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1 Introduction

1.1 Background Knowledge

General Relativity was developed by Albert Einstein between 1905 and 1915 [16], it
was developed to unify special relativity and Newton’s gravitational law as Newton’s
law alone could not describe certain observed phenomena - such as the small anomalies
in the orbit of Mercury.

This lead to the notion of large objects distorting spacetime structure, essentially
incorporating gravity as a geometric property of spacetime. The theory of General
Relativity explained all observed gravitational phenomena that were previously un-
explained, however, it predicted more unobserved phenomena such as gravitational
lensing and gravitational waves [18] (both of which have now been observed). Apart
from this it also predicted black holes, objects so dense that near them spacetime is
distorted to the point where light cannot escape.

1.2 Tensor Calculus and the Einstein Equation

We require a way to describe the geometry of the space we are dealing with hence
we define a metric, labelled gµν , on this space, which is a mapping between vectors
and one-forms (also known as covariant vectors) at every point[17]. Defining the
notion of a metric on a space allows us to measure distances between points, this is
important, we know how to measure distances on locally flat spaces, but in curved
spaces measuring distance is not quite as simple.Thus we define a ’connection’ on
the manifold called the Christoffel symbols, Γαµν , which gives us a way to measure
distances on a manifold. The definition of the Christoffel symbols in terms of the
metric tensor is,

Γαµν =
1

2
gρα(∂νgρµ + ∂µgρν − ∂ρgµν ) (1.1)

These Christoffel symbols lead the way to very important equations in general
relativity, namely the Riemann tensor:

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ

which has some interesting properties when it’s indices are lowered, such as it is
antisymmteric and it is invariant under a change in its first two indices. We can also
contract the first and third indices to define the Ricci tensor,

Rµν = Rλ
µλν
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which is symmetric in its lower indices. Furthermore we can define the Ricci scalar:

R = gµνRµν = Rµ
µ

using the Bianchi identities1 we can now write the Einstein tensor

Gµν = Rµν − 1

2
gµνR (1.2)

Einstein then wanted to find an equation that superceded Poisson’s equation in curved
spacetime for the Newtonian potential,

∇2Φ = 4πGρ (1.3)

where ρ is the mass density, the corresponding tensor generalisation of the mass
density is the stress energy tensor T µν . In trying to generalize Poisson’s equation,
it was necessary to consider the physics of the universe, this static cosmology lead
to the introduction of a cosmological constant, Λ, which can be thought of as the
vacuum energy density. The derivation of Einstein’s equation is given in Sean Carroll
[7], the final result is

Rµν − 1

2
gµνR + Λgµν = 8πGT µν (1.4)

this is the fundamental equation of general relativity. However, for the purposes of
this study, we will be looking at Ricci flat, vaccuum solutions (Λ = 0), this would
imply that:

Rµν = 0⇒ Gµν = 0 (1.5)

This is a set of second order, non-linear partial differential equations that are very
difficult to solve analytically. To solve these equations it is much easier to guess the
form of a function (write an ansatz) and hope that by substituting it into equation
1.5 leads to simpler equations that are easier to solve. To write this ansatz one would
need to start with a coordinate system adapted to the physics one wants to describe.

1.3 Thermodynamics and AdS/CFT Correspondence

Classically, black holes are perfect absorbers and thus do not emit radiation hence
they have a physical temperature of absolute zero [21]. This perfect absorption led
to Wheeler’s cup of tea [6] - the question of if you dropped a cup of tea into a passing
black hole, the initial state is a cup of tea and a black hole, while the final state
is a slightly larger black hole with no tea, so where did the information (entropy)
go? Bekenstein answered this question using thought experiments [3] and found that

1as done in Schutz[17]
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the black hole entropy must be proportional to the horizon area. Thus, information
is stored along the event horizon. Shortly after this discovery, Hawking showed the
black holes do radiate due to quantum effects[12], namely the creation of a particle-
antiparticle pair just outside the event horizon, where one of which crosses the event
horizon and the other does not in a very short amount of time such that the uncer-
tainty principle is not broken. The radiation as a result of this process was thus called
Hawking Radiation.

