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Is dynamic meteorology for everyone?

Geostrophic adjustment

Synoptic-scale motions in mid-latitudes are in approximate geostrophic balance. In fact, the tendency of
winds outside of the tropics, to approach this balance, is a very strong process in the atmosphere. When
it happens that the actual winds are not in geostrophic balance with the pressure systems then both the
winds and the pressure act together to bring the winds back to geostrophic balance. We now investigate
the dynamical adjustment process by which geostrophic balance is achieved. In order to accomplish this
objective we consider a continuously stratified atmosphere as a simplified shallow water system. As before
we utilise a linear perturbation approach for disturbances about a basic state of no motion with a constant
Coriolis parameter. A reasonable value for the Coriolis parameter, f0, is −10−4 s−1 at about 45◦S.

Consider the horizontal momentum equation and the continuity equation in vector form

DV⃗

Dt
+ fk⃗ × V⃗ = −∇⃗Φ, and

∇⃗ · V⃗ +
∂ω

∂p
= 0

The horizontal momentum equations become

Du

Dt
− fv = −∂Φ

∂x
= −g ∂z

∂x
≃ −g∂h

∂x

with h the depth of the layer, and
Dv

Dt
+ fu = −∂Φ

∂y
= −g∂h

∂y

Since the disturbances occur about a basic state of no motion with f = f0

∂u

∂t
− f0v = −g∂h

∂x
, and

∂v

∂t
+ f0u = −g∂h

∂y

Expanding the variables into their average and deviation from the average values leads to

∂

∂t
(u+ u′)− f0v

′ = −g ∂
∂x

(H + h′)
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The mean meridional flow is zero (mean flow is zonal), and u and H are constants

∂u′

∂t
− f0v

′ = −g∂h
′

∂x
, and

∂v′

∂t
+ f0u

′ = −g∂h
′

∂y

For the continuity equation we have

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

∴
∫ h

0

∂w

∂z
dz = −

∫ h

0

(
∂u

∂x
+
∂v

∂y

)
dz

w(h)− w(0) = −h
(
∂u

∂x
+
∂v

∂y

)

Since w(h) =
Dh

Dt
=
∂h

∂t

∴
∂h

∂t
+ h

(
∂u

∂x
+
∂v

∂y

)
= 0

∴
∂h′

∂t
+H

(
∂u′

∂x
+
∂v′

∂y

)
= 0,

because products of perturbations can be neglected.

Take

∂

∂x

[
∂u′

∂t
− f0v

′ + g
∂h′

∂x

]
+

∂

∂y

[
∂v′

∂t
+ f0u

′ + g
∂h′

∂y

]
= 0

∴
∂

∂t

∂u′

∂x
− f0

∂v′

∂x
+ g

∂2h′

∂x2
+
∂

∂t

∂v′

∂y
− f0

∂u′

∂y
+ g

∂2h′

∂y2
= 0

∴
∂

∂t

(
∂u′

∂x
+
∂v′

∂y

)
− f0

(
∂v′

∂x
− ∂u′

∂y

)
+ g

(
∂2h′

∂x2
+
∂2h′

∂y2

)
= 0

∴
∂

∂t

(
1

H

∂h′

∂t

)
− f0ζ

′ + g

(
∂2h′

∂x2
+
∂2h′

∂y2

)
= 0 with ζ ′ =

∂v′

∂x
− ∂u′

∂y

∴
∂2h′

∂t2
− gH

(
∂2h′

∂x2
+
∂2h′

∂y2

)
+ f0Hζ

′ = 0

Recall that the shallow water wave speed is
√
gH ,

∴
∂2h′

∂t2
− c2

(
∂2h′

∂x2
+
∂2h′

∂y2

)
+ f0Hζ

′ = 0,

with c2 = gH .

Imagine wind field initially in geostrophic balance. Suppose an external process increases the horizontal
pressure gradient that leads to a faster geostrophic wind speed. The result is that the pressure gradient force
becomes greater than the Coriolis force and the wind is subsequently slightly turned towards low pressure
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and accelerates the air. This unbalanced flow eventually obtains geostrophic balance again. We next consider
the mathematics describing the evolution towards geostrophic balance.

Take

∂

∂x

[
∂v′

∂t
+ f0u

′ + g
∂h′

∂y

]
− ∂

∂y

[
∂u′

∂t
− f0v

′ + g
∂h′

∂x

]
= 0

∴
∂

∂t

(
∂v′

∂x
− ∂u′

∂y

)
− f0

(
∂u′

∂x
+
∂v′

∂y

)
+ g

(
∂2h′

∂x∂y
− ∂2h′

∂x∂y

)
= 0

∴
∂ζ ′

∂t
+ f0

(
∂u′

∂x
+
∂v′

∂y

)
= 0

∴
∂ζ ′

∂t
− f0
H

∂h′

∂t
= 0

∴
∂

∂t

(
ζ ′

f0
− h′

H

)
= 0,

which implies that
ζ ′

f0
− h′

H
is a constant over time.

Consider an idealized shallow water system on a rotating plane, i.e. f0 ̸= 0, with the following initial
conditions:

u′ = 0, v′ = 0 and h′ = −h0sgn(x),

where sgn(x) = 1 for x > 0, and sgn(x) = −1 for x < 0.

At x = 0, we have initially h′ with the fluid motionless.

Owing to the conservation relationship above, we have(
ζ ′

f0
− h′

H

)
final

=

[(
0− (−h0)

H

)
sgn(x)

]
initial

because ζ ′initial = 0 with a motionless fluid.

ζ ′

f0
− h′

H
=

(
h0
H

)
sgn(x)

∴
∂2h′

∂t2
− c2

(
∂2h′

∂x2
+
∂2h′

∂y2

)
+ f0H

[
f0h

′

H
+

(
f0h0
H

)
sgn(x)

]
= 0

∴
∂2h′

∂t2
− c2

(
∂2h′

∂x2
+
∂2h′

∂y2

)
+ f20h

′ = −(f20h0)sgn(x)

h′ is initially independent of y, and due to conservation remains so for all time (i.e. ∂2h′/∂t2 = 0).
Therefore, the equation reduces to

−c2d
2h′

dx2
+ f20h

′ = −(f20h0)sgn(x).

Since h′ = h′(x), assume the following wave equation for h′(x), namely

h′ = A exp(ikx).
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Given that the amplitude, A, is represented by h0

d2

dx2
(h0 exp(ikx)) = −k2h0 exp(ikx) = −k2h′

∴ −c2(−k2h′) + f20h
′ = −(f20h0)sgn(x)

Consider the homogeneous case of h0 = 0, we get

c2k2 = −f20

∴ k =
if0√
gH

since c2 = gH

=
i

λR

where λR ≡
√
gH

f0
is the Rossby radius of deformation.

∴ h′ = h0 exp

(
i

(
i

λR

)
x

)
= h0 exp

(
− x

λR

)

Since this solution depends on the sign of x, h′ = h0 exp

(
−|x|
λR

)
.

Consider the previously derived perturbation horizontal momentum equations. Since h′ ̸= h′(y) and u′ and
v′ are constant over time

u′ = 0, and

v′ =
g

f0

∂

∂x

(
h0 exp

(
− x

λR

))
= − gh0

f0λR
exp

(
− x

λR

)
Since this solution also depends on the sign of x,

v′ = − gh0
f0λR

exp

(
−|x|
λR

)
.

Because
ζ ′

f0
− h′

H
(the conservation relationship) is constant over time we are able to determine the steady-

state geostrophically adjusted velocity and height fields without performing an integration over time. How-
ever, if the evolution of the adjustment process is needed, we need to solve for

∂2h′

∂t2
− c2

(
∂2h′

∂x2
+
∂2h′

∂y2

)
+ f20h

′ = −(f20h0)sgn(x)

subject to the initial conditions specified above.
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To further investigate the evolution process, consider a simplified version of the horizontal momentum
equations and the continuity equations for the case of no y dependence:

∂u′

∂t
− f0v

′ = −g∂h
′

∂x
∂v′

∂t
+ f0u

′ = 0

∂h′

∂t
+H

∂u′

∂x
= 0

Such differential equations can be solved using intrinsic functions of a programming language with the
following initial conditions

u′ = 0

v′ = 0, and

h′ represented by a sinusoidal function.

Since h′ =
Φ′

g
, the solution is for a sinusoidally varying height field.

The figure below shows the results for latitude 45◦S for various wavelengths, and for a time evolution of 10
days. Take note that the final balanced wind only has a meridional (v′) component, i.e. all the u′ velocities
stabilizes at a zero value, and that the geostrophically adjusted heights’ stability is dependent on wavelength.

We have already explained in simple terms how geostrophic balance is reached when an external process
acts on the horizontal pressure gradient. Another very important example where geostrophic adjustment
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plays a role is in the initialization process of numerical weather models. If the initial conditions are not in
quasi-geostrophic balance, an unbalanced portion of the initial field will project onto inertia-gravity waves.
These waves disperse quite fast, and after a while the amplitude of the inertia-gravity waves becomes much
smaller, so that all that remains are fields in quasi-geostrophic balance.

Equatorial Kelvin waves

Equatorial waves are eastward as well as westward propagating disturbances, in both the ocean and atmo-
sphere, that are “trapped” about the equator, acting as a waveguide. Equatorial Kelvin waves, which are
waves that move only towards the east, play an important role in the dynamics of ENSO by transferring
changes in conditions in the western Pacific to the eastern Pacific. For example, tropical convection can give
rise to atmospheric equatorial waves, which in turn can cause the effects of convection to be transported
over large longitudinal distances.

Since we are interested only in the tropics for this discussion, we consider an equatorial β-plane. In such
a case, β ≡ 2Ω/a with Ω the angular velocity of the Earth (7.292 × 10−5 s−1), a the radius of the Earth
(6.37× 106m), and the Coriolis parameter f is approximated by βy, with y the distance from the equator.
The approximation f ≈ βy (∴ y ≃ f/β) is mainly restricted to latitudes of 30◦ north and south of the
equator, which is just beyond 3000 km north and south of the equator. For 20◦ of latitude, the distance is
about 2000 km.

In order to obtain an understanding of the dynamics of Kelvin waves, consider this set of equations that
represent the horizontal momentum equations and the continuity equation

∂u

∂t
− fv = −g∂h

∂x
,

∂v

∂t
+ fu = −g∂h

∂y
, and

∂h

∂t
+H

(
∂u

∂x
+
∂v

∂y

)
= 0,

with h (= h(x, y, t)) the thickness of a layer of fluid, and H the mean depth of the layer.

Because Kelvin waves tend to get trapped in a zone around the equator and move only towards the east, we
can simplify the above equations by assuming that v is small enough to ignore entirely. The equations then
become

∂u

∂t
+ g

∂h

∂x
= 0,

fu+ g
∂h

∂y
= 0, and

∂h

∂t
+H

∂u

∂x
= 0.

