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Abstract

In this thesis we examine the non-trivial behaviour of classical
string solutions (solitons) on S5 obtained from the dressing method.
We start off with a vacuum solution on S5 then embed the solution
into a coset model (SU(3)/SU(2) and SO(6)/SO(5)). The dressing
method is applied and the resulting solutions are examined for non-
trivial scattering behaviour where a single soliton at t→ −∞ decays
into two solitons at t→ +∞. With vacuum solutions and the chosen
embeddings the dressing method did not offer any promising solutions
that exhibit the desired behaviour.
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1 Introduction

The AdS/CFT correspondence [1, 2] is a major area of study concerning the
string/gauge duality (duality between quantum field theories and gravity),
it is closely related to the study of strongly coupled systems in QCD. The
best studied example of this duality is between the 4 dimensional N = 4
super Yang-Mills theory and string theory on AdS5 × S5 [3]. The latter
of which is a two dimensional non-linear sigma model that is classically
integrable [4]. It is this integrability on both sides of the correspondence
that has led to further development in the study of the duality [5, 6]. One
such aspect of the integrability has led to the discovery of solutions that
can be described as solitons on the worldsheet sigma model [7, 8].

Solitons [9], first observed in 1834 by John Scott Russell [10] after
observing a solitary wave moving along a canal, are defined as localised
travelling waves that maintain their shape as they travel with constant
velocity, and also interact trivially with other solitons except for a possible
phase shift. Solitons appear in many branches of physics such as field
theories, non-linear optics, biophysics, quantum field theories and many
more. Indeed many systems are modelled by equations that admit soliton
solutions, one such system is the sine-Gordon (SG) equation, a non-linear
partial differential equation that is also integrable. One of the interesting
discoveries was that string theory on symmetric spaces (such as AdS5 × S5)
is classically equivalent to sine-Gordon theory [11, 12]. An example of
this equivalence to sine-Gordon theory is the discovery of a soliton in the
AdS/CFT correspondence by Hofman and Maldacena [13] known as the
giant magnon.

A quick way to see the connection between non-linear sigma models and
string theory is to take the action describing the motion of classical strings
on a background geometry, given by

S =

∫
Gµν(X)∂aXµ∂aX

ν (1.1)

where Gµν is a metric and Xµ the coordinates.
Then if this motion is on a group manifold such as the principal chiral
model, then this action can be written as

S =

∫
Tr[(∂ηgg

−1)(∂ξgg
−1)]dηdξ (1.2)

where g is a matrix and Tr is the trace.
The relation between g and Xµ will then depend on the group. As an
example if we take an embedding of a string in R × S3 in to the SU(2)
principal chiral model (equation (4.1) in [18]), given by

g =

[
Z1 −iZ2

−iZ2 Z1

]

where Zi are the coordinates on S3. Now if we compute (∂ηgg
−1)(∂ξgg

−1)
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and take its trace, the result obtained would be of similar form as
Gµν(X)∂aXµ∂aX

ν .

An open problem in AdS/CFT theory is the full characterisation of
the N = 4 super Yang-Mills theory. Conformal field theory can be fully
characterised by its spectrum of operators (which determines its 2-point
functions) as well as the 3-point functions of the operators. The former is
well studied and understood [14, 15], but not much has been done in terms
of 3-point functions. The duality can be exploited to study these 3 point
functions on the gravity side in terms of non-trivial scattering solutions
(decay of a single soliton into two solitons).

In the paper by Zakharov and Mikhailov [16] the dressing method is
proposed for obtaining new soliton solutions of integrable systems starting
with an already known soliton solution. In the follow up paper [17] it
is shown that non-trivial soliton solutions are obtained when applying the
dressing method to the SU(3) principal chiral model (non-linear sigma model
with a Lie group SU(3) as the target manifold). These non-trivial soliton
solutions are defined as a soliton at t → −∞ decaying in to two solitons
at t → +∞. In the paper by Spradlin and Volovich [18], the dressing
method was used to obtain solutions of giant magnons (string solitons) on
the SO(N) vector model as well as the SU(2) principal chiral model. These
magnon solutions obtained correspond to 2-point functions of operators in
the N = 4 super Yang-Mills theory. However there has been a lot of interest
shown recently in 3-point functions of operators, for which the construction
of non-trivial scattering solutions of solitons on S5 would be relevant.

In this paper the classical integrability of string theory on Anti-de Sitter
space (AdS) will be exploited in order to apply the dressing method and
obtain non-trivial soliton solutions. As was done in the paper by Spradlin
and Volovich mentioned above, the dressing method will be applied to an
already known vacuum solution (simplest solution). The newly obtained
solution will be checked to see for any non-trivial behaviour and then a
check will be made to ensure that the solution is still embedded in the
original space of the vacuum solution. The spaces that concern this paper
are the S5 (the N = 4 super Yang-Mills theory correspondence to AdS5×S5)
and CP3 (N = 6 superconformal Chern-Simons theory and its gravity dual
on AdS4 × CP3 [19]).

