. According to Ishizaki and Fleming [82], a

wide range of bath correlation times (ranging from 35 to 166 fs) is reported in lit-

erature. Since the Markov approximation is invalid for long correlation times [82],

we chose τc = 35 fs.
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Figure 6.5: Site dynamics of the FMO complex at 300 K for the initial states a) |1〉 and b) |6〉.

The dynamics in Fig. 6.5 agree qualitatively well with the dynamics obtained

by Ishizaki and Fleming [82] using a hierarchical equations approach (Section

2.7.4). The dynamics obtained with our secular Redfield method shows slightly

faster relaxation to equilibrium than what was obtained by Ishizaki and Fleming.

This is a known artefact of the secular Redfield model [62,63]. For the initial state

in which only site 1 is excited, our model also predicts coherent oscillations in the

populations of sites 1 and 2 over a much longer time-scale than what was found in

Ref. [82]. While the latter model predicts coherent oscillations in the populations

of sites 1 and 2 lasting about 300 fs, our model predicts these oscillations to last

for about 700 fs. This difference is likely due to the failure of the perturbative
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bath-coupling assumption: In Redfield theory, coupling of the system to the bath

is treated as a perturbation (see Chapter 3) and λ << Vmn should therefore hold.

The reorganisation energy of 35 cm−1 that was used to calculate the dynamics in

Fig. 6.5, however, is of the same order as the coupling between sites (see appendix

C). The secular Redfield theory apparently over-estimates the coherence between

sites when λ ≈Vmn.

From Fig. 6.5a it is clear that excitation is transferred from the initial state along

the pathway: 1 → 2 → 3, corresponding to what was found experimentally by

two-dimensional spectroscopy [86]. If site 6 was excited initially, energy transfer

proceeds along the path 6→ 5,7→ 4→ 3, which also corresponds to the results

of 2D-spectroscopy [86].

The site energy of BChl 2 is higher than the site energy of BChl 1. Excitation

trapping on site 1 is avoided, however, by delocalisation of excitation between

sites 1 and 2 [82]. In order for energy to be transferred back to site 1 from site

3 (i.e., in the opposite direction as is biologically favourable), the large energy

barrier between sites 3 and 2 would have to be overcome [82]. In this pathway,

BChl 2 acts as an energy rectifier, prohibiting energy backflow from the reaction

centre. The energy of BChl 6 is higher than that of the baseplate BChls [82] and

backflow of excitation to the baseplate is therefore energetically favoured. Such

backflow to the baseplate is reduced by the fast delocalisation of excitation over

BChls 6, 5 and 7 [82].

We noted earlier that the secular Redfield model grossly overestimates the time-

scale over which coherent oscillations in the populations of sites 1 and 2 are

present. Modified Redfield theory, however, still predicts oscillations in some sites

to last up to 400 fs at physiological temperatures [82]. Some researchers think that

coherent energy transfer (i.e., oscillations in populations) might have important

implications for photosynthetic energy transfer [87, 88]. The long-lasting coher-

70



Fenna-Matthews-Olson complex

ence between sites (of which coherence between sites 1 and 2 is most obvious)

is consequently often discussed in literature. In Fig. 6.5, however, coherence

between sites 1 and 2 does not seem to play any role: It is clear from Fig. 6.5

that energy transfer to the reaction centre is much slower for the pathway 1 →

2 → 3 than for the pathway 6 → 5,7 → 4 → 3 (in which sites 1 and 2 do not

play a significant role). The same is true for dynamics predicted by the modified

Redfield model [82]. This raises the question of what biological importance sites

1 and 2 have. We simulated the dynamics of FMO with sites 1 and 2 omitted (and

all parameters the same as what was used to obtain Fig. 6.5). For this simulation,

the dynamics of all sites (except the omitted sites, of course) were quantitatively

very similar to the dynamics in Fig. 6.5b. From this, it seems as though sites 1

and 2 are redundant...

One possible explanation for the presence of sites 1 and 2 is the following. Site 1

has a lower energy than the baseplate BChls whereas the energy of site 6 is higher

than that of the baseplate BChls. Perhaps the existence of two excitation transfer

pathways (one of which attracts much excitation, but is slow, and one of which is

fast but has a high initial energy barrier) provides the optimal balance.

It might also be possible that erroneous results (due to the limitations of Red-

field theory) conceal the functions of pigments 1 and 2. After all, as we noted

earlier, coupling to the bath is not weak in FMO and the Redfield dynamics are

consequently not necessarily accurate. The same questions about the biological

importance of these pigments, however, can be raised from results obtained with

modified Redfield theory [82], for which greater coupling to the bath is allowed.

It is also possible that the site energies, couplings, reorganisation energy or cor-

relation time (which, as we mentioned above, is reported with a wide range in

literature) might be wrong.