From the first equation we get
∂u

∂t
= −g∂h

∂x
. For the remaining two equations we differentiate both with
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respect to t:

∂

∂t

(
fu+ g

∂h

∂y

)
= 0

∴ f
∂u

∂t
+ g

∂2h

∂t∂y
= 0

∴ f

(
−g∂h

∂x

)
+ g

∂2h

∂t∂y
= 0

∴
∂2h

∂t∂y
− f

∂h

∂x
= 0

Also,
∂

∂t

(
∂h

∂t
+H

∂u

∂x

)
= 0

∴
∂2h

∂t2
+H

∂

∂x

(
−g∂h

∂x

)
= 0

∴
∂2h

∂t2
− gH

∂2h

∂x2
= 0

Equatorial Kelvin waves as travelling waves, propagte in the zonal direction and decay in the meridional
direction. We therefore consider an elementary solution of the form

h(x, y, t) = γ(y)ei(kx−νt),

where k is the zonal wave number, ν the frequency, and γ(y) decaying as |y| → ∞. Take note that the phase
speed, c, of the travelling waves is related to the frequency so that

ν =
c

k
.

Next, we apply the operators of the partial differential equations for h:

∂2h

∂t∂y
= −iν ∂h

∂y

∂h

∂x
= ikh

∂2h

∂t2
= −ν2h

∂2h

∂x2
= −k2h

∴ −ν2h− gH(−k2h) = 0

∴ ν2 = gHk2

Also,

∴ −iν ∂h
∂y

− f(ikh) = 0

∴ −iν
(
∂γ

∂y
ei(kx−νt) + γ × 0

)
− βyikh = 0

7



Multiplying throughout by γ:

∴ −iν ∂γ
∂y

(
γei(kx−νt)

)
− γβyikh = 0

∴ −iν ∂γ
∂y

− ikγβy = 0

∴
∂γ

∂y
=
dγ

dy
= −βk

ν
yγ(y)

Since β > 0 and k > 0, and if ν > 0, it follows that
dγ

dy
< 0, which is in agreement with the assumption

that γ(y) decays as |y| → ∞.

A solution for γ(y) = e
−
βk

2ν
y2

, because

dγ

dy
= −2βk

2ν
ye

−
βk

2ν
y2

= −βk
ν
yγ(y).

Therefore, in order for γ(y) to decay, ν > 0. However,

ν2 = gHk2

∴ ν = +
√
gHk

Since c = ν/k, and the wave group speed, cg = ∂ν/∂k

c = +
√
gH and cg = +

√
gH

Because c = cg, equatorial Kelvin waves propagate without dispersion. When waves are dispersive, their
phase speed varies with k, and the various wave components of a disturbance that originated at a given
location are found in different places at a later time. For non-dispersive Kelvin waves, a group of such
waves will preserve its shape as it propagates in space at the phase speed of the wave (cg = c).

We can now finalize the equation that describes the thickness of the layer of a fluid:

h(x, y, t) = γ(y)ei(kx−νt)

= e
−
(
βk

2ν

)
y2

ei(kx−νt)

= e
−
(
β

2c

)
y2

eik(x−ct)

Because of the importance of Kelvin wave sin ENSO dynamics, we discuss the application of the above
equation in h(x, y, t) as a component of ocean waves. In fact, h is considered here to be the layer thickness
variation (thickening counted positively and thinning counted negatively) over time.

Consider the dispersion of a perturbation generated by a prolonged (i.e., more than a week) wind anomaly
imposed on a stretch of equatorial ocean. The figure below shows the results from a finite difference method
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for the equatorial shallow water model that uses the leapfrog numerical scheme. Only the first 10 days of
the integration are shown. Shallow water waves can also occur at interfaces within the ocean where there
is a very sharp temperature gradient called the thermocline. The figure displays the temporal dispersion
of a thermocline displacement that came about because of the said wind anomaly. One can clearly see
the one-bulge equatorial Kelvin wave propagating eastward, and the much stronger double-bulge Rossby
wave propagating westward. Next we evaluate mathematically when such an eastward propagating wave
encounters an eastern boundary such as the west coast of South America.

Figure 1: Numerical evolution of the height field on an equatorial beta plane at the times indicated. The
Kelvin wave moves eastward and the off equatorial Rossby waves move more slowly westward.

Upon making impact on the South American west coast, the equatorial Kelvin waves split up and the result-
ing coastal Kelvin waves propagate poleward into the Northern and Southern Hemisphere. For these coastal
Kelvin waves we ignore zonal wind speeds (u = 0) and assume a constant Coriolis parameter, f0. This
configuration means that the momentum and continuity equations become

−f0v + g
∂hc
∂x

= 0, with hc the thickness of the layer along the coast

∂v

∂t
+ g

∂hc
∂y

= 0, resulting in
∂v

∂t
= −g∂hc

∂y
,

and
∂hc
∂t

+H
∂v

∂y
= 0.
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Differentiating with respect to t:

∂

∂t

(
∂hc
∂t

+H
∂v

∂y

)
= 0

∴
∂2hc
∂t2

+H
∂

∂y

(
−g∂hc

∂y

)
= 0

∴
∂2hc
∂t2

− gH
∂2hc
∂y2

= 0

For the coastal Kelvin waves that propagate only in the meridional direction, we consider a solution of the
form

hc(x, y, t) = γℓ(x)e
i(ℓy−νt)

Applying operators:

∂2hc
∂t2

= (−iν)2hc = −ν2hc

∂2hc
∂y2

= (iℓ)2hc = −ℓ2hc

∴ −ν2hc − gH(−ℓ2hc) = 0

∴ ν2 = gHℓ2

∴ ν = ±
√
gHℓ

Since c =
ν

ℓ
= ±

√
gH

and cg =
∂ν

∂ℓ
= ±

√
gH

Therefore, coastal Kelvin waves are also non-dispersive because c = cg.
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Pressure as a vertical coordinate

Transformation of the horizontal pressure gradient force from height to pressure coordinates:

p0

p0 + δp

x

z

O
δx

δz

[
(p0 + δp)− p0

δx

]
z

=

[
(p0 + δp)− p0

δz

]
x

(
δz

δx

)
p

Limit as δz → 0 :

[
(p0 + δp)− p0

δz

]
x

→ −
(
∂p

∂z

)
x

Limit as δx→ 0 :

[
(p0 + δp)− p0

δx

]
z

→
(
∂p

∂x

)
z

∴

(
∂p

∂x

)
z

= −
(
∂p

∂z

)
x

(
∂z

∂x

)
p

Hydrostatic equation:
∂p

∂z
= −ρg

∴

(
∂p

∂x

)
z

= −(−ρg)
(
∂z

∂x

)
p

11



∴ −1

ρ

(
∂p

∂x

)
z

= −g
(
∂z

∂x

)
p

Recall the geopotential

Φ =

∫ z

0
gdz =⇒ ∂Φ = g∂z

∴ −1

ρ

(
∂p

∂x

)
z

= −
(
∂Φ

∂x

)
p

Isobaric: Characterised by equal or constant pressure, with respect to either space or time.

−1

ρ

(
∂p

∂x

)
z

= −
(
∂Φ

∂x

)
p

(1.25)

and

−1

ρ

(
∂p

∂y

)
z

= −
(
∂Φ

∂y

)
p

(1.26)

=⇒ In the isobaric coordinate system, the horizontal pressure gradient force is measured by the gradient
of geopotential at constant pressure.

Advantage of isobaric system: density is not explicit in the pressure gradient force.

Note:

−1

ρ

(
∂p

∂x

)
z

− 1

ρ

(
∂p

∂y

)
z

= −1

ρ
∇⃗zp

−
(
∂Φ

∂x

)
p

−
(
∂Φ

∂y

)
p

= −∇⃗pΦ

12



A generalized vertical coordinate

Aim: To obtain a general expression for the horizontal pressure gradient; which is applicable to any vertical
coordinate s = s(x, y, z, t)

x

z

δx

δz

PA PB

PC

s = constant

Gradient:
PC − PB

δx
PC − PB

δx
=
PC − PB

δz

δz

δx

PC − PB
δx

− PA
δx

=
PC − PB

δz

δz

δx
− PA
δx

PC − PB − PA
δx

=
PC − PB

δz

δz

δx
− PA
δx

PC − PA
δx

− PB
δx

=
PC − PB

δz

δz

δx
− PA
δx

PC − PA
δx

=
PC − PB

δz

δz

δx
+
PB − PA

δx

13



PC − PA : along diagonalwhere s is constant

δz

δx
: its diagonal is constant s

PB − PA : along xwhere z is constant

Taking the limits as δx, δz → 0

=⇒
(
∂p

∂x

)
s

=
∂p

∂z

(
∂z

∂x

)
s

+

(
∂p

∂x

)
z

(1.27)

Identity:
∂p

∂z
=

(
∂s

∂z

)(
∂p

∂s

)

∴

(
∂p

∂x

)
s

=

(
∂s

∂z

)(
∂p

∂s

)(
∂z

∂x

)
s

+

(
∂p

∂x

)
z

=

(
∂p

∂x

)
z

+
∂s

∂z

(
∂z

∂x

)
s

(
∂p

∂s

)
(1.28)
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Basic equations in isobaric coordinates

The horizontal momentum equation

Du

Dt
− fv = −1

ρ

∂p

∂x
(2.24)

Dv

Dt
+ fu = −1

ρ

∂p

∂y
(2.25)

In vertical form:
DV⃗

Dt
+ fk⃗ × V⃗ = −1

ρ
∇⃗p (3.1)

where V⃗ = i⃗u+ j⃗v is the horizontal velocity.

From page 12:

−1

ρ

(
∂p

∂x

)
z

= −
(
∂Φ

∂x

)
p

and −1

ρ

(
∂p

∂y

)
z

= −
(
∂Φ

∂y

)
p

DV⃗

Dt
+ fk⃗ × V⃗ = −∇⃗pΦ (δp < 0)

∇⃗p: horizontal gradient operator (p held constant)

D

Dt
=

∂

∂t
+
Dx

Dt

∂

∂x
+
Dy

Dt

∂

∂y
+
Dp

Dt

∂

∂p

=
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ ω

∂

∂p

where ω =
Dp

Dt
is the “omega” vertical motion, the pressure change following the motion.

Consider equation (2.24) again:
Du

Dt
− fv = −1

ρ

∂p

∂x
,

with fv the Coriolis force and
1

ρ

∂p

∂x
the pressure gradient force (Pgf ).
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On the synoptic scale, the order of magnitude of the meridional wind speed, v, is about 10m s−1. Therefore,
the order of magnitude of the Coriolis force, |fv|, is

(
10−4 s−1

) (
10m s−1

)
, which is 10−3ms−2.