The section following will give the background knowledge of the theory
utilised in this paper starting with the sine-Gordon equation and its soliton
solutions and lastly how the specific coset spaces are equivalent to the spaces
appearing in different AdS/CFT setups. Following in section 3, a deeper
explanation will be given for the main tool, the dressing method. In section
4 the dressing method will be used on vacuum solutions in the coset spaces
described above and the necessary checks will be made. Finally in the
last section the paper will be concluded with thoughts of how the results
obtained could lay the ground work for further study of 3-point functions
in the AdS/CFT correspondence.
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2 Sine-Gordon Solitons

Soliton theory is an important subject in modern physics. The soliton
occurs as a solution in many different PDE’s, where these equations model
many varied physical systems [20]. The link between all these vastly
different systems that produce soliton solutions, is that they are all linked
together by 2-dimensional conformal systems [21]. The interesting feature
of solitons to QFT can be seen by how soliton-like particles exhibit a
topological charge whereas electrically charged elementary particles have a
Noether charge. Solitons are non-perturbative, this could mean that there
is a deeper structure to the theory over just perturbative theory. [22, 24].
This non-perturbative theory lends itself to the study of string solitons in
AdS/CFT.

One of the most popular of non-linear PDE that has applications to
AdS5 × S5 string theory is the sine-Gordon equation [25].

2.1 Sine-Gordon equation

The SG equation

utt(x, t)− uxx(x, t) + sinu(x, t) = 0 (2.1)

is the most well known non-linear PDE’s that is also relativistically invariant.
Originally introduced to study pseudo-spherical surfaces with constant negative
curvature, it has found use in many other areas of physics such as the
study of magnetic flux [26], crystal dislocations [27], quantum mechanics and
many others. An important discovery was that the equation is integrable,
meaning that it can be solved exactly. It gets its name from the Klein
Gordon equation [28] which is of similar form except that the SG equation
has a sine for its potential term. The SG equation is essentially a standard
wave equation with a non-linear potential, equation (2.1).

Equation (2.1) represents the SG equation in 2 dimensions or 1 + 1
dimensions, where u(x, t) is a scalar field. It can equivalently be redefined
in terms of worldsheet coordinates by letting ξ ≡ 1

2 (x− t) and η ≡ 1
2 (x+ t),

this gives
uξη(ξ, η) = sinu(ξ, η) (2.2)

One of the most fruitful discoveries of the SG equation was that it gave
rise to soliton and multi-soliton solutions.

2.2 Soliton solutions

Solitons are essentially localised, 2-dimensional solutions to non-linear wave
equations. They are travelling, solitary waves that have the following
properties:
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• They have constant shape, energy density and travel with constant
velocity.

• Interaction with other solitons leave them unchanged except for a
possible phase shift, meaning that after collision/interaction the solutions
return to their original form asymptotically in time (i.e. t→ ±∞).

Usually these properties hold well for linear wave solutions but as soon
as any non-linear term is added to the wave equation these properties
disappear. Either the non-linearity or the dispersion of the wave prevents
the solution from maintaining its shape asymptotically. The surprising
thing about certain sine-Gordon solutions is that some of them have their
dispersion and non-linearity cancel each other out perfectly such that the
waves are able to remain unchanged after interaction, which satisfies the
above properties thus making these solutions solitons.

The sine-Gordon 1-soliton solution[9, 30] is given by

u(x, t) = 4 arctan

(
exp

[
(x− vt)
±
√

1− v2
− x0

])
(2.3)

where v is the velocity of the travelling wave (i.e. constant) and |v| < 1.
This solution is also known as a kink when the positive root of

√
1− v2 is

taken and an anti-kink (anti-soliton) when the root is negative. If v = 0,
then the solution would be a static kink, meaning no propagation of the
soliton.

The soliton interacting with another soliton has the solution

u(x, t) = 4 arctan

(
v sinh ( x√

1−v2 )

cosh ( vt√
1−v2 )

)
(2.4)

Another interesting soliton solution of the SG equation, that is also a
non-trivial solution is the soliton anti-soliton pair

u(x, t) = 4 arctan

(
sinh ( vt√

1−v2 )

v cosh ( x√
1−v2 )

)
(2.5)

It can be seen from the equations (2.4) and (2.5) that at t→ −∞ both
solitons (or soliton and anti-soliton) are separated but approaching each
other with velocity v. At t = 0 there’s an interaction and at t→ +∞ both
the solitons (or soliton and anti-soliton) re-emerge.

Lastly there is one more soliton type that emerges from the SG equation.
That is the breather solution

u(x, t) = 4 arctan

(
sin ( vt√

1−v2 )

v cosh ( x√
1−v2 )

)
(2.6)

The breather is a localised solution that is periodic and that oscillates.
A clearer picture of the time evolution of these different solutions can be
seen in figure 1.
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Figure 1: Sine-Gordon soliton solutions as a function of spatial position at
fixed time and velocity. (a) Red - single soliton solution or kink, Green -
anti-soliton or anti-kink at t = 0. (b) Soliton - soliton interaction. Green
- as t → −∞ the solitons are seen to be separate moving with velocity v
to each other. Here t = −15. Red - where the solitons interact at t = 0.
Blue - at t = 20. As t→ +∞ the solitons re-emerge to their original shape.
(c) Soliton - Anti-soliton interaction. Green - t = −18. Red - at t = 1,
after interaction the soliton and anti-soliton reappear. At interaction at
t = 0 they cancel each other out completely. Blue - at t = 20, the soliton -
anti-soliton solution reappears but with a phase shift. (d) Static breather
solution oscillating in position. Blue - at t = −4. Red - at t = 0.5. Green -
at t = 4.
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An interesting solution to mention introduced by Hofman and Maldacena,
that can be mapped at the classical level to a sine-Gordon soliton is the
giant magnon. These are essentially solitons on the worldsheet of AdS5×S5

. They sit at a point in AdS with the strings stretched out in the S5 space.
Giant magnons are a solitonic class of classical string solutions. Classical
string solutions play an important role in the study of the AdS/CFT
correspondence. The technical side of the derivation of these solutions, is
not something that will be done in this paper. Broadly speaking giant
magnons are string states on the sphere that have infinite energy (E) and
angular momentum around the equator (J) such that the dispersion relation
is E − J 6= 0.