The FMO complex is a small part of a large light-harvesting machinery, and we

71



Fenna-Matthews-Olson complex

cannot expect to find all functions of FMO by only considering the dynamics of

the isolated complex. Perhaps pigments 1 and 2 are not directly important for

light harvesting; maybe they are necessary for providing the FMO complex with

a specific structure, for example. While determining the importance of pigments

1 and 2 in FMO is by no means the purpose of this text, yet another possibility

(which is implicated by the excitation dynamics in isolated FMO) is discussed in

the next section.

6.2.2 Two-exciton dynamics

As an example of two-exciton dynamics, we consider the double-excitation of

FMO (Fig. 6.6). The same parameters were used as for Fig. 6.5. The dynamics of

an individual site were obtained by summing over two-excitation states containing

that site. We chose the initial state such that both sites 1 and 6 are fully occupied

(notice that the total site population is now equal to two).

In Fig. 6.6, it is clear that coherent oscillations are present in the populations of

all sites up to 400 fs. This is an indication that all sites participate in a wavelike

transfer of energy. It is also clear that the oscillations in the populations of sites 1

and 2 correlate with the populations of other sites. This suggests that excitons are

delocalised over larger clusters than in the single-exciton case (where the excitons

on sites 1 and 2 were completely decoupled from other excitons). This fact is

confirmed in Ref. [68].

Habitats of green sulphur bacteria are diverse. As described above, some of

these bacteria exist far below the ocean surface, but many species are abundant

at a depth of six metres in lakes [89], where light intensity is presumably much

higher than the intensity from black smokers. Green sulphur bacteria belong to

a physiologically uniform group [90]. The absorption spectrum of a green sul-
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Figure 6.6: The two-exciton dynamics in FMO with an initial state |(1,6)〉 at 77 K. The popula-
tions of individual sites are shown.

phur bacterium is always one of two types: that represented by C. tepidum or that

represented by P. aestuarii [91]. Since the positions of pigment molecules in the

FMO complex of these two bacteria are almost identical (see Section 6.2.1), it is

reasonable to expect the FMO complexes of all green sulphur bacteria to be very

similar. This may lead one to the hypothesis that the presence of BChls 1 and 2

is important only in those green sulphur bacteria that live in much more luminous

conditions, where double-excitation may be possible.

If we assume that chlorosomes of green sulphur bacteria, living six metres below

the surface of a lake, absorb all incident radiation and that light is attenuated by

about 50% after travelling to a depth of six metres (as is the case in mid-latitude
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ocean water [92]), it can be calculated that about 5×105 photons are absorbed

by the chlorosomes per second. There are a couple of tens of FMO complexes

per chlorosome [93]. Assuming 50 FMO complexes per chlorosome, each FMO

complex receives about 1×104 excitations per second. If the reaction centres had

infinitesimally short cycles, the single-exciton relaxation time of ∼ 1ps would

therefore be so fast that single excitations would be transferred to the reaction

centres much faster than new excitations are absorbed by FMO from the chloro-

somes, and the faster two-exciton relaxation rate would not add significantly to the

transfer efficiency. In reality, the reaction centre cycles (the time it takes before

the next excitation can be absorbed) is about 10 ms for PS I [94] (which is similar

to the reaction centres of green sulphur bacteria [95]).

After an excitation is accepted by a reaction centre, the reaction centre is there-

fore closed for about 10 ms. From the discussion above, it follows that about

100 excitations are absorbed per FMO complex during this time. These extra

excitations wander through the light-harvesting complex until their energy is dis-

sipated by another loss channel such as fluorescence or annihilation. Not much

is known about the lifetime of BChls in intact cells, but BChls in isolated chlor-

osomes are thought to have fluorescence lifetimes shorter than 30 ps [96]. If we

assume that this lifetime is also valid for BChls in living green sulphur bacteria,

the fluorescence decay rate is much faster than the rate at which new excitations

are absorbed.

Even if the lifetimes of excitations are significantly longer in living bacteria than

in isolated chlorosomes, excitations would be annihilated very efficiently through

the process of singlet-triplet annihilation: With a probability of about 10% [97],

any (singlet) excitation can undergo intersystem crossing (invert the spin of one

of the BChl electrons) to form a triplet state before the excitation loses its en-

ergy through fluorescence. This triplet state has a lifetime of about 1 ms [98] and
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quenches singlet excitations efficiently through the reaction (see Refs. [57,69] for

discussions of annihilation)

S1 +T1→ S0 +Tn,

where S1 and S0 are the first excited singlet and ground electronic states of BChl,

respectively, and T1 and Tn are the first and nth excited triplet level, respectively.