Also on the synoptic scale, the Pgf ,
1

ρ

∂p

∂x
has a scale of approximately

1

1 kgm−3

10 hPa

1000 km
=

(
kg−1m3

) (
1000Nm−2

)
1 000 000m

= 10−3 kg−1 kgm s−2

= 10−3ms−2

The Coriolis force and Pgf are, therefore, of similar scales. We can thus infer that
Du

Dt
(acceleration) must

be small, provided that significant flow curvature is absent, in order for the two forces to be in balance.

Geostrophic wind

V⃗g = i⃗ug + j⃗vg

Vectorial form of the geostrophic wind:

V⃗g ≡ k⃗ × 1

ρf
∇⃗p

∴ fV⃗g = k⃗ × 1

ρ
∇⃗p

(
−1

ρ
δp = gδz = δΦ

)
= k⃗ × ∇⃗pΦ︸ ︷︷ ︸

No density term!

(3.4)

Thus, a given geopotential gradient implies the same geostrophic wind at any height, whereas a given
horizontal pressure gradient implies different geostrophic wind values depending on the density.

From the vector form of the geostrophic wind and the definition of ageostrophic wind:

vg =
1

ρf

∂p

∂x
and va = v − vg

∴ va = v − 1

ρf

∂p

∂x

∴ fva = fv − 1

ρ

∂p

∂x

Ageostrophic flow must therefore also be small on the synoptic scale.

As a result of the approximate balance between the Coriolis force andPgf , both acceleration and ageostrophic
motion are small on the synoptic scale.

Additionally, it can be shown that for constant Coriolis parameter (f = f0) that the geostrophic wind (V⃗g)
is non divergent. This implies that the flow is purely horizontal (i.e., ω = 0).
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Exercise: The definition of the geostrophic wind in vector form is

fV⃗g = k⃗ × ∇⃗pΦ

Derive the divergence of the geostrophic wind for BOTH a constant and variable definition of the Coriolis
parameter. For a variable Coriolis parameter, first show that

∇⃗ · V⃗g = −β
f
vg,

then consider

a

δφ δy

where a (= RE) is the radius of the Earth, ϕ is the latitude and y the length along a latitude circle, to show
that for a variable Coriolis parameter the divergence of geostrophic wind is equal to

−vg
cotϕ

RE

Solution:

For constant Coriolis parameter:

fV⃗g = k⃗ × ∇⃗Φ

∇⃗ · (fV⃗g) = ∇⃗ ·
(
k⃗ ×

(
∂

∂x
i⃗+

∂

∂y
j⃗

)
Φ

)
f∇⃗ · V⃗g = ∇⃗ ·

(
∂

∂x
j⃗ − ∂

∂y
i⃗

)
Φ

=

(
∂

∂x
i⃗+

∂

∂y
j⃗

)
·
(
− ∂

∂y
i⃗+

∂

∂x
j⃗

)
Φ

=

(
− ∂2

∂x∂y
+

∂2

∂y∂x

)
Φ

∴ ∇⃗ · V⃗g = 0

For variable Coriolis parameter:
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We have shown above that ∇⃗ ·
[
k⃗ × ∇⃗Φ

]
= 0

∇⃗ · (fV⃗g) = 0

∴ ∇⃗ · (fug⃗i+ fvg j⃗) = 0

∴

(
∂

∂x
i⃗+

∂

∂y
j⃗

)
· (fug⃗i+ fvg j⃗) = 0

∴
∂

∂x
(fug) +

∂

∂y
(fvg) = 0

∴
∂f

∂x
ug + f

∂ug
∂x

+
∂f

∂y
vg + f

∂vg
∂y

= 0

∴ f

(
∂ug
∂x

+
∂vg
∂y

)
= −∂f

∂y
vg

∴ f∇⃗ · V⃗g = −βvg

∴ ∇⃗ · V⃗g = −β
f
vg (A)

From the figure

δy = aδϕ

∴
1

δy
=

1

a

1

δϕ

β =
∂f

∂y

=
1

a

∂f

∂ϕ

=
1

a

∂

∂ϕ
(2Ω sinϕ)

=
2Ω

a
cosϕ

∴ ∇⃗ · V⃗g = −2Ω

a
cosϕ(2Ω sinϕ)−1vg

= −vg
a

cosϕ

sinϕ

= −vg
cotϕ

a

= −vg
cotϕ

RE
(B)

Equation (A) can be analysed in order to show the variability of divergence with latitude. The divergence
of V⃗g is directly proportional to β and indirectly proportional to f . Figure 2 shows the variability of the
Coriolis parameter, f , with latitude. Many features of f become immediately apparent. Firstly, as we know,
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the Coriolis parameter is negative in the SH and positive in the NH. The magnitude of the Coriolis parameter
reaches a maximum at the poles and is zero at the equator. Values of the Coriolis parameter are of the order
10−4 s−1. From Equation (A), it can be seen that the equation is undefined at the equator where f = 0.
However as |f | → 0 close to the equator, it follows from equation (A) that the divergence becomes large
and

∣∣∣∇⃗ · V⃗g
∣∣∣→ ∞. Conversely, as |f | increases towards its maximum value, the divergence of V⃗g becomes

smaller such that
∣∣∣∇⃗ · V⃗g

∣∣∣ → 0. For completeness, the β-term is also shown in Figure 3. The magnitude of
the β-term increases to a maximum towards the equator and decreases towards the poles. Note that β is very
small and of the order of 10−11m−1 s−1. The contribution of β to the amount of divergence is therefore
similar to that of f where it contributes to a greater magnitude of divergence towards the equator whilst a
lesser magnitude of divergence close to the poles.

Figure 2: The variability of the Coriolis parameter with latitude.
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Figure 3: The variation of beta with latitude. Take note that the value of β is of the order 10−11m−1 s−1 at
45°S.

A calculation of the divergence term in Equation (B) provides corroboration of our analysis of Equation (A).
The variability of divergence as given by Equation (A) is plotted in Figure 4 below for a number of different
vg values.

Figure 4: The divergence of the geostrophic wind for a Coriolis parameter that is not constant.
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As shown mathematically above, Figure 4 shows that for any vg the divergence of V⃗g → ∞ as the latitude
→ 0. Conversely, the divergence of V⃗g → 0 as latitude → −90°. For equatorward flow (vg > 0), divergence
occurs, whilst for poleward flow (vg < 0), convergence (negative divergence) occurs.

Importantly, the amount of divergence is small for the majority of the hemisphere, with the exception of flow
near the equator. Near the equator, the Coriolis force is very weak or close to zero and thus the geostrophic
flow is divergent (i.e., the geostrophic approximation does not hold here since the Coriolis and pressure
gradient forces are not in balance). The lack of Coriolis force at the equator is the primary reason why
Tropical Cyclones cannot form close to the equator.

The continuity equation

Lagrangian control volume: δV = δxδyδz

Hydrostatic equation:

δp

δz
= −ρg

∴ δz = − 1

ρg
δp

∴ δV = − 1

ρg
δxδyδp

Mass, conserved following the motion:

δM = ρδV

∴ δM = −1

g
δxδyδp

Thus,
1

δM

D

Dt
(δM) =

g

δxδyδp

D

Dt

(
δxδyδp

g

)
= 0

The last expression follows from the conservation of mass where
D

Dt
(δM) = 0 =⇒ 1

δM

D

Dt
(δM) =

0

δM
Therefore,

g

δxδyδp

D

Dt

(
δxδyδp

g

)
= 0

g

δxδyδp

δxδy

g

D

Dt
δp+

g

δxδyδp

δxδp

g

D

Dt
δy +

g

δxδyδp

δyδp

g

D

Dt
δx = 0 (Chain rule)

1

δx

D

Dt
δx+

1

δy

D

Dt
δy +

1

δp

D

Dt
δp = 0

1

δx
δ

(
Dx

Dt

)
︸ ︷︷ ︸

= u

+
1

δy
δ

(
Dy

Dt

)
︸ ︷︷ ︸

= v

+
1

δp
δ

(
Dp

Dt

)
︸ ︷︷ ︸

= ω

= 0

δu

δx
+
δv

δy
+
δω

δp
= 0
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Taking limits as δx, δy, δp→ 0

And δx, δy are evaluated at constant pressure(
∂u

∂x
+
∂v

∂y

)
p

+
∂ω

∂p︸ ︷︷ ︸
No density, no time derivative!

= 0

∂ω

∂p
= −∇⃗ · V⃗

Horizontal divergence: ∇⃗ · V⃗ > 0 =⇒ ∂ω

∂p
< 0, vertical squashing.

Figure 5: Algebraic signs of ω in the midtroposphere associated with convergence and divergence in the
lower troposphere. [Source: Wallace, J.M. and Hobbs, P.V. (2006). Atmospheric Science: An Introductory
Survey, 2nd Ed. Academic Press, pp. 483]

The thermodynamic energy equation

First law of Thermodynamics:

cp
DT

Dt
− α

Dp

Dt
= J (2.42)

where
Dp

Dt
= ω and J is the diabatic heating rate; the rate of heating per unit mass due to radiation,

conduction, and latent heat release.

∴ cp

(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ ω

∂T

∂p

)
− αω = J

Equation of state: pα = RT

∴

(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

)
+ ω

∂T

∂p
− RT

cpp
ω =

J

cp

∴

(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

)
− ω

(
RT

cpp
− ∂T

∂p

)
=
J

cp

∂T

∂t
+ V⃗ · ∇⃗T − ω

(
RT

cpp
− ∂T

∂p

)
=
J

cp
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Static stability parameter for the isobaric system: Sp ≡
RT

cpp
− ∂T

∂p

∴
∂T

∂t
+ V⃗ · ∇⃗T − Spω =

J

cp

It can be shown that Sp ≡
Γd − Γ

ρg

For observed lapse rate equal to the dry adiabatic lapse rate, Sp = 0

∴
∂T

∂t
+ V⃗ · ∇⃗T =

J

cp

If the motion is adiabatic, J = 0

∴
∂T

∂t
+ V⃗ · ∇⃗T = 0

Exercise 1: A frontal zone moves over Tshwane overnight so that the local temperature falls at a rate of
1°C · h−1. The wind is blowing from the South at 10 km ·h−1. The temperature is decreasing with latitude
at a rate of 10°C per 100 km. Neglecting diabatic heating, and for the case of the observed lapse rate being
equal to the dry adiabatic lapse rate, use the thermodynamic energy equation to describe the local rate of
temperature change, and the advection of temperature over Tshwane.