However this would imply that some quantum information may be destroyed dur-
ing this process. There is however, a way around this and that is the AdS/CFT
correspondence, theorised by Juan Maldacena[13] which provides a relationship be-
tween a gravitational theory that is approximately AdS (Anti-de Sitter Space)2 in
d+1 dimension and a non-gravitational quantum field theory in d dimensions. This
is an incredibly useful tool in solving difficult quantum gravity problems by reducing
them to easier conformal field theory problems and is an active research topic in string
theory.

2 General Relativity in 4 Dimensions

2.1 Schwarzschild Solution

Karl Schwarzschild was the first physicist to find a solution to Einstein’s equations. As
stated in the previous section, it is not easy to find a solution to equation 1.5, however
Schwazschild did this by assuming a static, stationary point mass with spherical
symmetry. The 4 dimensional Schwarzschild metric is given by[7]:

ds2 = −(1− 2GM

r
)dt2 + (1− 2GM

r
)−1dr2 + r2dΩ2 (2.1)

This is a unique solution to Einsteins equations in vacuum as proved by Birkhoff’s
theorem. There are two singular points, r = 0 which is a true singularity and the
metric blows up there, and r = 2GM which is only a coordinate singularity and
corresponds to the black hole event horizon, the surface beyond which a particle
cannot escape. The properties of black holes can be graphically illustrated using
Penrose diagrams which provide an easy way to understand the structure of the space
around a black hole and the causal relation between different points in spacetime.
Figure 2.1 shows the Penrose diaram for Schwarszchild, time goes upward in these
diagrams. Light rays travel along 45°lines, hence any two points that are not in

2As it is shown in the next sections, the near horizon limit of popular black holes is indeed
approximately AdS and hence we can study the thermodynamics of a system as this is where
information is stored.
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this 45°lightcone are called spacelike seperated, for example: if points A and B are
spacelike separated and an event occurs at B, an observer at A will see the event at
B at a later time as opposed to seeing it almost instantaneously.

Figure 1: Penrose Diagram for a Schwarzschild Black Hole [17]

The horizontal lines labelled r = 0 correspond to the location of the black hole
singularity, the lower corresponds to the past and the upper corresponds to the future,
the lines labelled r = 2GM correspond to the coordinate singularity that is the event
horizon. By analysis of the diagram you can see that any particle outside the event
horizon will orbit the black hole but as soon as at passes the event horizon, even if it
is a photon, will eventually reach the singularity.

3 Other Black Hole Solutions and Generalisations

to D Dimensions

3.1 Schwarzschild in d-Dimensions

D-dimensions refers to (1, d−1) Lorentzian space where we have 1 temporal dimension
and d − 1 spatial dimensions. Referring back to the ”Schwarzschild metric”: to
generalise to higher dimensions it was suggested by Tangherlini[19] to take the radius
r to the area radius:

r → r − 16πG

(d− 2)(d− 3)ωd−2

M

rd−3
(3.1)

where ωd−2 is the volume of a unit (d − 2)-dimension sphere. Introducing the ’mass
parameter’, µ,

µ =
16πGM

(d− 2)ωd−2
(3.2)
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we can rewrite the Schwarzschild solution generalised to higher dimensions as:

ds2 = −(1− µ

rd−3
)dt2 + (1− µ

rd−3
)−1dr2 + r2dΩ2

d−2 (3.3)

This metric is indeed Ricci flat and hence solves the Einstein equation. There is not
much that has been done to the original 4-dimensional solution other than a rescaling
of the mass term, M (to µ), and the falloff radius, 1

r
. However, this is the simplest

generalisation one can do.