Tn is rapidly converted back to T1 [99], which can then annihilate another singlet

excitation. Absorbed excitations therefore have a high probability of being rapidly

annihilated by triplet states.

Given the short lifetimes of excitations and the efficient annihilation by triplet

states, it is unlikely that more than one (singlet) excitation will be present in an

FMO complex when a reaction centre opens. Even if multiple excitations were

present, the small increase in relaxation rate would still be insignificant compared

to the long reaction centre cycle. Apparently, the active roles of pigments 1 and 2

in two-exciton relaxation does not explain their biological significance.

6.3 LHCII

LHCII forms part of the PSII superstructure (see Section 1.4.1) and is the main

light harvester for the initial steps of the electron transport chain in plants (Section

1.2.1). LHCII is a trimer in which each monomer consists of fourteen chlorophyll

molecules (eight chlorophyll a’s and six chlorophyll b’s), four carotenoids and a

protein backbone [48]. The carotenoid molecules are involved in light harvesting,

but their main function is photoregulation [49]. We therefore considered only the

exciton dynamics of the chlorophyll molecules (as if the carotenoid molecules

were not present).
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The site energies of chlorophylls (Chls) in LHCII were obtained from Ref. [100]

and the couplings were obtained from Refs. [101] and [102]. The Hamiltonian

is shown in Appendix C. These couplings and site energies are that of an LH-

CII monomer (i.e., it is assumed that coupling between pigments in different

monomers is zero). We used a reorganisation energy of 220 cm−1 and correlation

time of 15 fs, as employed by Kreisbeck and Aspuru-Guzik [103]. We assumed

an initial state with equal (classical) contribution of all exciton states. Since one

would expect excitons in a narrow energy range (like in LHCII) to be represen-

ted equally in an ensemble after excitation by broad light, this assumption is not

unphysical. The dynamics from this initial state is shown in Fig. 6.7. The parti-

cipation of pigment wavefunctions to exciton states are shown in Table 6.1.

The dynamics in Fig. 6.7 shows the same general trend as was found by No-

voderezhkin et al. [100] (they used a Modified Redfield approach). Populations

of excitons with predominant Chl a character (see Table 6.1) are increasing func-

tions whereas populations of excitons with predominant Chl b character generally

decrease. These trends are manifestations of the fact that excitons in LHCII are

delocalised over small clusters of 2-3 pigment molecules, each cluster consist-

ing either mainly of Chl a or of Chl b (Table 6.1). Since the site energies of the

Chls b are higher than the site energies of the Chls a, the excitons with strong

Chl b character lose excitation to the Chl a excitons. Only excitons 6 and 7 have

strong contribution from both Chl a (Chl 3) and Chl b (Chl 14) molecules, and the

populations of these excitons remain essentially static.

The evolution of populations of excitons 5 and 8 differ significantly from mono-

tonic behaviour. Exciton 5 consists mainly of Chls 11 and 12. The population of

this exciton shows the fastest initial decay and the population of exciton 1 (which

is delocalised over Chls 10, 11 and 12) shows the fastest initial increase. This be-

haviour is probably an indication of the fast equilibration of population within the
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Figure 6.7: The exciton dynamics in a monomer of LHCII. Exciton states are numbered in the
order their populations appear at 4000 fs, with exciton 1 having the lowest energy (i.e., highest
population).

strongly coupled cluster Chl 10-11-12 (the cluster over which the lowest-energy

exciton is delocalised). Exciton 8 is localised, almost completely, on Chl 4 (a Chl

a), which is strongly coupled to Chls b 6 and 7. Chl 4 is only weakly coupled to

all other Chls in LHCII (see Table 6.1). Because of its lower energy, exciton 8 is

therefore rapidly supplied with excitation by excitons with strong Chl 6 or Chl 7

character (from Table 6.1, excitons 10-13). Its weak coupling to other Chls ac-

counts for the long decay time of exciton 8. Novoderezhkin et al. [100] mentions

that exciton 8 is a good candidate for the bottleneck state suggested in experi-

mental studies [104–106]. Our result agrees well with this observation!
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Table 6.1: Participation of site-basis wave functions to exciton states of LHCII. The type of Chl (a or b) is
indicated next to the pigment numbers. Total participation is normalised to 1000 and only values greater or equal
to 1 were retained.