Solution:
∂T

∂t
+ V⃗ · ∇⃗T − Spω =

J

cp

∴
∂T

∂t
= −V⃗ · ∇⃗T

Left hand side:
∂T

∂t
= −1°C · h−1

Right hand side:

−V⃗ · ∇⃗T = −(u⃗i+ vj⃗) ·
(
∂T

∂x
i⃗+

∂T

∂y
j⃗

)
= −u∂T

∂x
− v

∂T

∂y

= −v∂T
∂y

(since u = 0)

= −(10 km · h−1)

(
−10°C
100 km

)
(v > 0)

= 1°C · h−1

In order for the left and right hand sides to be equal, the right-hand side must be reduced by 2°C ·h−1. Such
a reduction may be caused by adiabatic cooling due to vertical advection.
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∴ Right hand side = 1°C · h−1−2°C · h−1

= −1°C · h−1

= Left hand side

Exercise 2: Explain in words what this form of the thermodynamic energy equations represents:

∂T

∂t
+ V⃗ · ∇⃗T = 0

Solution: It represents the balance between the local rate of temperature change and the advection of tem-
perature.
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Balanced flow

Assumptions:

1. flows are steady state (i.e. time independent)

2. no vertical component of velocity

Natural coordinates

Defined by the orthogonal set of unit vectors t⃗, n⃗ and k⃗

t⃗ : parallel to the horizontal velocity at each point

n⃗ : normal to the horizontal velocity; positive to the left of the flow direction

k⃗ : vertically upward

Horizontal velocity V⃗ = V t⃗; where V is the horizontal speed, non-negative scalar

V ≡ Ds

Dt

where s(x, y, t) is the distance along the curve of parcel.

Acceleration following the motion:

DV⃗

Dt
=
D(V t⃗)

Dt

=
DV

Dt
t⃗+

Dt⃗

Dt
V

25



δψ

R

n

δs

δψ

t

t+ δt

δt

According to the figure: δs = |R|δψ (“s = rθ”),

where R is the radius of curvature following the parcel motion.

δψ =
δs

|R|
=
δt⃗

|⃗t|
(considered small triangle)

|⃗t| = 1

=⇒ δs

|R|
= |δt⃗|

|δt⃗|
δs

=
1

|R|

In the limit δs→ 0, δt⃗ becomes parallel to n⃗

=⇒ Dt⃗

Ds
=
n⃗

R
(because n⃗ is a unit vector: |n⃗| = 1)

Dt⃗

Dt
=
Dt⃗

Ds

Ds

Dt
=
n⃗

R
V

(
V ≡ Ds

Dt

)
=⇒ DV⃗

Dt
= t⃗

DV

Dt
+ V

(
n⃗

R
V

)
DV⃗

Dt
= t⃗

DV

Dt
+ n⃗

V 2

R
(3.8)

where:

DV⃗

Dt
is the acceleration following the motion.

t⃗
DV

Dt
is the rate of change of speed of the air parcel.

n⃗
V 2

R
is the centripetal acceleration due to curvature of trajectory.
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Acceleration due to Coriolis force:

= −fk⃗ × V⃗

= −fk⃗ × V t⃗

= −fV n⃗

t

nk

Horizontal pressure gradient = −∇⃗pΦ

Change of geopotential along the curve =
∂Φ

∂s

Change of geopotential perpendicular to the curve =
∂Φ

∂n

In natural coordinate system: = ∇⃗pΦ =
∂Φ

∂s
t⃗+

∂Φ

∂n
n⃗

Since
DV⃗

Dt
= −fk⃗ × V⃗ − ∇⃗pΦ︸ ︷︷ ︸

(3.2)

= −fV n⃗−
(
t⃗
∂Φ

∂s
+ n⃗

∂Φ

∂n

)

And
DV⃗

Dt
= t⃗

DV

Dt
+ n⃗

V 2

R

DV

Dt
= −∂Φ

∂s︸ ︷︷ ︸
(3.9)

and
V 2

R
= −fV − ∂Φ

∂n
=⇒ V 2

R
+ fV = −∂Φ

∂n︸ ︷︷ ︸
(3.10)

DV

Dt
= −∂Φ

∂s
: force balance parallel to the direction of flow.

V 2

R
+ fV = −∂Φ

∂n
: force balance normal to the direction of flow.

For motion parallel to geopotential height then Φ remains unchanged:

∂Φ

∂s
= 0

∴
DV

Dt
= 0

=⇒ Speed is constant following the motion
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If the geopotential gradient normal to the direction of motion is constant along a trajectory

∂Φ

∂n
= 0

∴
V 2

R
+ fV = 0

∴ R =
−V 2

fV
=

−V
f

=⇒ radius of curvature, R, is constant.

Geostrophic flow

Geostrophic motion: flow in a straight line (R→ ±∞) parallel to height contours.

For R→ ±∞,
V 2

R
→ 0

In geostrophic motion the horizontal components of the Coriolis force and pressure gradient force are in
exact balance, thus V = Vg

∴ 0 + fV = fVg = −∂Φ
∂n

(3.11)

The balance

Φ0

Vg

Φ0 + δΦ

P

Co

Pressure gradient force

Coriolis force

The actual wind can be in exact geostrophic motion only if the height contours are parallel to latitude circles.

Although the geostrophic wind is generally a good approximation to the actual wind in extra-tropical
synoptic-scale disturbances, in some special cases this is not true!

In the Southern Hemisphere, the geopotential values are smaller on the right side than on the left side relative
to the direction of the geostrophic wind. The pressure gradient force is therefore directed towards the right
of the wind. In order to manifest a particularly simple balance of horizontal forces on the flow, the Coriolis
force associated with this wind is directed to the left.
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Inertial flow

If the geopotential field is uniform on an isobaric surface so that the horizontal pressure gradient vanishes(
∂Φ

∂n
= 0

)
:

V 2

R
+ fV = 0 (3.12)

(3.12): Coriolis force and centrifugal force are balanced.

R = −V
f

NOTE:

1) In the atmosphere motions are nearly always generated and maintained by pressure gradient forces

2) The condition of uniform pressure required for pure inertial flow rarely exist

Balanced flow

Consider the natural coordinate system where the unit vector n⃗ is normal to the horizontal velocity and is
positive to the left of the flow direction. This configuration applies to both hemispheres.

n

n

L H

H L

R > 0

R > 0

R > 0

R < 0

R < 0

R > 0

for cyclonic flow

for anticyclonic flow

for anticyclonic flow

for cyclonic flow

NH

SH

R > 0 when the centre of curvature is in the positive n⃗ direction.
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Regarding
∂Φ

∂n
:

For the NH:

For LOW pressure system

δΦ < 0 (geopotential decreases towards centre)

δn > 0 (n⃗ pointing towards centre of low)

∴
∂Φ

∂n
< 0

For HIGH pressure system

δΦ > 0 (geopotential increases towards centre)

δn < 0 (n⃗ pointing towards centre of low)

∴
∂Φ

∂n
< 0

For the SH:

For LOW pressure system δΦ < 0, δn < 0 therefore
∂Φ

∂n
> 0

For HIGH pressure system δΦ > 0, δn > 0 therefore
∂Φ

∂n
> 0

Cyclostrophic flow

If the horizontal scale of an atmospheric disturbance is small enough, the Coriolis force may be neglected
when compared with the centrifugal force and the pressure gradient force:

Centrifugal force
V 2

R
≫ fV

Pressure gradient force
∂Φ

∂n
≫ fV

From Eq. (3.10):

V 2

R
= −∂Φ

∂n

V =

(
−R∂Φ

∂n

)1/2

, the cyclostrophic wind speed.

Case 1: R > 0 and
∂Φ

∂n
> 0

R
∂Φ

∂n
> 0

∴ −R∂Φ
∂n

< 0

=⇒ Negative root, V physically impossible
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Case 2: R < 0 and
∂Φ

∂n
> 0

R
∂Φ

∂n
< 0

∴ −R∂Φ
∂n

> 0

=⇒ Positive root, V physically possible

Case 3: R > 0 and
∂Φ

∂n
< 0

R
∂Φ

∂n
< 0

∴ −R∂Φ
∂n

> 0

=⇒ Positive root, V physically possible

Case 4: R < 0 and
∂Φ

∂n
< 0

R
∂Φ

∂n
> 0

∴ −R∂Φ
∂n

< 0

=⇒ Negative root, V physically impossible

The mathematically positive roots of the speed of the cyclostrophic wind correspond to only two physically
possible solutions:

R < 0 and
∂Φ

∂n
> 0 (Case 2)

and
R > 0 and

∂Φ

∂n
< 0 (Case 3)

Consider the figures on the next page. Since the Coriolis force is not a factor, around lows, cyclostrophic
winds can turn either clockwise or counterclockwise. As discussed in the balanced flow section, n⃗ is positive
to the left of the flow direction, R > 0 when curvature centre is in n⃗ direction.

Therefore,

NH: Cyclonic flow R > 0 and anti-cyclonic flow R < 0

SH: Cyclonic flow R < 0 and anti-cyclonic flow R > 0

Regarding
∂Φ

∂n
:

Since we are dealing here with (intense) low pressure systems δΦ < 0 for cyclonic and anti-cyclonic flow,
and for both hemispheres.
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NH: Cyclonic flow δn > 0 therefore
∂Φ

∂n
< 0

SH: Cyclonic flow δn < 0 therefore
∂Φ

∂n
> 0

NH: anti-cyclonic flow δn < 0 therefore
∂Φ

∂n
> 0

SH: anti-cyclonic flow δn > 0 therefore
∂Φ

∂n
< 0

Cyclostrophic wind classification:

∂Φ

∂n
(+/−) R > 0 R < 0

Positive Case 1: unphysical Case 2: physical
NH: anti-cyclonic; SH: cyclonic

Negative Case 3: physical
NH: cyclonic; SH: anti-cyclonic

Case 4: unphysical

n n

n n

V V

V V

R > 0, ∂Φ
∂n

< 0

R < 0, ∂Φ
∂n

> 0

R > 0, ∂Φ
∂n

< 0

R < 0, ∂Φ
∂n

> 0

NH

NH

SH

SH

L L

L L

Cyclonic

CyclonicAnticyclonic

Anticyclonic

CASE 3

CASE 2
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Exercise: By means of drawing circular symmetric motion figures, explain why there can be no cyclostrophic
balance around a small high pressure centre.

Solution:

V

V

L HPgf CoCe

Co

Pgf

Ce

Regular LOW Regular HIGH

Balanced forces Forces not balanced

For cyclostrophic flow, the Coriolis force becomes negligible compared with other two forces. For a LOW,
there can still be balance. In this case between Ce and Pgf. However, for a HIGH, Ce and Pgf point in the
same direction. So no balance is possible here.

The gradient wind approximation

Gradient Flow: Horizontal frictionless flows that is parallel to the height contours so that the tangential

acceleration vanishes, i.e.
DV

Dt
= 0.