3.2 Kerr

The Kerr solution to Einstein’s equation is a generalisation of Schwarszchild for a
rotating black hole. It is most simple to look at the metric with natural units, in
Boyer-Lindquist coordinates [5]:

ds2 = −∆

ρ2
(dt− a sin2 θdφ)2 +

ρ2

∆
dr2 +

sin2 θ

ρ2
((r2 + a2)dφ− adt)2 + ρ2dθ2 (3.4)

where
∆ = r2 − 2Mr + a2 (3.5)

ρ2 = r2 + a2 cos2 θ (3.6)

a =
J

M
(3.7)

There is an interesting property of the Kerr event horizon, the even horizon in these
coordinates is at grr = 0 which would imply

r2 − 2Mr + a2 = 0⇒ r± = M ±
√
M2 − a2 (3.8)

hence there are two radii at which the metric blows up which indicates two event
horizons. From [5] we see that interesting things happen at gtt = 0 (the location at
which this is true are known as the static limits). this corresponds to

rE± = M ±
√
M2 − a2 cos2 θ (3.9)

Where rE are the locations of the inner and outer ergospheres, The area inside which,
a particle cannot remain stationary but must corotate with the black hole [5]. The
outer ergosphere lies outside of the event horizon, as shown in figure 3.2, this region,
has an interesting property as it is not inescapable (as it is not beyond the event
horizon) but any particle within it, whether it enters the ergosphere in or opposite
to the direction of rotation of the black hole, must corotate. Thus it is possible for a
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particle to extract energy from a rotating black hole by ’skipping’ off the ergosphere
like a stone would skip on water. This is known as the Penrose Process.

Figure 2: Locations of horizons and the ergosphere for Kerr [20]

3.3 5D Myers-Perry

It can be shown that the generalisation of Kerr to d dimensions differs for even and
odd dimensions [15]. However, we will only concern ourselves with the 5D solution
with metric:

ds2 = −dt2 +
µ

Σ
(dt+ a sin2 θdφ1 + b cos2 θdφ2)

2 +
r2Σ

Π− µr2
dr2

+Σdθ2 + (r2 + a2) sin2 θdφ2
1 + (r2 + b2) cos2 θdφ2

2

(3.10)

where
Σ = r2 + a2 cos2 θ + b2 sin2 θ (3.11)

Π = (r2 + a2)(r2 + b2) (3.12)
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This is known as the 5d Myers-Perry black hole. By inspection it can be seen that
the metric is singular at the points Σ = 0 and at Π − µr2 = 0. Following [15], if
b2 = a2 then the metric is entirely singular. However, if b2 6= a2 then the metric is
only singular at θ = 0.

the horizon corresponds to the points where Π−µr2 = 0 which yield the equations:

2r2± = µ− a2 − b2 ±
√

(µ− a2 − b2)2 − 4a2b2 (3.13)

which implies that
µ ≥ a2 + b2 + 2|ab| (3.14)

then by using equation 3.2 and the angular momentum around the xi, yi axis, given
by Jyixi = 2

3
Mai, we can rewrite 3.14 as

M3 ≥ 27π

32
(J2

1 + J2
2 + 2|J1J2|) (3.15)

where J1 ≡ Jy1x1 and similar for J2.
This is an interesting result, there is a limit placed on the angular momentum of

Myers-Perry black holes in 5D, if the angular momenta excede the mass in equation
3.15 then there is no event horizon resulting in a naked singularity.

4 Black Rings

4.1 Non-Uniqueness in 5D

The no hair theorem postulates that a black hole can be completely characterised by
only its mass, charge and angular momentum. We know that both Schwarzschild and
Kerr are the unique solutions to Einstein’s equations in 4D. However, it is possible
to construct a 5D solution to Einstein’s equations with the same mass and angular
momentum of Myers-Perry, that is not Myers-Perry. In 2001, R.Emparan and H.S.
Reall published a paper [10] on such a solution. This solution is fascinating, we
have discussed how difficult it is to solve Einstein’s equations and how it becomes
easier when one assumes spherical symmetry, thus when writing an ansatz for a non-
spherically symmetric black hole; one can expect a strange coordinate system.