A visualisation of the magnon is that it is a string with both endpoints
on the equator of a sphere moving with the speed of light and the string
existing in the sphere. In the paper by Spradlin and Volovich the dressing
method is applied to the giant magnon and it is shown that N -magnon
solutions can be generated by recursion application of the method [18]. For
a complete and in-depth explanation of the giant magnon, the following
papers [13, 31, 32, 33, 34] are recommended.

3 Cosets

Coset models provide the most general way of constructing conformal field
theories thus it is natural to study AdS/CFT correspondence from the string
side using coset spaces. The advantage of using coset models is that a coset
can be used to describe any homogeneous space (spaces acted on transitively
by some group) by having G be a Lie group with H its isotropy group.

In this section the full definition of a coset is given and then the isometry
groups of the S5 and CP3 spaces are given in terms of cosets. Additional
theory will be given as to why these spaces can be written in these coset
models.

Of the string backgrounds looked at (AdS5 × S5 and AdS4 × CP3), we
are only interested in the bosonic backgrounds S5 and CP3 as this will keep
the calculations simple and allow us not have to deal with supergroups to
account for fermions.

3.1 Definition

A coset or quotient group G/H is a homomorphic image of a group G. In
order to define a coset, it requires the definition of a left and right coset.
If G is a group and H its subgroup (H ⊂ G) then for any element a in G,
aH is the set of all ah where a is fixed and h (an element of H) ranges
over all of H. Then aH is the left coset of H in G. Similarly Ha is the
right coset of H in G.

Now if G/H is a homomorphic image of G then G/H is also a group
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and there exists homomorphism from G onto G/H, where a homomorphism
is a function f : G → G/H such that for any two elements a and b in G
then f(ab) = f(a)f(b).

For G/H to be a coset, H has to be a normal subgroup of G. Where if
H is a normal subgroup of G then aH = Ha, for every a ∈ G. This means
that there’s no difference between left and right cosets.

The coset G/H is abelian if all the commutators of G are in H, where
a commutator of G is defined as abb−1a−1 where a and b are elements of
G. These are called commutators as abb−1a−1 = e iff ab = ba, where e is
the neutral element (a neutral element is defined as ae = a = ea). [35]

So now we can define the coset formally [36].

Definition 3.1. A coset is quotient of a group over its non-overlapping
subgroups

G/H =
G

H1 ×H2 × ...×Hn

where Hi is a subgroup of G and Hi ∩Hj = ∅ when i 6= j.

Now that the coset has been defined, a look at how the spaces S5 and
CP3 can be equivalently described in terms of cosets.

3.2 Spheres and S5 case

The (n− 1) sphere Sn−1 in Rn is defined as

Sn−1 = {x ∈ Rn : |x| = 1} (3.1)

where |x| is the usual distance |(x1, x2, ..., xn)| =
√
x21 + x22 + ...+ x2n

The sphere is a highly symmetric object, in fact the sphere looks the
same from every point on the sphere. Spaces with this property are known
as homogeneous spaces. A homogeneous space is a smooth manifold that
has a Lie group G such that for any two point x and y in the homogeneous
space there is an element g ∈ G such that gx = y.

Any homogeneous space can be seen as a coset space, this can be shown
by considering a point x in the homogeneous space and H a subgroup of G
such that hx = x for all h ∈ H. Then H is called the isotropy group of G
at x. Thus the coset G/H can be quipped with a smooth structure such
that for any x in the homogeneous space gH 7→ gx or G/H is diffeomorphic
to the homogeneous space. A diffeomorphism between two manifolds M and
N is a differential map f : M 7→ N that is a bijection [37].

The sphere can therefore be expressed in many different ways in terms
of homogeneous spaces. One of which is given by the coset of special
orthogonal groups (groups of angle preserving rotations on R) [38]

Sn ∼=
SO(n+ 1)

SO(n)
(3.2)
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where ∼= stands for diffeomorphic.

SO(n + 1)/SO(n) can be shown to be a homogeneous space (i.e. show
that SO(n) is an isotropy group of SO(n + 1)). Seeing as SO(n + 1) is
the group of all rotations on the sphere Sn then if we take a point (call
it a pole) and rotate around that point leaving the point and its opposite
pole unchanged (for example the north and south pole of a two sphere
S2). Then this type of rotation corresponds to the action of the group
SO(n). Thus SO(n) is the isotropy group of SO(n+ 1), therefore the coset
SO(n+ 1)/SO(n) is a homogeneous space.

Another way to look at it is the isotropy group around a point
(1, 0, 0, ..., 0) ∈ Sn is the collection of matrices[

1
SO(n)

]
⊂ SO(n+ 1)

The above matrix is isomorphic to SO(n). Thus SO(n) is an isotropy group
to SO(n+ 1).

Now if we consider R2n as being Cn then able to look at spheres as
S2n−1 ⊂ Cn ≈ R2n, defined by

S2n−1 = {z ∈ Cn : 〈z, z〉 = 1} (3.3)

where 〈, 〉 is the usual hermitian inner product. With rotations that are
linear in C, thus holomorphic rotations. These rotations that preserve the
angle in C are the special unitary groups SU(n).