Gradient Flow is a 3-way balance among:

1) The Coriolis force

2) The centrifugal force

3) The horizontal pressure gradient force

A gradient wind is just the wind component parallel to the height contour that satisfies:

V 2

R
+ fV = −∂Φ

∂n︸ ︷︷ ︸
the gradient wind equation

(3.10)

For a quadratic equation ax2 + bx+ c = 0, solving the equation for x

x =
−b± (b2 − 4ac)

1
2

2a
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Therefore, solving for V in Eq. (3.10), a =
1

R
, b = f , c =

∂Φ

∂n

V =

−f ±
(
f2 − 4

1

R

∂Φ

∂n

) 1
2

2

R

= −fR
2

± R

2

(
f2 − 4

R

∂Φ

∂n

) 1
2

= −fR
2

±

((
R

2

)2(
f2 − 4

R

∂Φ

∂n

)) 1
2

For geostrophic flow

fVg = −∂Φ
∂n

∴
∂Φ

∂n
= −fVg

V = −fR
2

±
(
f2R2

4
+ fRVg

) 1
2

(3.15)

Determining the mathematically possible roots of (3.15)

V = −fR
2

±
(
f2R2

4
+ fRVg

) 1
2

︸ ︷︷ ︸
the gradient wind

By the geostrophic approximation Vg = − 1

f

∂Φ

∂n
i.t.o the pressure gradient

V = −fR
2

±
(
f2R2

4
−R

∂Φ

∂n

) 1
2

(A)

Objective: Determine the cases for which the solution of (A) is both positive and real

The gradient wind approximation: SOUTHERN HEMISPHERE (f < 0)

Case 1: For R > 0 and
∂Φ

∂n
> 0

fR < 0, −fR
2

> 0

R
∂Φ

∂n
> 0, −R∂Φ

∂n
< 0
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Since V has to be real,
f2R2

4
−R

∂Φ

∂n
> 0

V = −fR
2

±
(
f2R2

4
−R

∂Φ

∂n

) 1
2

For positive root:

V = Positive value
(
−fR

2

)
+ positive(+√

)

∴ V > 0, and therefore physically possible.

For negative root: First consider
f2R2

4
> 0

∴
f2R2

4
>
f2R2

4
−R

∂Φ

∂n

(
since −R

∂Φ

∂n
< 0

)

∴

(
f2R2

4

)1/2

>

(
f2R2

4
−R

∂Φ

∂n

)1/2

But we are considering negative roots:

−
(
f2R2

4

)1/2

< −
(
f2R2

4
−R

∂Φ

∂n

)1/2

∴ −fR
2

−
(
f2R2

4

)1/2

< −fR
2

−
(
f2R2

4
−R

∂Φ

∂n

)1/2

= V

∴ V > −fR
2

−
(
f2R2

4

)1/2

= −fR
2

−
∣∣∣∣fR2

∣∣∣∣︸ ︷︷ ︸
fR

2
< 0 from *

= −fR
2

−
(
−fR

2

)
= 0

∴ V > 0, and therefore physically possible.

* |x| = x for x > 0

|x| = −x for x < 0

Case 2: For R < 0 and
∂Φ

∂n
> 0

fR > 0, −fR
2

< 0
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R
∂Φ

∂n
< 0, −R∂Φ

∂n
> 0

For real V ,
f2R2

4
−R

∂Φ

∂n
> 0

For negative root:

V = −fR
2

−
(
f2R2

4
−R

∂Φ

∂n

)1/2

= negative value − positive value

∴ V < 0, and therefore physically impossible.

For positive root:
f2R2

4
> 0

f2R2

4
<
f2R2

4
−R

∂Φ

∂n

(
since −R

∂Φ

∂n
> 0

)

∴

(
f2R2

4

)1/2

<

(
f2R2

4
−R

∂Φ

∂n

)1/2

But we are considering positive roots:

+

(
f2R2

4

)1/2

< +

(
f2R2

4
−R

∂Φ

∂n

)1/2

∴ −fR
2

+

(
f2R2

4

)1/2

< −fR
2

+

(
f2R2

4
−R

∂Φ

∂n

)1/2

= V

∴ V > −fR
2

−
(
f2R2

4

)1/2

= −fR
2

+

∣∣∣∣fR2
∣∣∣∣ = −fR

2
+
fR

2

∴ V > 0, and therefore physically possible.

Case 3: For R > 0 and
∂Φ

∂n
< 0

fR < 0, −fR
2

> 0

R
∂Φ

∂n
< 0, −R∂Φ

∂n
> 0

Since V has to be real,
f2R2

4
−R

∂Φ

∂n
> 0

For positive root:

V = positive value
(
−fR

2

)
+ positive value(+√

)

∴ V > 0, and therefore physically possible.
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For negative root:
f2R2

4
> 0

∴
f2R2

4
<
f2R2

4
−R

∂Φ

∂n

(
since −R

∂Φ

∂n
> 0

)

∴

(
f2R2

4

)1/2

<

(
f2R2

4
−R

∂Φ

∂n

)1/2

But we are considering negative roots:

−
(
f2R2

4

)1/2

> −
(
f2R2

4
−R

∂Φ

∂n

)1/2

∴ −fR
2

−
(
f2R2

4

)1/2

> −fR
2

−
(
f2R2

4
−R

∂Φ

∂n

)1/2

= V

∴ V < −fR
2

−
(
f2R2

4

)1/2

= −fR
2

−
∣∣∣∣fR2

∣∣∣∣ = −fR
2

−
(
−fR

2

)
(since

fR

2
< 0)

∴ V < 0, and therefore physically impossible.

Case 4: For R < 0 and
∂Φ

∂n
< 0

fR > 0, −fR
2

< 0

R
∂Φ

∂n
> 0, −R∂Φ

∂n
< 0

For real V ,
f2R2

4
−R

∂Φ

∂n
> 0

For negative root:

V = −fR
2

−
(
f2R2

4
−R

∂Φ

∂n

)1/2

= negative value − positive value

∴ V < 0, and therefore physically impossible.

For positive root:
f2R2

4
> 0

f2R2

4
>
f2R2

4
−R

∂Φ

∂n

(
since −R

∂Φ

∂n
< 0

)

∴

(
f2R2

4

)1/2

>

(
f2R2

4
−R

∂Φ

∂n

)1/2
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But we are considering positive roots:

+

(
f2R2

4

)1/2

> +

(
f2R2

4
−R

∂Φ

∂n

)1/2

∴ −fR
2

+

(
f2R2

4

)1/2

> −fR
2

+

(
f2R2

4
−R

∂Φ

∂n

)1/2

= V

∴ V < −fR
2

−
(
f2R2

4

)1/2

= −fR
2

+

∣∣∣∣fR2
∣∣∣∣ = −fR

2
+
fR

2

∴ V < 0, and therefore physically impossible.

The following table is a summary of the four cases

Gradient wind classification in the Southern Hemisphere

∂Φ

∂n
(+/−) R > 0 (anti-cyclonic) R < 0 (cyclonic)

Positive Case 1
+ root : physical
− root : physical

Case 2
+ root : physical
− root : unphysical

Negative Case 3
+ root : physical
− root : unphysical

Case 4
+ root : unphysical
− root : unphysical

For cyclonic flow (R < 0) the only physically possible configuration is:

R < 0 and
∂Φ

∂n
> 0 (similar to result in the cyclostrophic wind classification section)

∂Φ

∂n
> 0 makes sense since δΦ < 0 and δn < 0. Also consider the geostrophic wind equation

Vg = − 1

f

∂Φ

∂n
(3.11)

∴ Vg = − 1

(neg)
(pos) > 0

For anti-cyclonic flow (R > 0),
∂Φ

∂n
can be either positive or negative.

So, for
∂Φ

∂n
> 0: Vg = − 1

(neg)
(pos) > 0 as was found for cyclonic flow.

Case 3: However, for
∂Φ

∂n
< 0: Vg = − 1

(neg)
(neg) < 0, which is anti-geostrophic.
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Again consider:
V 2

R
+ fV = −∂Φ

∂n
(3.10)

The geostrophic wind is defined by

fVg = −∂Φ
∂n

(3.11)

∴
V 2

R
+ fV = fVg

1

fV

(
V 2

R
+ fV

)
=

1

fV
(fVg)

V

fR
+ 1 =

Vg
V
, the ratio of the geostrophic wind to the gradient wind.

From the balanced flow section:

Northern Hemisphere (f > 0):

R > 0 for cyclonic flow

R < 0 for anti-cyclonic flow

∴ Rf > 0 for cyclonic flow

Rf < 0 for anti-cyclonic flow

Southern Hemisphere (f < 0):

R < 0 for cyclonic flow

R > 0 for anti-cyclonic flow

∴ Rf > 0 for cyclonic flow

Rf < 0 for anti-cyclonic flow

Typical values for V ,f and R: 5m ·s−1, 10−4 s−1 and 500 km.

∴
V

fR
=

5m ·s−1

10−4 s−1 500000m
= 0.1

For cyclonic flow (both hemispheres):

Vg
V

= 1 + 0.1 = 1.1

∴ Vg = 1.1× V

=⇒ Vg > V, sub-geostrophic
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For cyclonic flow, the geostrophic wind is stronger than the gradient wind.

For anti-cyclonic flow (both hemispheres):

Vg
V

= 1− 0.1 = 0.9

∴ Vg = 0.9× V

=⇒ Vg < V, super-geostrophic

For anti-cyclonic flow, the gradient wind is stronger than the geostrophic wind.

Therefore, the geostrophic wind is an overestimate of the balanced wind in a region of cyclonic curvature,
and an underestimate in a region of anti-cyclonic curvature.

Next we want to illustrate the force balances for the permitted solutions. For this purpose we want to
determine

1) the direction of these forces

2) their relative sizes

Take note of the following:

1) the centrifugal force (Ce) always points outwards,

2) the pressure gradient force (Pgf ) is always from a high to a low pressure system,

3) the Coriolis force (Co) is to the left of the motion in the Southern Hemisphere, and

4) the vector n⃗ is positive to the left and perpendicular to V⃗ .

First, determine the sign of R: R > 0 =⇒ anti-cyclone, or R < 0 =⇒ cyclone.

Second, draw a circular flow structure with n⃗ perpendicular and to the left of V⃗ .

Example, for R > 0 (anti-cyclone):

n

V

Third, consider the sign of
∂Φ

∂n

For example, for
∂Φ

∂n
> 0:

For the circular flow above, δn > 0 in the direction towards the centre of the circle. Therefore δΦ > 0 in
the direction of the centre of the circle, which means that here we are dealing with a high pressure system.
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Now we can complete the circular flow structure above by including the appropriate forces:

n

V

H
Co

Ce

Pgf

This flow represents Case 1
(
R > 0,

∂Φ

∂n
> 0

)
Take note: For now we are not concerned with the relative sizes of the vectors that represent the three forces,
but only with the direction of these forces. The discussion of the relative sizes is still to follow.