4.2 How a Black Ring is Formed

The black ring solution is not spherically symmetric, so how do we start finding a
solution? Let’s consider a heuristic arguement: Consider a neutral black string in 5D
constructed as the direct product of the Schwarzschild solution and a line. Hence the
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horizon topology is R× S2 then we bend the ends of the string to form a circle with
topology S1×S2. However, as one could imagine, this would not be a stable solution
as the string’s self attraction and tension would cause it to contract. To counter these
forces by allowing the string to rotate along this S1 topology. We have thus created
a stable black ring with a horizon topology of S1 × S2. This process was done by
Emparan and Reall and proves to be a solution of Einstein’s equations in 5D.

Hence, we have two solutions to Einstein’s equation in 5D. Myers-Perry with
horizon topology S3 [1], and the black ring with horizon topology S1 × S2. Which,
as stated above, violates the no hair theorem.

4.3 Coordinate System

Before delving into black rings, it would be wise to understand the ring coordinate
system and how it is constructed.SO(4), the spatial rotation group in 4+1 dimensions
contains two mutually commuting U(1) groups, this means we can have rotations in
two seperate planes. Writing the equations for these planes in polar coordinates,

x1 = r1 cosφ, x2 = r1 sinφ, x3 = r2 cosψ, x4 = r2 sinψ (4.1)

where φ and ψ are our angles of rotation such that we have independent angular
rotation about these angles labeled by Jφ and Jψ. As a convention we will describe
rings along the (x3, x4)-plane with rotations along ψ.

The flat space metric for the coordinates in 4.1 is:

dx2
4 = dr21 + r21dφ

2 + dr22 + r22dψ
2 (4.2)

however, it would be beneficial to rewrite this metric in coordinates that resemble
equipotential surfaces of the field created by a black ring. Instead of looking for a
scalar field, it turns out that looking at a two-form potential Bµν is much simpler.
Hence we consider the black ring as a circular string that acts as an electric force of
a 3-form field strength H = dB which satisfies the equation,

∂µ(
√
−gHµνρ) = 0 (4.3)

the solution of this field Btψ is given in [11] as

Btψ = −1

2

(
1− R2 + r21 + r22

Σ

)
(4.4)

where

Σ =
√

(R2 + r21 + r22)
2 − 4R2r22 (4.5)
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With the help of some computer programming (Shown in Appendix A) it can be
shown that this equation for Btψ satisfies equation 4.3 by simply taking the exterior
derivative of Btψ, to calculate H, and substituting. We can then take the dual of
the field H to calculate a one-form potential A. The dual of an electric string is a
magnetic monopole. Hence, we want to show that ∗H = F = dA, again, using Aφ
given by Emparan and Reall as,

Aφ = −1

2

(
1 +

R2 − r21 − r22
Σ

)
(4.6)

and taking the Hodge dual calculated above, it can be shown that this choice of Aφ
does indeed satisfy this equation. Then a convenient choice of coordinates is

y = −R
2 + r21 + r22

Σ
, x =

R2 − r21 − r22
Σ

(4.7)

with inverse,

r1 = R

√
1− x2
x− y

, r2 = R

√
y2 − 1

x− y
(4.8)

To calculate the range of x and y we need to substitute our ring conditions into
equation 4.8. We wanted our source at r1 = 0 and r2 = R which implies,

− 1 ≤ x ≤ 1 (4.9)

and
−∞ ≤ y ≤ −1 (4.10)

it can be seen by simply substituting these ranges into equation 4.8 that as y → −∞
we have the location of the ring source and as x → y → −1 we recover asymptotic
infinity. r2 = 0 occurs at y = −1 and corresponds to the plane of rotation around
ψ. Due to the limited range of x values we have two separate rotations around φ,
x = 1 which implies that r2 ≤ R which is then the axis of rotation on the inside of
the ring. x = −1 is then rotation around the outside of the ring (r2 ≥ R). Using
these new coordinates and doing a very simple coordinate trasnformation to the ”flat
space metric” we obtain,

dx2
4 =

R2

(x− y)2

[
(y2 − 1)dψ2 +

dy2

y2 − 1
+

dx2

1− x2
+ (1− x2)dφ2

]
(4.11)

which is symmetric under the transformation (x, y) → (y, x) To study the area near
the ring horizon, it is beneficial to change coordinates to r and θ defined as:

r = −R
y
, cos θ = x (4.12)