Now SU(n)/SU(n − 1) is a homogeneous space as well. This can be
proved by first showing that SU(n) is transitive on S2n−1 in Cn (for an
x ∈ S2n−1 there exists a g ∈ SU(n) such that gx = y for all y ∈ S2n−1).
Thus SU(n)/SU(n− 1) is a homogeneous space [39]. Therefore

S2n−1 ∼=
SU(n)

SU(n− 1)
(3.4)

In a similar way to the case of SO(n + 1) above, the isotropy group
around a point is the following collection of matrices[

1
SU(n− 1)

]
⊂ SU(n)

So SU(n) is an isotropy group of SU(n+ 1).

Finally in the case of the five sphere S5 we have

S5 ∼=
SO(6)

SO(5)
and S5 ∼=

SU(3)

SU(2)
(3.5)

These coset models have the right dimensions. S5 is 5 dimensional, with

SO(n) having dimensions of n(n−1)
2 and SU(n) having dimensions given by
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Figure 2: Riemann sphere visualised as the complex plane wrapped around
as a sphere.

n2 − 1. So for SO(6)/SO(5) there are 15 dimensions for SO(6) with the 10
dimensions of SO(5) being ”factored out” by the coset, leaving 5 dimensions
for the coset. Same goes for SU(3)/SU(2) with 8 dimensions for SU(3) and
SU(2) with 3 dimensions being ”factored out”, so this leaves 5 dimensions.
All the same dimensions as the five sphere S5.

3.3 Complex projective space and CP3 case

The complex projective space n-space, CPn is just the space of complex
lines (planes in real vector space) in Cn+1, or all complex lines through the
origin in Cn+1.

A good example to obtain a clearer idea of complex projective space is
CP1, the complex projective line [40]. CP1 is simply the complex plane with
a point at infinity. This can be seen by starting with all the numbers in C
and then associating each z ∈ C with a vector (z, 1)T and identify all the
non-zero scalar multiples. So by this associate all vectors of the form (a, b)T

with b 6= 0 to a number in C. All that will be left is (1, 0)T and all of
its non-zero multiples, which together represents the point at infinity. One
can visualise this complex projective space as a stereographic projection,
which is a mapping from a sphere onto a plane. For CP1 this mapping
gives the Riemann sphere. This sphere has a pole with the value of 0 and
its opposite pole with a value of ∞. If a sphere were to be placed at the
origin of the complex plane thus giving the point at which the sphere meets
the origin the value 0. Then if a tangent line is drawn at every point on
the sphere, the point where that tangent intersects with the complex plane
is the value of the point on the sphere. Continuing to draw these tangent
lines, the closer to the opposite pole of 0 the larger the number on the
complex plane. Thus the opposite pole has a value of ∞ (see figure 2).

Now to describe complex projective space in terms of a coset. CPn has
the isometry group of PU(n+ 1) (projective unitary group). For a Hilbert
space H, the projective unitary group PU(H) is a quotient of the unitary
group U(H) with its center U(1). If H is of finite dimension n, then
PU(n) = U(n)/U(1). The stabilizer of a point in PU(n) (the mapping that
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maps an element from PU(n) to itself [41]) is given by P (1×U(n)) ∼= PU(n).
Thus

CPn ∼= PU(n+ 1)/PU(n)

For the case of CP3, we have PU(4)/PU(3). This coset is equivalent to the
coset SU(4)/U(3) [42]. Therefore

CP3 ∼=
SU(4)

U(3)
(3.6)

Again the dimensions can be checked on both sides. CPn has 2n
dimensions therefore CP3 has 6 dimensions. Now SU(n) has n2 − 1
dimensions and U(n) has dimensions of n2, thus for SU(4) there are 15
dimensions and for U(3) there are 9 dimensions factored out, leaving 6
dimensions. The same as for CP3.

4 Dressing Method

In this section the dressing method of Zakharov and Mikhailov [16, 17] will
be described and the algorithm will be given of the dressing method applied
to each of the coset spaces of S5 and CP3 mentioned in the last section.

4.1 Review

The dressing method is an algorithm proposed by Zakharov and Mikhailov
to construct soliton solutions for non-linear integrable partial differential
equations. The dressing method is useful as it takes a 2nd order differential
equation and reduces it to two 1st order differential equations. Another
advantage is that if only a single solution is known then the method can
be applied recursively in order to generate more, complicated solutions.

The procedure will be described in terms of the principal chiral field on
SU(N) where N ≥ 3.

Consider g(η, ξ) where η = 1
2 (x− t) and ξ = 1

2 (x+ t) (where x and t are
worldsheet coordinates), and that is subject to the equation of motion

∂ξ(∂ηgg
−1) + ∂η(∂ξgg

−1) = 0 (4.1)

The above 2nd order partial differential equation can be written as a
linear 1st order system for a different filed Ψ, by introducing a new complex
variable λ (called the spectral parameter).

i∂ξΨ(λ) =
AΨ

1 + λ
i∂ηΨ(λ) =

BΨ

1− λ
(4.2)

where
A = i∂ξgg

−1 and B = i∂ηgg
−1 (4.3)
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So if a solution g is known then A and B can be obtained and also by
imposing the initial condition of Ψ(0) = g then Ψ(λ) can be solved.

This will give

Ψ(λ) = exp

[
−i
∫

A

λ+ 1
dξ + i

∫
B

λ− 1
dη

]
(4.4)

where Ψ(λ) must satisfy the unitary condition Ψ†(λ)Ψ(λ) = I.