Co : Coriolis force

Ce : Centrifugal force

Pgf : Pressure gradient force

For Case 2, R < 0 and
∂Φ

∂n
> 0

Owing to the sign of R (< 0), the circular flow will be cyclonic:

n

V

In the direction towards centre of circle, δn < 0 and
δΦ

δn
> 0, therefore δΦ < 0, which means we are

dealing with a low pressure system.

Now complete the circular flow structure by including the appropriate forces:
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V

n
Pgf

Co

CeL

For Case 3, R > 0 and
∂Φ

∂n
< 0

Since R > 0, the circular flow is similar to Case 1 (anti-cyclonic) and δn > 0.

However
δΦ

δn
< 0, therefore δΦ < 0, which means we are dealing with a low pressure system that rotates

anti-cyclonically.

V

CeCo

Pgf

n

L

For Case 4, R < 0 and
∂Φ

∂n
< 0

Since R < 0, the circular flow is similar to Case 2 (cyclonic) and δn < 0.

However
δΦ

δn
< 0, therefore δΦ > 0, which means we are dealing with a high pressure system that rotates

cyclonically.

V

n

H

Ce

Pgf

Co

This configuration leads to an unbalanced circular flow structure (all the forces are in the same direction)
that is not physically possible.
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We have now managed to determine the direction of the three forces for various circular flow structures.
Next, we will attempt to obtain insight into the relative sizes of the forces associated with the flow structures.

Consider the following parameter values representative of extra-tropical circulation in the Southern Hemi-
sphere:

f = −10−4 s−1

|R| = 106m∣∣∣∣∂Φ∂n
∣∣∣∣ = 10−3ms−2

Calculate the gradient wind speeds by using (3.15) of Holton 4 for each of the four cases.

Case 1: R > 0 and
δΦ

δn
> 0

Remember that for this case, V has two physical solutions, one associated with the a positive root of (3.15)
and one with a negative root.

The first term on the right of (3.15) is −fR
2

. Since for this case −fR
2

> 0,

V > −fR
2

for a positive root

V < −fR
2

for a negative root, as shown with the calculation of V below.

By using the parameters above

−fR
2

=
−
(
−10−4 s−1

) (
+106m

)
2

= 50m s−1

∴ V = 50m s−1±

((
−10−4 s−1

)2 (
+106m

)2
4

−
(
+106m

) (
10−3ms−2

)) 1
2

= 50m s−1±38.73m s−1

For a positive root, V = 50 + 38.73 = 88.73m s−1 > 50, an anomalous high and confirms that V > −fR
2

This very large speed associated with a positive root makes the circular anti-cyclonic flow anomalous. The
high speed of the gradient wind will result in the centrifugal and Coriolis force becoming large.

To demonstrate this point, consider (3.10):
V 2

R
+ fV = −∂Φ

∂n
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V 2

R
= centripetal acceleration or centrifugal force per unit mass (Ce)

fV = Coriolis force per unit mass (Co)
∂Φ

∂n
= horizontal pressure gradient force (per unit mass; Pgf )

Take note that centripetal force and centrifugal force are the exact same force, just in opposite directions
because they are experienced from different forms of reference (i.e, inward vs. outward).

Next we will calculate the absolute strength of these forces by using the parameter values presented above.

For Case 1’s positive root:

Ce =

(
88.73m s−1

)2
106m

= 7.873× 10−3ms−2 ∼ 10−2ms−2

Co =
(
10−4 s−1

) (
88.73m s−1

)
= 8.873× 10−3ms−2 ∼ 10−2ms−2

∂Φ

∂n
= 10−3ms−2, given

Therefore, by using representative numbers we demonstrated that for Case 1 and positive roots, the centrifu-
gal and Coriolis forces are similar in strength, and about one order of magnitude stronger than the pressure
gradient force.

The circular flow structure for an anomalous high may take the following form:

V

H
Co Ce

Pgf

For Case 1’s negative root, V = 50− 38.73 = 11.27m s−1, a regular high and confirms that V < −fR
2

Ce =

(
11.27m s−1

)2
106m

= 1.270× 10−4ms−2 ∼ 10−4ms−2

Co =
(
10−4 s−1

) (
11.27m s−1

)
= 1.127× 10−3ms−2 ∼ 10−3ms−2

Pgf = 10−3ms−2, given
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The much more realistic gradient wind speed associated with a negative root does not make the centrifugal
force large as was the case with the positive root, but results in the Coriolis and pressure gradient forces
becoming of similar magnitude.

The circular flow structure for such a regular high may take the following form:

V

H
Co

Ce

Pgf

For Case 2, only a positive root is associated with a physical solution for the gradient wind.

Remember that for this case R < 0 (cyclonic) and
∂Φ

∂n
> 0

Therefore, −fR
2

< 0 and is equal to −50m s−1

∴ V = −50m s−1+

((
−10−4 s−1

)2 (−106m
)2

4
−
(
−106m

) (
10−3ms−2

)) 1
2

= −50m s−1+59.16m s−1

= 9.16m s−1, a regular low

∴ V > −fR
2

Ce =

(
9.16m s−1

)2
106m

= 8.390× 10−5ms−2 ∼ 10−4ms−2

Co =
(
10−4 s−1

) (
9.16m s−1

)
= 9.16× 10−4ms−2 ∼ 10−3ms−2

Pgf = 10−3ms−2, given

The circular flow structure for a regular low may take the following form:
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V

Ce

Co
Pgf

L

For Case 3, only a positive root is associated with a physical solution for the gradient wind.

For this case, R > 0 (anti-cyclonic) and
∂Φ

∂n
< 0

Therefore, −fR
2

> 0 and is equal to 50m s−1

∴ V = 50m s−1+

((
−10−4 s−1

)2 (
+106m

)2
4

−
(
+106m

) (
−10−3ms−2

)) 1
2

= 50m s−1+59.16m s−1

= 109.16m s−1

∴ V > −fR
2

Take note that for this case we are dealing with a low pressure system that rotates counter-clockwise (anti-
cyclonically) in the Southern Hemisphere! This flow orientation and high gradient wind speed makes this
circular flow an anomalous low.

Ce =

(
109.16m s−1

)2
106m

= 1.192× 10−2ms−2 ∼ 10−2ms−2

Co =
(
10−4 s−1

) (
109.16m s−1

)
= 1.092× 10−2ms−2 ∼ 10−2ms−2

Pgf = 10−3ms−2, given

The circular flow structure for an anomalous low may take the following form:
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V

Co Ce

PgfL

SUMMARY:

Regular LOW
V

Ce

Co
Pgf

L

Regular HIGH

V

H
Co

Ce

Pgf

Anomalous LOW

V

Co Ce

PgfL

Anomalous HIGH

V

H
Co Ce

Pgf
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VC

Pgf

Vg

Ce

Co

Vg = VB

Co

Co

Ce

Pgf

Pgf

Vg

VA

L

H

VA < VB < VC

B

C

A

(sub-geostrophic)

(super-geostrophic)

Consider a highly idealized trough-ridge system in the Southern Hemisphere at an isobaric level, say the
level at 500 hPa. We have shown above that for a regular low pressure system the Pgf > Co > Ce, and for
a regular high pressure system Co > Pgf > Ce. Moreover, we have already shown that for cyclonic flow
Vg > V , and for anti-cyclonic flow Vg < V . The gradient wind speeds at the locations marked A (on trough
line), B (in between trough and ridge lines) and C (ridge line) have gradient wind speeds of respectively
VA, VB and VC . Since the gradient wind speed is less than the geostrophic wind speed at the trough and
is greater than the geostrophic wind speed at the ridge, we have VA < VB < VC . The gradient wind
speed therefore increases from the trough line towards the ridge line. However, in the absence of curvature
(typically at point B on the idealised flow structure) Ce is absent and therefore perfect geostrophic balance
is achieved before the gradient wind accelerates further towards the ridge.

Next we will try to obtain insight into the behaviour of the gradient wind speed for regular high (Case 1,
negative root) and regular low (Case 2, positive root) pressure systems when only the pressure gradient
force is allowed to increase incrementally (1% increase over 250 iterations), while the other two forces are
kept constant. Such an increase in the pressure gradient is reminiscent of a strengthening high pressure
system and a deepening low pressure system, respectively. Figure 6 shows the respective gradient wind
speeds obtained by using the parameter values presented above. The gradient wind speed of the regular high
pressure system becomes imaginary after 93 iterations. This result suggests that for a regular high pressure
system, there may be a limit to the intensity of such a developing system. Moreover, gradient wind speeds
increase indefinitely for the case of a regular low. This result, on the other hand, suggests that there may not
be a limit to the depth of a low pressure centre.

48



Figure 6: Gradient wind speed of regular high and regular low pressure systems by incrementally increasing
the pressure gradient force by 1% for 250 iterations.

V = −fR
2

±
(
f2R2

4
−R

∂Φ

∂n

) 1
2

(A)

V 2

R
+ fV = −∂Φ

∂n
(B)

An increase in the Pgf on the RHS of (B) implies that the Coriolis force and Centrifugal force on the LHS
of (B) must also increase for the forces to be in balance. For a constant f and R, it follows that V must
increase if the Pgf were to increase. A regular high is associated with R > 0, Pgf > 0 and a negative root

in (A). Since the term −R∂Φ
∂n

< 0 and the term
f2R2

4
> 0, it follows that if the Pgf increases substantially

whereby
∣∣∣∣f2R2

4

∣∣∣∣ < ∣∣∣∣−R∂Φ∂n
∣∣∣∣, the term under the root will be negative resulting in V becoming imaginary

or undefined. This is depicted in Figure 6.

Figure 7 shows the results when the pressure gradient and Coriolis forces are kept constant, but the radius of
curvature,R, is allowed to respectively increase and decrease incrementally (1% change over 250 iterations).
The figure shows that there is a limit to how small a high pressure system can become, since the gradient
wind becomes imaginary after only 92 iterations of decreasing R. When R is allowed to increase, the
gradient wind speed decreases. This result indicates that high pressure systems are generally large and have
light winds. High pressure systems with small R and the resulting large gradient wind speeds are unstable
and seldom occur in nature. For a low pressure system, Figure 7 shows that the effect of a varying R is
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likely quite small in increasing the gradient wind speed of this type of weather system. Since R < 0 in a
regular low, it follows from (B) that the centrifugal force actually counteracts the work of the Coriolis force
to balance the Pgf . An intense weather system such as a tropical cyclone therefore relies primarily on the
Coriolis force and Pgf to initiate its development. However, once the tropical cyclone has reached maturity,
the Pgf and centrifugal forces dominate. The following example illustrates this notion.

Figure 7: Gradient wind speeds of regular high and regular low pressure systems by incrementally changing
the radius of curvature, R.