Pigments Excitons
1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 b - - 2 - 1 - - - - - - 1 11 985
2 a 2 1 931 25 12 17 8 - - - 1 1 - 2
3 a - 2 21 1 - 569 383 - - 3 16 5 - -
4 a - - - - - - - 964 - 3 - - 31 1
5 b - - - - - - - - 973 19 5 1 2 -
6 b - - - - - - - 29 5 17 - 5 935 10
7 b - - - - - - - 6 20 887 66 4 16 1
8 b 1 3 - - - - - - 2 5 224 760 4 1
9 b - - 4 - - 14 8 - - 67 687 220 - -
10 a 121 862 1 4 7 - 1 - - - 1 3 - -
11 a 415 33 9 2 540 - - - - - - - - 1
12 a 462 95 2 4 437 - - - - - - - - -
13 a - 4 27 856 2 47 65 - - - - - - -
14 a - - 2 109 2 353 534 - - - - - - -
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Without photosynthesis, the vast majority of life today could not exist! During the

process of photosynthesis, energy from sunlight is absorbed by pigment molecules

in light-harvesting complexes, very efficiently transported to a molecular reaction

centre and ultimately converted to chemical energy.

The light-harvesting complexes consist of pigment molecules that are kept in

place by an intricate protein environment. In these complexes, pigment molecules

are close to one another and interact significantly through their transition dipole

moments. This strong interaction leads to the delocalisation of excitation over

clusters of pigment molecules. These states of delocalised excitation are called

excitons. The formation of exciton states are advantageous for light-harvesting:

they allow different diffusion paths to be explored simultaneously and energy traps

to be avoided.

Excitons couple to the large number of vibrational states of the pigment-protein

conglomerate. As it is often done in literature, we assume that the vibrations

can be modelled as a bath of infinitely many harmonic oscillators, each coupled

linearly to an exciton state. The bath causes relaxation of the electronic degrees

of freedom to an equilibrium (Boltzmann) state.

When the coupling between excitons and the bath is much weaker than the coup-

ling between pigment molecules, the Redfield equation gives an accurate descrip-
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tion of exciton dynamics.

It is possible for a system to contain more than one excitation. The quantum states

of such a system are called two-exciton states. In the weak bath-coupling limit,

the dynamics of two-exciton states are also desribed by the Redfield equation. In

a system for which bath coupling is not weak (i.e., for a system in the Förster

regime), it is possible to express two-excitation dynamics as the evolution of the

populations of individual sites—exactly at high temperatures and approximately

at finite temperatures. It seems unlikely that a similar description is possible for a

system with two delocalised excitations (excitons).

We calculated the exciton dynamics of three systems: a six-pigment ring, a

monomer of the Fenna-Matthews-Olson complex of green sulphur bacteria and

a monomer of LHCII, the main light-harvester in green plants. These dynamics

were calculated using the secular Redfield equation.

For the six-pigment ring, relaxation of population, decay of coherence between

exciton states and coherent population oscillations could be observed.

For FMO, our results compared well with the results of a different simulation from

literature. The secular Redfield model also predicts excitation transfer pathways

that were proposed in experimental studies. The secular Redfield theory appears

to overestimate the rate of relaxation and the lifetime of coherent oscillations in

populations of exciton states. We observe that the biological role of pigment mo-

lecules 1 and 2 in FMO is unclear.

For LHCII, our results compare well with the results from other simulations in

literature. A bottleneck state, which was implicated in experimental studies and

observed in other simulations, can also be identified from the dynamics which we

calculated.
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Appendix A

List of Abbreviations

ATP Adenosine triphosphate
NADPH Nicotinamide adenine dinucleotide phosphate
PS I/II Photosystem I / Photosystem II
CP Chlorophyl protein
LHCII Main light-harvesting complex II of plants
FRET Förster energy resonance transfer
FMO Fenna-Matthews-Olson complex
Chl Chlorophyll
BChl Bacteriochlorophyll
LH 1/2 Light-harvesting complexes of purple bacteria
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Towards a single-exciton description

of two-exciton dynamics

Let the population of the two-exciton state, with one exciton on site α and the

other on site β , be Pαβ = Pβα . Let Pα be the population of site α .

Pα = ∑
γ 6=α

Pαγ

2
d
dt

Pα = 2 ∑
γ 6=α

d
dt

Pαγ

= ∑
γ 6=α

[
−Pαγ

(
∑

l
∑
m

Rlm←αγ

)
+
(
∑

l
∑
m

PlmRαγ←lm
)]
,

(B.1)

where

RAB←CD = (1−δAB)(1−δCD)×

(δACRBD +δADRBC +δBCRAD +δBDRAC).

(B.2)
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In equation B.2, RAB is the single-exciton transfer rate from site B to site A. The

terms (1−δAB), (1−δCD) ensure that rates such as R11←12 are zero. The last term

in equation B.1 is responsible for a couple of things:

1. It converts the two-exciton rates to single-exciton rates. Suppose A = C, say

A =C = 1, B = 2, D = 3. Then

RAB←CD = R12←13

= δACRBD +δADRBC + . . .

= δ11R23

= R23.

2. It prohibits transfers from a state to itself.

R12←12 = R12←21

= R22 +R11

= 0

3. It allows only transfers where only one excitation changes site per transfer.

R12←45 = 0.