10



Figure 3: Ring coordinates for four dimensional flat space at constant φ, ψ and φ+π,
ψ + π dashed circles corresponds to spheres at constant |x| ∈ [0, 1], solid circles
correspond to spheres at constant y ∈ [−∞, 1] spheres at constant y collapse to zero
size at the location of the ring of radius R, y = −∞. [11]

substituting in the ranges for x and y above we find the ranges as,

0 ≤ r ≤ R, 0 ≤ θ ≤ π (4.13)

which then changes equation 4.11 to,

dx2
4 =

(
1 +

r cos θ

R

)−2[(
1− r2

R2

)
R2dψ2 +

(
1− r2

R2

)−1
dr2

+r2(dθ2 + sin2 θdφ2)

] (4.14)

From here it is easy to see that (
1− r2

R2

)
R2dψ2 (4.15)

looks like S1 topology and
r2(dθ2 + sin2 θdφ2) (4.16)
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looks like S2 topology. Hence in these coordinates we have ring-like topology, S1×S2.
If we take equation 4.14 and look at the limit r →∞, we have that the metric is

dx2
4
′ ≈
(

1 +
r2

R2

)
dr2 + r2dΩ2 (4.17)

up to a constant. This is the Ads metric [22], thus we call the black ring topology
asymptotically AdS. The metric has a singularity at r = R which corresponds to the
rotation around ψ, in AdS this singular point corresponds to the AdS horizon.

4.4 Neutral Black Ring

The metric for the neutral black ring looks similar to equation 4.11 with the exception
that now we place a black ring into the coordinate system and we no longer have flat
space but curvature. The most convenient form for the metric can be written as:

ds2 = −F (y)

F (x)

(
dt−CR1 + y

F (y)
dψ

)2

+
R2

(x− y)2
F (x)

[
−G(y)

F (y)
dψ2− dy2

G(y)
+
dx2

G(x)
+
G(x)

F (x)
dφ2

]
(4.18)

where,
F (ζ) = 1 + λζ, G(ζ) = (1− ζ2)(1 + νζ) (4.19)

and

C =

√
λ(λ− ν)

1 + λ

1− λ
(4.20)

λ and ν are dimensionless parameters which have range

0 < ν ≤ λ < 1 (4.21)

substituting this into Einstein’s equations with no cosmological constant we find that
Gµν = 0 and hence (4.18) is indeed a solution (See Appendix B).

In (4.18), both x and y vary the same as in equations 4.9 and 4.10 respectively.
Hence there are certains values of x and y such that the black ring metric blows up,
specifically around the orbits of ∂/∂φ and ∂/∂ψ at x = y = −1. This is most likely
a coordinate singularity, to examine this further let us set dy = dψ = dt = 0 and
expand around x = −1 + ε.

The relevant part of the metric is then

ds2 =
1

(x− y)2

[
F (x)

G(x)
dx2 +G(x)dφ2

]
(4.22)
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Taylor expanding around ε and keeping only the first order terms,

F (x)

G(x)
=

1 + λx

(1− x2)(1 + νx)

=
1− λ+ λε

(2ε− ε2)(1− ν + νε)

≈ 1

2

1− λ
1− ν

1

ε
+O(1) (4.23)

similarly,

G(x) = (2ε− ε2)(1− ν + νε)

≈ 2ε(1− ν) +O(ε2) (4.24)

the prefactor term in 4.22 is 1/ε2. Rewriting this,

ds2 =
1

2

1− λ
1− ν

dε2

ε3
+

2

ε
(1− ν)dφ2 (4.25)

we want to write this in the form

ds2 = dr2 + A2r2dφ2 (4.26)

because then we have rescaled our φ parameter and hence we will avoid the singularity.
The rescaling of angular variables is done to avoid a conincal singularity which is
a singularity of the coordinate system and not a true singularity of the metric.