Now in order to find a new soliton solution, take an analogue of a gauge
transform of Ψ for the linear system. This will give the new solution Ψ′ in
the form

Ψ′(λ) = χ(λ)Ψ(λ) (4.5)

With the subsequent A′ and B′ given by

A′ = χAχ−1 + i(1 + λ)∂ξχχ
−1 B′ = χBχ−1 + i(1− λ)∂ηχχ

−1 (4.6)

Now if A′ and B′ are independent of λ then (4.5) will be a legitimate
solution to (4.2). The new generated solution is provided when λ = 0, this
gives

g′ = χ(0)g (4.7)

Solving for A′ and B′ and ensuring they’re independent of λ, it is found
that χ, the dressing factor must have a pole at λ. This dressing factor will
then be given by

χ(λ) = I +
λ1 − λ1
λ− λ1

P (4.8)

Note that χ(λ) must satisfy χ†(λ)χ(λ) = I, this ensures that the new solution
also satisfies the unitary condition. The parameter λ1 is an arbitrary complex
parameter and P is the projection operator (P 2 = P ) onto the subspace
spanned by Ψ(λ1)e for a constant complex vector e.

The projection operator is written explicitly as

P =
Ψ(λ1)ee†[Ψ(λ1)]†

e†[Ψ(λ1)]†Ψ(λ1)e
(4.9)

One possible problem is that depending on the embedding (for example
an embedding into a coset), the dressing factor χ(λ) could need more than
a single pole (λ1) in order for any imposed constraints on the solution to
be satisfied.

For example if an additional pole ( 1
λ1

) is introduced to the dressing
factor (4.8), it changes as follows

χ(λ) = I +
λ1 − λ1
λ− λ1

P +

1
λ1
− 1

λ1

λ− 1
λ1

Q (4.10)
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where Q is the projection operator whose image is spanned by Ψ( 1
λ1

)w,

with w a constant complex vector. Q will be given by

Q =
Ψ( 1

λ1
)ww†Ψ−1( 1

λ1
)

w†Ψ−1( 1
λ1

)Ψ( 1
λ1

)w
(4.11)

4.2 Dressing method on SU(N)

For the case of SU(N)/SU(N − 1), the dressing method for SU(N) can be
applied with the added constraint that the initial solution and generated
solutions must be embedded in SU(N)/SU(N − 1).

For SU(N) the method will be to take an initial solution g satisfying
the equation of motion (4.1) and use it solve for A and B which can then
be used to solve the linear system (4.2) to get Ψ(λ). This Ψ(λ) must
then satisfy the unitary constraint that Ψ†(λ)Ψ(λ) = I and also satisfy
the constraint det(Ψ(0)) = 1 in order for Ψ to be in SU(N). The solved
linear system (4.4) can then be used in (4.5) along with (4.9) in order to
obtain the new solution Ψ′(λ). Note that χ(λ) must also satisfy the unitary
condition as well as have determinant of one in order for the new solution
to satisfy these conditions. In this regard for SU(N) the determinant of

χ(λ) is equal to λ−λ1

λ−λ1
. To compensate for this a factor of

√
λ1

λ1
is included

in the dressed solution of g′.

4.3 Dressing method on SO(N)

To apply the dressing method for this model, the method needs to be
embedded into the principal chiral model. The embedding is given by [18]
where more details can be found on using the dressing method in the SO(N)
vector model.

The equations of motion for the SO(N) vector model is given by

∂ξ∂ηXi + (∂ηXj∂ξXj)Xi = 0 and XiXi = 1 (4.12)

With the added constraint of

∂ηXi∂ηXi = ∂ξXi∂ξXi = 1 (4.13)

Now to embed the vector Xi into the SO(N) principal chiral model

{Xi : XiXi = 1} ↔ g = α(2XXT − 1) ∈ SO(N) (4.14)

where α is an N×N diagonal matrix of the form α = diag(+1,−1,−1, ...,−1).
Also noting that g satisfies gαgα = I and g†g = I.

The dressing method continues from this point on, in exactly the same
manner as the for SU(N), except with the added constraints

Ψ(λ) = Ψ(λ) and Ψ(λ) = Ψ(0)αΨ(
1

λ
)α (4.15)
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Which means the new solution obtained must also meet these constraints (i.e.
χ(λ)Ψ(λ) must satisfy the above constraint). This leads to the constraint
that

χ(λ) = χ(λ) and χ(λ) = χ(0)Ψ(0)αχ(
1

λ
)Ψ(

1

λ
)α (4.16)

With these added constraints χ(λ) cannot have a single pole. The most
simple option is to have two poles

λ1 and λ1 =
1

λ1
(4.17)

This gives the dressing factor χ as

χ(λ) = I +
λ1 − λ1
λ− λ1

P +
λ1 − λ1
λ− λ1

P (4.18)

Where the projector P is the same as before, but the constant vector e in
(4.9) must also satisfy

eT e = 0 and e = αe (4.19)

Where e ∈ CN .