Now, back to equation B.1:
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2
d
dt

Pα = ∑
γ 6=α

∑
l

∑
m

[
−Pαγ(1−δlm)(1−δαγ)(δlαRmγ +δlγRmα +δmαRlγ +δmγRlα)

+Plm(1−δlm)(1−δαγ)(δlαRγm +δlγRαm +δmαRγl +δmγRαl)
]

= ∑
γ 6=α

[
−∑

l

[
Pαγ(1−δlα)(1−δαγ)Rlγ +Pαγ(1−δlγ)(1−δαγ)Rlα

]
−∑

m

[
Pαγ(1−δαm)(1−δαγ)Rmγ +Pαγ(1−δγm)(1−δαγ)Rmα

]
+∑

l

[
Plα(1−δlα)(1−δαγ)Rγl +Plγ(1−δlγ)(1−δαγ)Rαl

]
+∑

m

[
Pαm(1−δαm)(1−δαγ)Rγm +Pγm(1−δγm)(1−δαγ)Rαm

]]
.

The sum, S1, of all the terms in the first column above is

S1 =−∑
l 6=α

∑
γ 6=α

PαγRlγ − ∑
m6=α

∑
γ 6=α

PαγRmγ + ∑
l 6=α

∑
γ 6=α

PlαRγl + ∑
m6=α

∑
γ 6=α

PαmRγm

= ∑
l 6=α

∑
γ 6=α

(−PαγRlγ −PαγRlγ +PlαRγl +PαlRγl)

= ∑
l 6=α

∑
γ 6=α

(−2PαγRlγ +2PαlRγl)

= ∑
l 6=α

∑
γ 6=α

(−2PαγRlγ +2PαγRlγ)

= 0.
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The sum, S2, of all terms in the second column is:

S2 = ∑
γ 6=α

∑
l 6=γ

[
−PαγRlα −PαγRlα +PlγRαl +PγlRαl

]
= ∑

γ 6=α

∑
l 6=γ

[
−2PαγRlα +2PlγRαl

]
= ∑

l

[
−2Rlα ∑

γ 6=α,l
Pαγ +2Rαl ∑

γ 6=α,l
Plγ
]

= 2∑
l

[
−Rlα(Pα −Pαl)+Rαl(Pl−Plα)

]
.

Therefore:

2
d
dt

Pα = 2∑
l

[
−Rlα(Pα −Pαl)+Rαl(Pl−Plα)

]
.

If the approximation Pαl = Plα = PlPα is made, then

d
dt

Pα = ∑
l 6=α

Pl(1−Pα)Rαl−Pα ∑
l 6=α

(1−Pl)Rαl.
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FMO and LHCII Hamiltonians

In the Hamiltonians below, the site energies (in cm−1) are given on the diagonals

and coupling between sites on the off-diagonals.

FMO

H =


12410 −87.7 5.5 −5.9 6.7 −13.7 −9.9
−87.7 12530 30.8 8.2 0.7 11.8 4.3

5.5 30.8 12210 −53.5 −2.2 −9.6 6.0
−5.9 8.2 −53.5 12320 −70.7 −17 −63.3
6.7 0.7 −2.2 −70.7 12480 81.1 −1.3
−13.7 11.8 −9.6 −17 81.1 12630 39.7
−9.9 4.3 6.0 −63.3 −1.3 39.7 12440


LHCII

H =



15890 36 −5 −3 1 −2 −3 3 4 −5 20 2 −8 2
36 15160 15.0 6.0 0.0 5.0 6 −6 −24 −5 1 8 −2 0
−5 15 15283 −1.0 0.0 −4.0 6 4 72 7 −1 1 1 −5
−3 6 −1 15460 4.0 71.0 24 −4 −2 0 −3 3 2 −3
1 0 0 4 15679 9 −4 −4 0 1 1 −2 −1 0
−2 5 −4 71 9 15851 16 −5 2 0 −2 2 2 −2
−3 6 6 24 −4 16 15712 −4 −5 1 −2 3 3 −3
3 −6 4 −4 −4 −5 −4 15763 24 43 5 −1 −2 1
4 −24 72 −2 0 2 −5 24 15721 −2 4 −1 −2 2
5 −5 7 0 1 0 1 43 −2 15073 −2613 6 6 −1

20 1 −1 −3 1 −2 −2 5 4 −26 15115 99 −3 1
2 8 1 3 −2 2 3 −1 −1 13 99 15097 0 0
−8 −2 1 2 −1 2 3 −2 −2 6 −3 0 15175 −36
2 0 −5 −3 0 −2 −3 1 2 −1 1 0 −36 15264



87



Bibliography

[1] U. Steger, W. Achterberg, K. Blok et al., Sustainable Development and

Innovation in the Energy Sector. Springer Science & Business Media,

2005.