the periodicity of φ will be

∆φ =
2π

A
(4.27)

thus,

dr2 =
1

2

1− λ
1− ν

dε2

ε3

⇒ dr = ±
√

1

2

1− λ
1− ν

dε

ε3/2
(4.28)

choosing the minus sign and integrating,

ε =
2

r2
1− λ
1− ν

⇒ ds2 = dr2 +
(1− ν)2

1− λ
r2dφ2 (4.29)

⇒ ∆φ = 2π

√
1− λ

1− ν
(4.30)
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due to the symmetric interchanging of x and y, ∆φ = ∆ψ. at x = +13 all we have is
a change in sign (as we are now Taylor expanding around x = 1 + ε) and hence we
have

∆φ = 2π

√
1 + λ

1 + ν
(4.31)

equating (4.30) and (4.31),

λ =
2ν

1 + ν2
(4.32)

This relationship between λ and ν imposes that there are no conical singularities of
the metric: not only that, it also leaves only two independent variables, R which
can be interpreted as the ring radius and ν which could be interpreted as the mass.
This makes sense as if we have the angular momentum L = R × p (where p is the
momentum dependent on ν) then L must be such that the centrifugal force must
balance the self attraction of the ring, hence there can only be two free parameters,
thus what we have derived here in equation 4.32 is that the system is balanced under
no external forces.

At G(y) = 0 the metric becomes singular, this is the point y = −1/ν. However,
doing the transformation:

dt = dv − CR 1 + y

G(y)
√
−F (y)

dy, dψ = dψ′ +

√
−F (y)

G(y)
dy (4.33)

we obtain the metric

ds2 = −F (y)

F (x)

(
dv−CR1 + y

F (y)
dψ′
)

+
R2

(x− y)2
F (x)

[
−G(y)

F (y)
dψ′2+2

dydψ′√
−F (y)

+
dx2

G(x)
+
G(x)

F (x)
dφ2

]
(4.34)

which no longer has any singularity at y = −1/ν. If we define,

V =
∂

∂v
+ Ω

(
∆ψ

2π

)
∂

∂ψ′
(4.35)

where

Ω =
1

R

√
λ− ν
λ(1 + λ)

(4.36)

and calculate its inner product along the constant surface y = −1/ν, we find (as in
Appendix C4)

3y = +1 is not in the range of our coordinates so we do not consider it.
4The expression in the appendix is exactly zero, Maple is not sure how to simplify it, however it

is easily solvable by hand.
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Vµ V
µ = 0 (4.37)

Thus V is a null vector. Also, if we consider V before the transformation where,

V =
∂

∂t
+ Ω

∂

∂ψ′
(4.38)

then it is easy to see by the coordinate transformation in equation 4.33 that Vµ dx
µ

is a positive multiple of dy 5. And hence it follows that y = −1/ν is a Killing horizon
with angular velocity Ω.6

The near horizon metric at a constant time slice in the coordinates given by
equation 4.33 is

ds2 ∼ R2

{
C2 (1− 1/ν)2

F (−1/ν)F (x)
dψ2 +

F (x)

(x− 1/ν)2

[
dx2

G(x)
+
G(x)

F (x)
dφ2

]}
(4.39)

here it can be seen that the ψ part of the metric has S1 topology with different values
of ring radius depending on the value of x, in general, the S1 radius is:

R

√
λ(1 + λ)

ν(1 + λx)
(4.40)

let us consider the xφ part of the metric which is conformal to

ds2xφ =
dx2

1− x2
+

(1− x2)(1 + νx)2

1 + λx
dφ2 (4.41)

doing the transformation x = − cos θ with 0 ≤ θ ≤ π we obtain

ds2xφ = dθ2 +
(1− ν cos θ)2

1− λ cos θ
sin2 θdφ2 (4.42)

For this to be regular at the boundary conditions of θ = 0 and θ = π, the the
periodicity of φ is exactly the same as calculated in equations 4.30 and 4.31. This pe-
riodicity leads to a distortion of the 2-sphere metric and hence we say it has distorted
S2 topology. Hence the near horizon topology of the black ring is S1 × S2 which is
non-spherical, a solution which in 4d wouldn’t be allowed! A visualisation 7 of the
distortion of the black ring for the same mass and different values of ν is given in
figure 4.4.