4.4 Non-trivial solutions from the dressing method

Before applying the dressing method one last piece of theory is needed; that
of identifying the non-trivial interaction of solitons (3-point functions) that
this paper sets out to find. This interaction can be seen in [17] where it
is shown that the dressing method applied to a field with values in SU(3)
results in a decay of a soliton of one component of the field in to two
solitons of other components in the field. This was shown with the projector
operator P , where the general P obtained from the dressing method for a
field with values in SU(3) is

|Ppq| =
1

2 cosh (αpq(x− vpqt− x0pq)) + exp (Γpqt− κpq)
where p 6= q (4.20)

Essentially, without going into all the details of the above result, when in
the non-degenerate case for matrices A and B (obtained from 4.3) then
every Γpq will not have the same sign. So for instance if Γ12 > 0 > Γ13,Γ23

(determined by the choice of spectral parameter λ), then as t→ −∞ then

|P12| =
1

2 cosh (α12(x− v12t− x012))
P13, P23 → 0 (4.21)

It must be noted that this is the standard SU(2) soliton (equation (4.15)
in [18].

Now as t increases when t → +∞ the solution undergoes a smooth
transition to the |Ppq| in the form given by

P12 → 0 and |P13| =
1

2 cosh (α13(x− v13t− x013))
,

|P23| =
1

2 cosh (α23(x− v23t− x023))
(4.22)
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If the opposite is true for the signs of Γpq then it will be seen that two
solitons combine into a single soliton. This is true for the SU(3) model. In
the next section it will be checked if this non-trivial interaction occurs for
coset models.

The non-trivial solutions will be checked for in this paper by examining
the solutions obtained from the dressing method applied to the vacuum
solutions embedded in each coset, at t→ ±∞. Hopefully the new solution
will exhibit a 3-point function where at t → −∞ a certain behaviour is
examined and at t→ +∞ two different behaviours are observed. For example

t→ −∞

 ∗ ∗ ©
∗ ∗ ©
© © ©

 , t→ +∞

 ∗ © ∗
© © ©
∗ © ∗

 and

© © ©
© ∗ ∗
© ∗ ∗


where ∗ is non-zero and © represents a zero value.
If the above or any evolution of a similar nature is examined in any of the
obtained solutions embedded in the cosets proposed for S5 then this would
be an example of non-trivial interactions of solitons in S5.

5 Application of the Dressing Method

Now to apply the dressing method to vacuum solutions embedded in each
of the coset models and solve for new solutions.

5.1 SU(3)/SU(2) coset model

Before the dressing method can be applied, the solution will need to be
embedded in to the coset model. This will be done using the embedding
given below (the technical details of the embedding are provided in Appendix

A), where α = −1+
√
1+r2

r2 . This is only one of many other embeddings of
which some may be worth considering in possible future studies.

g =
1√

1 + r2

 eiφ −ei(θ−φ)x1 −e−iθx2
eiφx1 ei(θ−φ)(

√
1 + r2 − α|x1|2) −αe−iθx1x2

eiφx2 −αei(θ−φ)x2x1 e−iθ(
√

1 + r2 − α|x2|2)


(5.1)

Where x1 and x2 are complex non-homogeneous coordinates of CP2, so the
corresponding homogeneous coordinates of S5 can be written as

(Z1, Z2, Z3) =
√

1 + r2eiφ(1, x1, x2)

Note, the above embedding relies on 6 parameters which is one too many
to describe th 5-sphere, but it could be that one of the parameters could
possibly be dependent on other parameters.

Beginning with the vacuum solution coordinates of S5 (particle moving
along the equator at the speed of light)

Z1 = eit Z2 = 0 Z3 = 0 (5.2)
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where Zi is complex and ZiZi = 1.
The embedding gives the element g as

g0 =

eit 0 0
0 e−it 0
0 0 1

 (5.3)

Here x1 = x2 = θ = 0 and φ = t. The parameter θ has been ignored in the
above application of the embedding but another possible application of the
embedding on the vacuum solution that does notice the angle θ is given by

g1 =

eit 0 0
0 ei(x−t) 0
0 0 e−ix

 (5.4)

Where x1 = x2 = 0, θ = x and φ = t.

5.1.1 θ = 0

Now to apply the dressing method, firstly to (5.3). Using the following
substitution of coordinates η = 1

2 (x − t) and ξ = 1
2 (x + t) the element g0

looks like

g0 =

ei(ξ−η) 0 0
0 ei(η−ξ) 0
0 0 1

 (5.5)

Then the matrices A and B are given by

A =

−1 0 0
0 1 0
0 0 0

 and B =

1 0 0
0 −1 0
0 0 0


Using (4.4), we obtain

Ψ(λ) =

eiZ(λ) 0 0
0 e−iZ(λ) 0
0 0 1

 (5.6)

Where Z(λ) = ξ
λ+1 + η

λ−1 = xλ−t
λ2−1 .

In order to determine the projector P , the arbitrary constant vector
e ∈ C3 must be chosen. So we choose e = (c1, c2, 1) to be a constant element
of P2. Since e only enters into P through

Ψ(λ)e =

 c1eiZ(λ)

c2e
−iZ(λ)

1


therefore c1 and c2 can be absorbed by simply transforming Z(λ) →
Z(λ) + i log cj . Since any translational transformation of Z(λ) is just a shift
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in x and t, we are thus able to set c1 = c2 = 1.
The projector operator is then given by

P =
1

1 + e−i2(Z′−Z) + e−i(Z′−Z)

 1 ei2Z eiZ

e−i2Z
′

e−i2(Z
′−Z) ei(Z−2Z

′)

e−iZ
′

e−i(Z
′−2Z) e−i(Z

′−Z)

 (5.7)

where Z ′ is used in place of Z(λ1) and Z for Z(λ1) to simplify the notation.