[2] International Energy Agency, “2014 Key World Energy Statistics,” p. 82.

[Online]. Available: http://www.iea.org/publications/freepublications/

publication/KeyWorld2014.pdf

[3] N. A. Campbell, J. B. W. Reece, L. A. Urry et al., Biology, 8th ed. San

Francisco: Pearson, Benjamin Cummings, 2008.

[4] Worldometers, “Current World Population.” [Online]. Available: http://

www.worldometers.info/world-population/

[5] W. S. Fyfe, H. Puchelt, and M. Taube, The Natural Environment and the

Biogeochemical Cycles, ser. The Handbook of Environmental Chemistry.

Springer Berlin Heidelberg, 2013.

[6] H. Jones, “Design Rules for Space Life Support Systems,” in Int. Conf.

Environ. Syst., jul 2003, p. 16. [Online]. Available: http://papers.sae.org/

2003-01-2356/

88

http://www.iea.org/publications/freepublications/publication/KeyWorld2014.pdf
http://www.iea.org/publications/freepublications/publication/KeyWorld2014.pdf
http://www.worldometers.info/world-population/
http://www.worldometers.info/world-population/
http://papers.sae.org/2003-01-2356/
http://papers.sae.org/2003-01-2356/


Conclusion

[7] C. Leuschner, “Vegetation and Ecosystem,” in Veg. Ecol., 2nd ed., E. Van

der Maarel and J. Franklin, Eds., ch. 10. West Sussex: John Wiley & Sons,

2013.

[8] P. Hobson, The Rumen Microbial Ecosystem, P. N. Hobson and C. S. Stew-

art, Eds. Dordrecht: Springer Netherlands, 1997.

[9] M. Zarnkow, “Encyclopedia of Food Microbiology,” in Encycl. Food Mi-

crobiol., 2nd ed., C. A. Batt and M.-L. Tortolello, Eds., ch. Bacteriocins.

Elsevier, 2014.

[10] W. Lewis and J. Lowenfels, Teaming with Microbes: The Organic

Gardener’s Guide to the Soil Food Web, revised ed. Timber Press, 2010.

[11] T. H. Nash, Lichen Biology, 2nd ed. Cambridge University Press, 2008.

[12] J. P. Zehr and R. M. Kudela, “Photosynthesis in the Open Ocean,” Science,

vol. 326, pp. 945–946, 2009.

[13] J. Schopf, Ecology of Cyanobacteria II, B. A. Whitton, Ed. Dordrecht:

Springer Netherlands, 2012.

[14] L. Brey, “Acclimation of Kelp photosynthesis to seasonal changes in the

underwater radiation regime of an Artic Fjord system,” Ph.D. dissertation,

University of Bremen, 2009.

[15] S. M. Marshall and A. P. Orr, “The Photosynthesis of Diatom Cultures in

the Sea,” J. Mar. Biol. Assoc., vol. 15, pp. 321–360, 1928.

[16] P. Tett, The photic zone, P. J. Herring, Ed. Cambridge University Press,

1990.

89



Conclusion

[17] C. L. Van Dover, The Ecology of Deep-sea Hydrothermal Vents. Princeton

University Press, 2000.

[18] J. T. Beatty, J. Overmann, M. T. Lince et al., “An obligately photosynthetic

bacterial anaerobe from a deep-sea hydrothermal vent.” Proc. Natl. Acad.

Sci. U. S. A., vol. 102, pp. 9306–9310, 2005.

[19] D. Chivian, E. L. Brodie, E. J. Alm et al., “Environmental Genomics Re-

veals a Single-Species Ecosystem Deep Within Earth,” Science, vol. 322,

pp. 275–278, 2008.

[20] I. Lowe, Artificial Photosynthesis: From Basic Biology to Industrial Ap-

plication, A. F. Collings and C. Critchley, Eds. Weinheim: Wiley, 2005.

[21] R. Razeghifard, Natural and Artificial Photosynthesis: Solar Power as an

Energy Source. Hoboken: John Wiley & Sons, 2013.

[22] K. Collins, “ ’Artificial leaf’ could power communities for the fu-

ture.” [Online]. Available: http://www.wired.co.uk/news/archive/2015-08/

17/artificial-leaf-photosynthesis-could-replace-fossil-fuels

[23] G. R. Fleming, G. S. Schlau-Cohen, K. Amarnath et al., “Design principles

of photosynthetic light-harvesting,” Faraday Discuss., vol. 155, pp. 27–41,

2012.