5both dt and dψ contain a transformation of dy
6The notion that a Killing horizon requires a vector V be null on a surface at constant y and

Vµdx
µ be a multiple dy is a simplification of the definition by Emparan and Reall[11]. For a more

rigorous definition, see p244 of Carrol [7].
7This is an isometric embedding. It is a visualisation of the 2-sphere in 3d Euclidian space.
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Figure 4: Black rings of same mass with different values of ν. The plot shows the S2

cross section with the size of the S1 approximated as the inner radius of the horizon.
the rings with ν = 0.05 and ν = 0.95 have the same horizon area [8]

4.5 Physical Magnitudes and Non-Uniqueness

The physical parameters for the black ring, namely: mass (M), angular momentum
(J), temperature (T ) and horizon area (AH) are[8]

M =
3πR2

4G

λ

1− ν
(4.43)

J =
πR3

2G

√
λ(λ− ν)(1 + λ)

(1− nu)2
(4.44)

T =
1

4πR

1 + ν√
ν

√
1− λ

λ(1 + λ)
(4.45)

AH = 8π2R3ν
3/2
√
λ(1− λ2)

(1− ν)2(1 + ν)
(4.46)

To fix the a scale we define the dimensionless variables: j, the reduced angular mo-
mentum, and aH , the reduced horizon area, as

j =

√
27π

32G

J

M3/2
, aH =

3

16

√
3

π

AH
(GM)3/2

(4.47)

Requiring that the black ring must be balanced, by equation 4.32, we obtain the
equations

aH = 2
√
ν(1− ν), j2 =

(1 + ν)3

8ν
(4.48)
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From this equation and figure 4.48 it is natural to classify black rings using the
parameter ν (which in this case can be thought of as the shape parameter) as:

� Thin black rings, where 0 < ν < 1/2 and j → ∞ as ν → 0 which corresponds
to very thin rings.

� Fat black rings, where 1/2 < ν < 1 where ν = 1 ⇒ aH = 0 and the solution
results in a naked singularity.

For the Myers-Perry black hole in equation 3.10, the relationship between the
dimensionless parameters in 4.47 is given in [14] as

aH = 2
√

2(1− j2) (4.49)

plotting 4.47 against 4.49 as in figure 4.5 we see some interesting things. For one,

Figure 5: Graph comparing the reduced horizon area as a function of the square of
the reduced angular momentum for the black ring and Myers-Perry black hole[11]

the black ring angular momentum is bounded below but not above, unlike the case in
Myers-Perry where there are both upper and lower bounds for the angular momentum.
Furthermore, j2 = 1 is the location of the naked singularity and j2 →∞ are rapidly
spinning black rings with decreasing horizon. However, the most interesting location
is the part of the graph with 27/32 < j2 < 1 where there is the existence of two black
rings and a Myers-Perry black hole with the same mass and spin. A clear violation
of uniqueness!

8It can now also be seen why the black rings with ν = 0.05 and ν = 0.95 have the same horizon
area as aH is invariant under the change ν → 1− ν
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5 Further Study

Due to the lack of uniqueness in 5d, we currently do not have a general method to
find solutions to Einstein’s equations in higher dimensions. In 4d we can assume
spherical symmetry and the solution is unique, however, as shown in the previous
sections we can have a solution with spherical symmetric (Kerr) and a ring solution
for the same system. Thus it would be beneficial to further study higher dimensional
spacetimes and find a general solution for horizon topology. Black rings are also
relatively new and unstudied. The existence of such a solution leads to even more
interesting solutions, such as the Black Saturn[9], which consists of a spherical black
hole surrounded by a rotating black ring, which turns out to be a stable solution due
to the angular momentum of the Black Saturn.

Furthermore, studying the near horizon limit and microstates of the black ring
system has been discussed [4, 2] and further research into black rings and AdS/CFT
could lead to interesting results in the dual field theory.
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The dimension and signature of the tensor space are set to: [5, - - - - C] 
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