Now the dressing solution will only have a single pole since the coset
constraint is already included in the embedding thus we have no need to
alter χ. So the resultant solution g′0 is obtained from g′0 = χ(0)g0 and not

forgetting the compensating factor of
√

λ1

λ1
, we obtain

g′0 = (
λ1

λ1
)1/2R

 eit −e−itei2ZM −eiZM
−eite−i2Z′M e−it(L− e−i2(Z′−Z)M) −ei(Z−2Z′)M
−eite−iZ′M −e−ite−i(Z′−2Z)M L− e−i(Z′−Z)M


where R = ( 1+e−i2(Z

′−Z)+e−i(Z
′−Z)−c

1+e−i2(Z′−Z)+e−i(Z′−Z) ), M = c
1+e−i2(Z′−Z)+e−i(Z′−Z)−c , L =

1+e−i2(Z
′−Z)+e−i(Z

′−Z)

1+e−i2(Z′−Z)+e−i(Z′−Z)−c and c = λ1−λ1

λ1
.

Now to check the time evolution of the new solution g′0 at ±∞.

t→ −∞

 ∗ © ©
© ∗ ©
© © ∗

 t→ +∞

 ∗ © ©
© ∗ ©
© © ∗

 (5.8)

where ∗ represents a non-zero value and © represents a zero value.

It can be seen from the above that the new solution does not show any
non-trivial interaction. The solution’s behaviour at t→ −∞ and t→ +∞ is
the same.

5.1.2 θ = x

Moving to the vacuum solution with θ = x (5.4) and using coordinates
η = 1

2 (x− t) and ξ = 1
2 (x+ t), g1 will look like

g1 =

ei(ξ−η) 0 0
0 ei2η 0
0 0 e−i(ξ+η)

 (5.9)

This gives the matrices A and B as

A =

−1 0 0
0 0 0
0 0 1

 and B =

1 0 0
0 −2 0
0 0 1


So Ψ will be given as

Ψ(λ) =

eiF (λ) 0 0
0 eiG(λ) 0
0 0 eiH(λ)

 (5.10)
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where F (λ) = ξ
1+λ −

η
1−λ , G(λ) = 2η

1−λ and H(λ) = − ξ
1+λ −

η
1−λ .

Taking the constant vector e to again be of the form e = (1, 1, 1), the
projector is then given by

P =
1

1 + ei(G−G−F+F ) + ei(H−H−F+F )

 1 ei(F−G) ei(F−H)

e−i(F−G) ei(G−G−F+F ) ei(G−H−F+F )

e−i(F−H) e−i(G−H−F+F ) ei(H−H−F+F )


where F = F (λ1), F = F (λ1), G = G(λ1), G = G(λ1), H = H(λ1) and
H = H(λ1).

Again only a single pole is needed for the dressing factor χ(λ). Therefore
the solution g′1 = χ(0)g1 will be given by

g′1 = T

 eit −ei(x−t)ei(F−G)U −e−ixei(F−H)U

−eite−i(F−G)U ei(x−t)(W − ei(G−G−F+F )U) −e−ixei(G−H−F+F )U

−eite−i(F−H)U −ei(x−t)e−i(G−H−F+F )U e−ix(W − ei(H−H=F+F )U)


(5.11)

where T = 1− c
1+ei(G−G−F+F )+ei(H−H−F+F )

, U = c
1+ei(G−G−F+F )+ei(H−H−F+F )−c ,

W = ( 1+ei(G−G−F+F )+ei(H−H−F+F )−c
1+ei(G−G−F+F )+ei(H−H−F+F )

) and c = λ1−λ1

λ1
.

Again after investigating the limits of t → ±∞ of the solution, the
solution exhibits the evolution of a 2-point function with the same behaviour
at t→ −∞ and t→ +∞.

t→ −∞

 ∗ © ©
© ∗ ©
© © ∗

 t→ +∞

 ∗ © ©
© ∗ ©
© © ∗

 (5.12)

where ∗ indicates a non-zero value and © represents a zero value.

5.2 SO(6)/SO(5) coset model

For the SO(6)/SO(5) coset model, we first begin with a vacuum solution
of a particle moving along the equator of S5 at the speed of light. This is
given by

X = (cos t, sin t, 0, 0, 0, 0)

After embedding using (4.14), the solution g is given by

g =


cos 2t sin 2t 0 0 0 0
− sin 2t cos 2t 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (5.13)

This embedding satisfies gαgα = I where α = diag(1,−1,−1,−1,−1,−1),
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which means that the solution is embedded into the SO(6)/SO(5) coset
model.

Now matrices A and B are given by

A =


0 i 0 0 0 0
−i 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 B =


0 −i 0 0 0 0
i 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


Taking into consideration the constraints of (4.16), and using (4.4), the

form of Ψ(λ) becomes

Ψ(λ) =


cos 2Z(λ) sin 2Z(λ) 0 0 0 0
− sin 2Z(λ) cos 2Z(λ) 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (5.14)

To obtain the projector the constant vector will be chosen to have the
form e = (1, i sinw, i~v cosw) where ~v is an arbitrary unit vector of N − 2
components, in this case it is chosen to be ~v = (1, 0, 0, 0). Again since the
parameter w can be absorbed by a translation of x and t, it is safe to set
w = 0. Thus e = (1, 0,−i, 0, 0, 0) which meets the requirements of (4.19).

This gives the projector as

P =


cos (2Z ′) cos (2Z) cos (2Z ′) sin (2Z) i cos (2Z ′) 0 0 0
− sin (2Z ′) cos (2Z) sin (2Z ′) sin ((2Z) −i sin (2Z ′) 0 0 0
−i cos (2Z) i sin (2Z) 1 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0


where Z ′ = Z(λ1), Z = Z(λ1) and λ1 = 1

λ1
.