[24] D. Borghino, “Artificial photosynthesis breakthrough turns CO2 emissions

into plastics and biofuel.” [Online]. Available: http://www.gizmag.com/

artificial-photosynthesis-creates-biofuel/37160/

[25] R. P. Cantrell, Redesigning Rice Photosynthesis to Increase Yield, J. E.

Sheehy, B. Hardy, P. L. Mitchell et al., Eds. Amsterdam: Elsevier Science,

2000.

90

http://www.wired.co.uk/news/archive/2015-08/17/artificial-leaf-photosynthesis-could-replace-fossil-fuels
http://www.wired.co.uk/news/archive/2015-08/17/artificial-leaf-photosynthesis-could-replace-fossil-fuels
http://www.gizmag.com/artificial-photosynthesis-creates-biofuel/37160/
http://www.gizmag.com/artificial-photosynthesis-creates-biofuel/37160/


Conclusion

[26] H. Ledford, “Hacked photosynthesis could boost crop yields:

Algal enzyme can speed up rate at which plants make

food.” [Online]. Available: http://www.nature.com/news/

hacked-photosynthesis-could-boost-crop-yields-1.15949

[27] G. M. Cooper and R. E. Hausman, The Cell: A Molecular Approach. ASM

Press, 2004.

[28] J.-D. Rochaix and S. Ramundo, Plastid Biology, ser. Advances in Plant

Biology, S. Theg and F. A. Wollman, Eds. New Yorck: Springer New

York, 2014.

[29] I. D. Denev and I. N. Minkov, Handbook of Plant and Crop Physiology,

2nd ed., ser. Books in Soils, Plants, and the Environment, M. Pessarakli,

Ed. CRC Press, 2001.

[30] A. R. Crofts, The Q-cyle - a personal perspective, ser. Advances in Photo-

synthesis and Respiration, Govindjee, B. J. T, G. H et al., Eds. Dordrecht:

Springer, 2006.

[31] V. V. Klimov, “Discovery of pheophytin function in the photosynthetic en-

ergy conversion as the primary electron acceptor of photosystem II,” Pho-

tosynth. Res., vol. 76, pp. 247–253, 2003.

[32] G. Renger, “Photosynthetic water oxidation to molecular oxygen: Appar-

atus and mechanism,” Biochim. Biophys. Acta - Bioenerg., vol. 1503, pp.

210–228, 2001.

[33] M. Lundberg and P. E. M. Siegbahn, “Theoretical investigations of struc-

ture and mechanism of the oxygen-evolving complex in PSII,” Phys. Chem.

Chem. Phys., vol. 6, pp. 4772–4780, 2004.

91

http://www.nature.com/news/hacked-photosynthesis-could-boost-crop-yields-1.15949
http://www.nature.com/news/hacked-photosynthesis-could-boost-crop-yields-1.15949


Conclusion

[34] P. Mitchell, “Hydrogen Transfer By a Chemi-Osmotic Type,” Nature, vol.

191, pp. 144–148, 1961.

[35] H. Wang and G. Oster, “Energy transduction in the F1 motor of ATP syn-

thase.” Nature, vol. 396, pp. 279–282, 1998.

[36] Kanehisa Laboratories, “COMPOUND: C00118.” [Online]. Available:

http://www.genome.jp/dbget-bin/www_bget?cpd:c00118

[37] E. Lawrence, Ed., Henderson’s Dictionary of Biology, 14th ed. Essex:

Pearson Education, 2008.

[38] A. W. D. Larkum, S. E. Douglas, and J. A. Raven, Eds., Photosynthesis

in Algae, ser. Advances in Photosynthesis and Respiration. Dordrecht:

Springer Netherlands, 2003, vol. 14.

[39] A. Herrero and F. G. Flores, Eds., The Cyanobacteria: Molecular Biology,

Genomics, and Evolution. Norfolk: Caister Academic Press, 2008.

[40] M. T. Madigan, J. M. Martinko, P. V. Dunlap et al., Eds., Brock Biology of

Microorganisms, 12th ed. San Francisco: Benjamin Cummings, 2012.

[41] J. Nield and J. Barber, “Refinement of the structural model for the Pho-

tosystem II supercomplex of higher plants,” Biochim. Biophys. Acta -

Bioenerg., vol. 1757, pp. 353–361, 2006.

[42] A. P. Casazza, M. Szczepaniak, M. G. Müller et al., “Energy transfer pro-

cesses in the isolated core antenna complexes CP43 and CP47 of photosys-

tem II.” Biochim. Biophys. Acta, vol. 1797, pp. 1606–1616, 2010.

[43] T. M. Bricker and L. K. Frankel, “The structure and function of CP47 and

CP43 in Photosystem II,” Photosynth. Res., vol. 72, pp. 131–146, 2002.