Consider the case of a strong tropical cyclone in the Southern Hemisphere with a central pressure of 950 hPa
and a maximum wind speed of 60m s−1. Assume that the normal pressure outside the tropical cyclone is
1010 hPa. The centre of the storm is at 15◦S. To calculate the Pgf of this cyclone requires evaluation of

the
∂Φ

∂n
term in the gradient wind equation. Since

δp

δz
= −ρg; δΦ = gδz

∴
δp

δΦ
g = −ρg

∴ δΦ = −1

ρ
δp
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δΦ =
1

ρ
δp =

(1010− 950)× 102 Pa

1.2 kgm−3

= 5000Pa kg−1m3

= 5000Nm−2 kg−1m3

= 5000 kgm s−2m−2 kg−1m3

= 5000m2 s−2

A tropical cyclone can be considered an intermediate size system since its typical length scale of 500 km is
larger than that of a coastal low, but smaller than that of a strong mid-latitude cyclone. Therefore, the length

scale of a tropical cyclone is the vortex radius. Therefore
δΦ

δn
∼ δp

ρR
, where R is the radius of curvature.

∴
δΦ

δn
∼ 5000m2 s−2

500 000m
= 0.01m s−2,which is an order of magnitude stronger then the value used before.

Since a tropical cyclone always rotates clockwise in the Southern Hemisphere it cannot be an anomalous
low as one of the physically possible solutions of the gradient wind equation. Therefore, tropical cyclones

are regular low pressure systems with R < 0 and
δΦ

δn
> 0. In order to estimate this cyclone’s radius and the

importance of the centrifugal force relative to the Coriolis force, consider the gradient wind equation:

V 2

R
+ fV = −∂Φ

∂n
, R < 0,

∂Φ

∂n
> 0

f = 2Ω sin(−15◦)

= 2 ·
(
7.292× 10−5 s−1

)
· sin(−15◦)

= −3.775× 10−5 s−1

V 2

R
= −

(
∂Φ

∂n
+ fV

)
∴ R = −V 2

(
∂Φ

∂n
+ fV

)−1

= −602
(
10−2 +

(
−3.775× 10−5

)
(60)

)−1

= −4.654× 105m

= −465.4 km, a realistic length scale!

Centrifugal force:
V 2

R
=

602(m s−1)2

−4.654× 105m

= −7.735× 10−3ms−2

Coriolis force: fV = −3.775× 10−5(60)

= −2.265× 10−3ms−2
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Therefore,
Ce
Co

= 3.4. This result is in contrast to the previous calculation of the relative sizes of the three

forces where, for a regular low, the Coriolis force is larger than the centrifugal force. Notwithstanding,
for a tropical cyclone presented here, the centrifugal force dominates the Coriolis force by a factor of 3.
However, such a cyclone is still not cyclostrophic for which the centrifugal force is expected to be an order
of magnitude larger than the Coriolis force.

Exercise 1: Consider an anti-cyclone and the case of positive pressure gradient forces. At a radius of 100 km
and associated geostrophic wind speed of 2.4m s−1, calculate the gradient wind speeds. Is the ratio between
the given geostrophic wind and the calculated gradient winds in agreement with super-geostrophic flow, i.e.,
Vg < V ? Next, redo the gradient wind calculation, but this time double the geostrophic wind speed and
interpret this result. The Coriolis parameter is −10−4 s−1.

Solution: For anti-cyclone: R > 0 and (given)
∂Φ

∂n
> 0

R = 100 000m

Vg = 2.4m s−1

f = −10−4 s−1

V = −fR
2

±
(
f2R2

4
+ fRVg

) 1
2

= −(−10−4)(100 000)

2
±
(
(−10−4)2(100 000)2

4
+ (−10−4)(100 000)(2.4)

) 1
2

= 5± (25− 24)
1
2

= 5± 1m s−1

For positive root: V = 6ms−1

For negative root: V = 4ms−1

For anti-cyclonic flow, it has been demonstrated that:

Vg < V

Since both V solutions are greater than 2.4m s−1, the given geostrophic wind speed. Therefore, the ratio
between the geostrophic wind and the gradient wind is in agreement with the result.

For double geostrophic wind, Vg = 4.8m s−1

V = 5± (25− 48)
1
2

= 5± (negative value)
1
2

Therefore, 4.8m s−1 as a geostrophic wind is unrealistically high since this leads to an unphysical solution
for V .
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Exercise 2: When the two terms under the square root of the solved quadratic equation (3.10) are per-
fectly balanced (their sum equals zero), determine the ratio of the anti-cyclonic gradient wind speed to the
geostrophic wind speed for the same pressure gradient.

Solution:

V = −fR
2

±
(
f2R2

4
+ fRVg

) 1
2

Given :
f2R2

4
+ fRVg = 0 =⇒ V = −fR

2

∴
fR

4
+ Vg = 0

∴ −2V

4
+ Vg = 0

∴ V = 2Vg

∴
V

Vg
= 2

Exercise 3: Show that as the pressure gradient approaches zero the gradient wind reduces to the geostrophic
wind for a normal anti-cyclone [Hint: make use of this approximation: when variable x approaches zero,
the square root of 1 + x is equal to 1 + x/2].

Solution: Since the pressure gradient approaches zero, so does Vg because Vg = − 1

f

∂Φ

∂n
.

The following approximation has been given: when x→ 0, (1 + x)1/2 = 1 +
x

2

We therefore consider the square root term of the gradient wind equation:

±
(
f2R2

4
+ fRVg

) 1
2

= ±
[
f2R2

4

(
1 +

4Vg
fR

)] 1
2

= ±fR
2

(
1 +

4Vg
fR

) 1
2

= ±fR
2

(
1 +

1

2
· 4Vg
fR

)

∴ V = −fR
2

± fR

2

(
1 +

2Vg
fR

)
For this case, we are only interested in the positive root.

∴ V = −fR
2

+
fR

2
+ Vg

∴ V = Vg
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An alternative view on balanced flow

The gradient wind equation can be expressed in terms of the geostrophic wind:

V 2

R
+ fV − fVg = 0, f < 0 in the Southern Hemisphere

=⇒ Centrifugal force + Coriolis force + pressure gradient force are in balance.

The radius of curvature, R, can be obtained from this equation:

V 2

R
= f(Vg − V )

∴ R =
V 2

f(Vg − V )

The balance of forces equation divided by the Coriolis force, fV , leads to

V 2

fV R
+ 1− fVg

fV
= 0

∴
V

fR
+ 1− Vg

V
= 0

=⇒ V

fR
=
Vg
V

− 1

The last equation represents a straight line of the form y = mx + c, with m = 1 and c = −1: y = x − 1,

with y =
V

fR
and x =

Vg
V

.

Consider the following values of x and then calculate the corresponding y-values:

x ∈
{
−1, 0,

1

2
, 1, 2, 3

}
.

For x = −1:

Vg
V

= −1

∴ V = −Vg, defined here as anti-geostrophic flow.

y = x− 1 = −1− 1 = −2

R =
V 2

f(−V − V )
= − V

2f
> 0, anti-cyclonic flow

For x = 0:

Vg
V

= 0

∴ Vg = 0

y = 0− 1 = −1

R =
V 2

f(0− V )
= −V

f
> 0, anti-cyclonic flow
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For x =
1

2
:

Vg
V

=
1

2
∴ V = 2Vg

∴ V > Vg, anti-cyclonic flow

y =
1

2
− 1 = −1

2

R =
V 2

f

(
1

2
V − V

) = −2V

f
> 0, anti-cyclonic flow

For x = 1:

Vg
V

= 1

∴ V = Vg

y = 1− 1 = 0

R =
V 2

f(V − V )
is undefined.

For x = 2:

Vg
V

= 2

∴ V =
1

2
Vg

∴ V < Vg, cyclonic flow

y = 2− 1 = 1

R =
V 2

f (2V − V )
=
V

f
< 0, cyclonic flow

For x = 3:

Vg
V

= 3

∴ V =
1

3
Vg

∴ V < Vg, cyclonic flow

y = 3− 1 = 2

R =
V 2

f (3V − V )
=

V

2f
< 0, cyclonic flow

Also, f =
V

2R
<
V

R
obtained from x = 2. Therefore, with x increasing, f

decreases resulting in the Coriolis force becoming smaller.
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We have now calculated the y-values of the straight line, resulting in the figure below:

For the x-value cases above, where y < 0, the flow has been found to be anti-cyclonic
(

e.g., x = −1, 0,
1

2

)
.

Conversely, where y > 0, the flow is cyclonic (e.g., x = 2, 3). Defining the flow to be sub-geostrophic
where V < Vg and super-geostrophic where V > Vg, sub-geostrophic flow is found where x > 1 and
super-geostrophic for 0 < x < 1. For x < 0, the flow is considered to be anti-geostrophic since V = −Vg.

Near point A (x = 1, y = 0), trajectories are nearly straight since V ≃ Vg and
Vg
V

≃ 1. However,

since
V

fR
=
Vg
V

− 1,
V

fR
≃ 0. Moreover,

V

fR
is a Rossby number with R, the radius of curvature, the

length scale. The smaller the Rossby number, the more dominant the Coriolis acceleration in the dynamics
becomes, resulting in the Coriolis force and the Pgf becoming approximately balanced. So geostrophic
balance is a good approximation near point A.

At point B (x = 2, y = 1), R =
V

f
, therefore f =

V

R

V 2

R
+ fV − fVg = 0 becomes

V 2

R
+
V

R
V − fVg = 0

Therefore, the centrifugal and Coriolis forces are equal and together balance the Pgf .
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At point C
(
x =

1

2
, y = −1

2

)
, R = −2V

f
and Vg =

1

2
V .

V 2

R
+ fV − fVg = 0 becomes V 2

(
− f

2V

)
+ fV − f

(
1

2
V

)
= 0

∴ −fV
2

+ fV − fV

2
= 0

Here the centrifugal force and Pgf are equal and together balance the Coriolis force.

At point D (x = 0, y = −1), Vg = 0, therefore the Pgf(= −fVg) is zero, and the Coriolis and centrifugal
forces must balance.

At point E (x = 3, y = 2) and with an increasing x-value, the Coriolis force becomes negligible compared
with the centrifugal force and Pgf . For this scenario, the centrifugal force must balance the Pgf alone,
which is the definition of cyclostrophic balance.

Over the area on the graph where x < 0 (including point F), the flow is anti-geostrophic (V = −Vg) which
means that the flow has anti-cyclonic curvature around a low-pressure system, i.e. an anomalous low, which
is never observed.