With P we can now obtain χ(λ), given by (4.18). Thus the solution
g′ = χ(0)g is given by

g′ =


cos(2t)J − sin(2t)K sin(2t)J + cos(2t)K −iN 0 0 0
cos(2t)L− sin(2t)M sin(2t)L+ cos(2t)M iO 0 0 0

−i(− cos(2t)N − sin(2t)O) −i(− sin(2t)N + cos(2t)O) 1− a− b 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


where J = 1− a cos(2Z ′) cos(2Z)− b cos(2Z ′) cos(2Z),
K = a cos(2Z ′) sin(2Z) + b cos(2Z) sin(2Z ′),
L = a sin(2Z ′) cos(2Z) + b cos(2Z ′) sin(2Z),
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M = 1− a sin(2Z ′) sin(2Z)− b sin(2Z ′) sin(2z),
N = a cos(2Z)− b cos(2Z ′), O = a sin(2Z)− b sin(2Z ′),

a =
λ1− 1

λ1

λ1
and b =

1
λ1
−λ1

1
λ1

.

It can be seen that the solution above gives a harmonic solution for t thus
it’s behaviour at t→ −∞ and at t→ +∞ will be the same. Again we have
no non-trivial scattering behaviour for the solution obtained.

6 Conclusion

From the results we see that no non-trivial solutions were observed with
the vacuum solutions embeddings. Perhaps the missing element was the
initial solution, seeing as the initial solution affects the form of the projector
therefore the generated solution. It could be that using a vacuum solution
does not give rise to any non-trivial behaviour. Another factor could be
the embeddings themselves as in the case of the SU(3)/SU(2) coset model
where the embedding could possibly be restricting the form of the obtained
solutions thus limiting the type of solutions. To add there is always the
possibility of errors in the calculations themselves, for example the dressing
factor might not have been in the correct form to satisfy some of the
constraints or possibly the constant vector used to calculate the projector,
was naively set to a trivial vector when possible, unforeseen constraints
should have been applied.

A promising avenue that could lead to a positive result would be to try
more general solutions for the motion of strings in S5, as initial solutions
thus giving a new general solution where the desired non-trivial behaviour
could be more apparent. It is possible that with further thought a different
embedding could be found, for example initially embedding an S5 element in
to SU(3) and then imposing constraints on the embedded solution to ensure
it lies in the sub-manifold SU(3)/SU(2). To add, the dressing method can
be applied recursively, so it could be possible that if the dressing method
is applied to the solutions obtained in this paper then the new solutions
could exhibit the desired non-trivial behaviour.

Due to time constraints and no suitable embedding for CP3 found, this
case was not examined. Perhaps with further study, an embedding could
be found which would then make altering the dressing method to fit this
case possible and allowing for investigation of non-trivial solitons in CP3.

The results obtained can be used as a starting point to further study
with the general idea and framework of finding non-trivial soliton solutions
in S5 already set up in this paper.
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Appendix A SU(3)/SU(2) embedding

In this appendix we explain the origins of the embedding used in section
5.1 based on the notes [46].

We begin with the GL(3) element from [45]

z =

[
1 0
X 1

] [
u 0
0 v

] [
1 Y
0 1

]
(A.1)

where X =

[
x1
x2

]
and Y =

[
y1 y2

]
.

The unitary condition then gives

|u|2 =
1

1 + |X|2
, Y = −uX†vvv† = 1 +XX† =

[
1 + |x1|2 x1x2
x1x2 1 + |x2|2

]
(A.2)

which was solved as

v =

[
1 + α|x1|2 αx1x2
αx1x2 1 + α|x2|2

]
· h (A.3)

where α = −1+
√
1+r2

r2 , r2 = |x1|2 + |x2|2 and h an arbitrary 2 × 2 unitary
matrix.
u and Y can then be written as

u =
eiφ√
1 + r2

and Y = −uX†v (A.4)

Now the general SU(3) element can be parametrised by 8 parameters;
the complex parameters x1 and x2, φ and the 3 parameters of h (where h
unitary).
Now the isotropy subgroup SU(2) can be taken to act in the lower right
block where the reduction to SU(3)/SU(2) corresponds to using SU(2) to
determine a fixed form of h.

A suggested choice of h is given by

h =

[
ei(θ−φ 0

0 e−iθ

]
(A.5)

Finally if we substitute everything back into (A.1), we obtain

z =
1√

1 + r2

 eiφ −ei(θ−φ)x1 −e−iθx2
eiφx1 ei(θ−φ)(

√
1 + r2 − α|x1|2) −αe−iθx1x2

eiφx2 −αei(θ−φ)x2x1 e−iθ(
√

1 + r2 − α|x2|2


The above is an SU(3) element but depends on only 6 parameters; complex
x1 and x2, θ and φ. There is one parameter too much to describe the
coset SU(3)/SU(2) but it could be that one of the parameters could be
expressed in terms of the other parameters.
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Note that z also satisfies the constraint of the 5-sphere. The S5

coordinates can be written in terms of the parameters of z by taking x1
and x2 to be non-homogeneous coordinates of CP2. Thus we have

(Z1, Z2, Z3) =
√

1 + r2eiφ · (1, x1, x2) (A.6)

This gives the embedding for an S5 element into the SU(3)/SU(2)
coset.
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