92

http://www.genome.jp/dbget-bin/www_bget?cpd:c00118


Conclusion

[44] X. Pan, Z. Liu, M. Li et al., “Architecture and function of plant light-

harvesting complexes II,” Curr. Opin. Struct. Biol., vol. 23, pp. 515–525,

2013.

[45] Y. E. Chen, Z. Y. Zhao, H. Y. Zhang et al., “Significance of CP29 revers-

ible phosphorylation in thylakoids of higher plants under environmental

stresses,” J. Exp. Bot., vol. 64, pp. 1167–1178, 2013.

[46] S. de Bianchi, L. Dall’Osto, G. Tognon et al., “Minor antenna proteins

CP24 and CP26 affect the interactions between photosystem II subunits

and the electron transport rate in grana membranes of Arabidopsis.” Plant

Cell, vol. 20, pp. 1012–1028, 2008.

[47] M. Pribil, M. Labs, and D. Leister, “Structure and dynamics of thylakoids

in land plants,” J. Exp. Bot., vol. 65, pp. 1955–1972, 2014.

[48] Z. Liu, H. Yan, K. Wang et al., “Crystal structure of spinach major light-

harvesting complex at 2.72 Å resolution,” Nature, vol. 428, pp. 287–292,

2004.

[49] G. Scholes, G. Fleming, a. Olaya-Castro et al., “Lessons from nature about

solar light harvesting,” Nat. Publ. Gr., vol. 3, pp. 763–774, 2011.

[50] R. Van Grondelle and V. I. Novoderezhkinb, “Quantum effects in photo-

synthesis,” Procedia Chem., vol. 3, pp. 198–210, 2011.

[51] T. C. Yen and Y. C. Cheng, “Electronic coherence effects in photosynthetic

light harvesting,” Procedia Chem., vol. 3, pp. 211–221, 2011.

[52] G. S. Beddard and G. Porter, “Concentration quenching in chlorophyll,”

Nature, vol. 260, pp. 366–367, 1976.

93



Conclusion

[53] A. Chenu and G. D. Scholes, “Coherence in Energy Transfer and Photo-

synthesis,” Annu. Rev. Phys. Chem., vol. 66, pp. 69–96, 2014.

[54] T. Krüger and R. van Grondelle, “Design principles of natural light-

harvesting as revealed by single molecule spectroscopy,” Phys. B Condens.

Matter, vol. 480, pp. 7–13, 2016.

[55] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems.

Oxford University Press, 2002.

[56] L. Valkunas, D. Abramavicius, and T. Mancal, Molecular Excitation Dy-

namics and Relaxation: Quantum Theory and Spectroscopy. John Wiley

& Sons, 2013.

[57] H. van Amerongen, L. Valkunas, and R. van Grondelle, Photosynthetic Ex-

citons. World Scientific, 2000.

[58] T. Renger, “ Absorption of Light, Excitation Energy Transfer and Electron

Transfer Reactions,” in Prim. Process. Photosynth. Part 1, G. Renger, Ed.,

ch. 2. Cambridge: Royal Society of Chemistry, 2007.

[59] S. Mukamel, Principles of nonlinear optical spectroscopy. Oxford Uni-

versity Press, 1995.

[60] M. Yang and G. R. Fleming, “Influence of phonons on exciton transfer dy-

namics: comparison of the Redfield, Förster, and modified Redfield equa-

tions,” Chem. Phys., vol. 275, pp. 355–372, 2002.

[61] W. M. Zhang, T. Meier, V. Chernyak et al., “Exciton-migration and three-

pulse femtosecond optical spectroscopies of photosynthetic antenna com-

plexes,” J. Chem. Phys., vol. 108, pp. 7763–7774, 1998.

94



Conclusion

[62] A. Ishizaki and G. R. Fleming, “Unified treatment of quantum coherent

and incoherent hopping dynamics in electronic energy transfer: Reduced

hierarchy equation approach,” J. Chem. Phys., vol. 130, 2009.

[63] C. Kreisbeck, T. Kramer, M. Rodriguez et al., “High-Performance Solution

of Hierarchical Equations of Motion for Studying Energy Transfer in Light-

Harvesting Complexes,” J. Chem. Theory Comput., vol. 7, pp. 2166–2174,

2011.

[64] J. Wu, F. Liu, Y. Shen et al., “Efficient energy transfer in light-harvesting

systems: optimal temperature, reorganization energy and spatial-temporal

correlations,” New J. Phys., vol. 12, 2010.

[65] V. May and O. Kühn, Charge and Energy Transfer Dynamics in Molecular

Systems, 3rd ed. John Wiley & Sons, 2011.

[66] G. Milovanovic, “Density Matrix Formulation,” Ph.D. dissertation, Tech-

nical University München, 2011. [Online]. Available: http://www.iue.

tuwien.ac.at/phd/milovanovic/
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