The figure below summarizes these findings:
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A summary of the force balances at each of the points (A-F) is given below:

A Co

Pgf

Vg

Geostrophic flow

B

Pgf
Co

Ce
L

Flow around a regular Low

C

PgfCo

CeH

Flow around a regular High

D

Co

CeH

Inertial flow

E

Pgf
Ce

Cyclostrophic flow

L

F

Pgf

Ce
Co

L

Flow around an anomalous Low
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Variation with height of the geostrophic
wind: The thermal wind

Isobaric coordinate form of the geostrophic relationship:

fV⃗g = k⃗ × ∇⃗pΦ Φ : geopotential

=⇒ geostrophic wind ∝ geopotential gradient.

=⇒ geostrophic wind directed along the positive y-axis that increases in magnitude with height requires
that the slope of the isobaric surfaces with respect to the x-axis must increase with height.

Hypsometric equation Φ(z2)− Φ(z1) = g(z2 − z1) = R

∫ p1

p2

Td ln p
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For thickness δz corresponding to a pressure interval δp

δz ≈ −1

g
RTδ ln p

=⇒ thickness of the layer between isobaric surfaces ∝ temperature of the layer:

T (δz1) < T (δz2)

=⇒ increase of height of a positive x-directed pressure gradient is associated with a positive x-directed
temperature gradient

=⇒ the air in a vertical column at x2, because it is warmer (less dense), must occupy a greater depth for a
given pressure drop than the air at x1

From V⃗g =
1

f
k⃗ × ∇⃗pΦ, in isobaric coordinates:

vg =
1

f

∂Φ

∂x
and ug = − 1

f

∂Φ

∂y

Equation of state for an ideal gas: pα = RT or p = ρRT (1.17)
where α = ρ−1

Geopotential: δΦ = gδz =⇒ δz =
1

g
δΦ

Hydrostatic equation:
δp

δz
= −ρg =⇒ δz

δp
= − 1

ρg

∴
1

g

δΦ

δp
= −α

g

lim
δp→0

δΦ

δp
=
∂Φ

∂p
= −α

= −RT
p

(3.27)

∴ T = − p

R

∂Φ

∂p
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Differentiate geostrophic wind components with respect to pressure:

∂vg
∂p

=
1

f

∂

∂x

(
∂Φ

∂p

)
=

1

f

∂

∂x

(
−RT

p

)
∴ p

∂vg
∂p

= −R
f

(
∂T

∂x

)
p

∴
∂vg
∂ ln p

= −R
f

(
∂T

∂x

)
p

(3.28)

∂ug
∂p

= − 1

f

∂

∂y

(
∂Φ

∂p

)
= − 1

f

∂

∂y

(
−RT

p

)
∴

∂ug
∂ ln p

=
R

f

(
∂T

∂y

)
p

(3.29)

As a vector:

∂V⃗g
∂ ln p

= −R
f
k⃗ × ∇⃗pT︸ ︷︷ ︸

the thermal wind equation

(3.30)

Here we have shown that the geostrophic wind must have vertical shear in the presence of a horizontal
temperature gradient.

V⃗T ≡ V⃗g(p1)− V⃗g(p0)

∴ V⃗T = −R
f

∫ p1

p0

k⃗ × ∇⃗pTd ln p (3.31)

⟨T ⟩ is the mean temperature in the layer between p0 and p1.

uT = +
R

f

(
∂ ⟨T ⟩
∂y

)
p

∫ p1

p0

d ln p

= −R
f

(
∂ ⟨T ⟩
∂y

)
p

[− ln(p1) + ln(p0)]

= −R
f

(
∂ ⟨T ⟩
∂y

)
p

ln

(
p0
p1

)
(3.32)

and vT = −R
f

(
∂ ⟨T ⟩
∂x

)
p

∫ p1

p0

d ln p

=
R

f

(
∂ ⟨T ⟩
∂x

)
p

ln

(
p0
p1

)
(3.32)
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Thermal wind is the vector difference between geostrophic winds at two levels:

V⃗T ≡ V⃗g(p1)− V⃗g(p0) (p1 < p0)

also uT = ug1 − ug0 = − 1

f

∂

∂y
(Φ1)−

(
− 1

f

∂

∂y
(Φ0)

)
= − 1

f

∂

∂y
(Φ1 − Φ0) (3.33)

vT = vg1 − vg0 =
1

f

∂

∂x
(Φ1)−

1

f

∂

∂x
(Φ0)

=
1

f

∂

∂x
(Φ1 − Φ0) (3.33)

=⇒ −R
f

(
∂ ⟨T ⟩
∂y

)
p

ln

(
p0
p1

)
= − 1

f

∂

∂y
(Φ1 − Φ0)

=⇒ R ln

(
p0
p1

)∫
∂ ⟨T ⟩
∂y

dy =

∫
∂

∂y
(Φ1 − Φ0)dy

=⇒ Φ1 − Φ0 = R ⟨T ⟩ ln
(
p0
p1

)
(3.34)

Per definition: Φ1 − Φ0 ≡ ZT g, where ZT is the thickness

Also

R

f

(
∂ ⟨T ⟩
∂x

)
p

ln

(
p0
p1

)
=

1

f

∂

∂x
(Φ1 − Φ0)

R ln

(
p0
p1

)∫
∂ ⟨T ⟩
∂x

dx =

∫
∂

∂x
(Φ1 − Φ0)dx

=⇒ Φ1 − Φ0 = R ⟨T ⟩ ln
(
p0
p1

)
(3.34)

The thickness is therefore proportional to the mean temperature in the layer.

=⇒ lines of equal thickness are equivalent to the isotherms of mean temperature in the layer.

(3.35):

V⃗T =
1

f
k⃗ × ∇⃗(Φ1 − Φ0)︸ ︷︷ ︸

From (3.33)

=
g

f
k⃗ × ∇⃗ZT︸ ︷︷ ︸

From (3.33),(3.34)

=
R

f
k⃗ × ∇⃗ ⟨T ⟩ ln

(
p0
p1

)
︸ ︷︷ ︸

From (3.32)

Exercise 1: The mean temperature in the layer between 750 and 500 hPa decreases eastward by 2°C per
100 km. If the 750 hPa geostrophic wind is from the southeast at 20m s−1, what is the geostrophic wind
speed at 500 hPa? Let f = −10−4 s−1 [Hint: remember Pythagoras when calculating the geostrophic wind
components].

Solution: The mean temperature decreases eastward, so there is no north–south component:
∂ ⟨T ⟩
∂y

= 0 and

∂ ⟨T ⟩
∂x

< 0

∴ uT = 0
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vT =
R

f

(
∂ ⟨T ⟩
∂x

)
ln

(
p0
p1

)
where R is the gas constant for dry air.

R = 287 JK−1 kg−1

= 287NmK−1 kg−1

= 287 kgm s−2mK−1 kg−1

= 287m2 s−2K−1

∴ vT =
287m2 s−2K−1

−10−4 s−1

(
− 2K

100 000m

)
ln

(
750

500

)
= 23.27m s−1

At 750 hPa:

a

b

45◦

c = 20m/s

southeast

c2 = a2 + b2 = 2a2 =⇒ a =

(
202

2

)1/2

= b

= 14.14m s−1

uT = ug1 − ug0 = ug(500 hPa)− ug(750 hPa)

∴ 0 = ug(500)− (−14.14)

∴ ug(500) = −14.14m s−1

vT = vg1 − vg0 = vg(500 hPa)− vg(750 hPa)

∴ 23.27 = vg(500)− 14.14

∴ vg(500) = 37.41m s−1

∴ V⃗g(500) = (−14.14, 37.41)

Therefore, geostrophic wind speed at 500 hPa =
∣∣∣V⃗g(500)∣∣∣

=
(
(−14.14)2 + (37.41)2

)1/2
= 39.99m s−1
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Exercise 2: Consider the values in the previous exercise (Exercise 1) above, what is the mean temperature
advection in the 750 to 500 hPa layer?

Solution: Only west–east component: V⃗ · ∇⃗T = u
∂T

∂x
,
∂T

∂x
= − 2◦C

100 km

But temperature in the layer is decreasing =⇒ u
∂T

∂x
< 0

Since we are considering a layer, we use mean values:

Temperature advection in the layer = −u∂T
∂x

where bars denote the means.

u =
(ug(500) + ug(750))

2
=

(−14.14− 14.14)

2
= −14.14m s−1

∴ u
∂T

∂x
= (−14.14)

(
− 2

100 000

)
ms−1Km−1

= 2.828× 10−4Ks−1 (×3600)

= 1.018Kh−1 (°Ch−1)

Therefore, temperature advection in the layer = −u∂T
∂x

= −1.018Kh−1

Bonus Homework: Describe the relationship between turning of geostrophic wind and temperature advec-
tion in terms of backing and veering of the wind with height for the Southern Hemisphere.

Barotropic and baroclinic atmospheres

Barotropic atmosphere: ρ = ρ(p); thermal wind equation
∂V⃗g
∂ ln p

= 0, which states that the geostrophic wind

is independent of height.

Baroclinic atmosphere: ρ = ρ(p, T ); geostrophic wind has vertical sheer, related to the horizontal tempera-
ture gradient.
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Vertical motion

In general the vertical velocity component of synoptic-scale motions is not measured directly, but must be
inferred from fields that are measured directly.

Two commonly used methods for inferring vertical motion:

1. Kinematic (based on continuity equation)

2. Adiabatic (based on thermodynamic energy equation)

ω = ω(p) vertical velocity in isobaric coordinates.

ω ≡ Dp

Dt
=
∂p

∂t
+ u

∂p

∂x
+ v

∂p

∂y
+ w

∂p

∂z

=
∂p

∂t
+ V⃗ · ∇⃗p+ w

∂p

∂z

=
∂p

∂t
+ (V⃗g + V⃗a) · ∇⃗p− gρw

(
Since

∂p

∂z
= −ρg

)

V⃗a: Ageostrophic wind, |V⃗a| ≪ |V⃗g| the geostrophic wind

∴ ω =
∂p

∂t
+ V⃗g · ∇⃗p+ V⃗a · ∇⃗p− gρw

Bonus Homework: Show that V⃗g · ∇⃗p = 0

(
V⃗g =

1

ρf
k⃗ × ∇⃗p

)

∴ ω =
∂p

∂t
+ V⃗a · ∇⃗p− gρw (3.37)

Scale analysis:

∂p

∂t
∼ 10 hPa / day [1 hPa = 100Pa]

V⃗a · ∇⃗p ∼ (1m · s−1)(0.01 hPa / km) ∼ 1 hPa / day

gρw ∼ 100 hPa / day

Therefore, a good approximation is
ω = −gρw (3.38)
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Kinematic method

One method of deducing the vertical velocity. Integration of the continuity equation
(
∂u

∂x
+
∂v

∂y

)
p

+
∂ω

∂p
=

0 with respect to pressure from a reference level ps to any level p, yields

w(z) =
ρ(zs)w(zs)

ρ(z)
− ps − p

ρ(z)g

(
∂ ⟨u⟩
∂x

+
∂ ⟨v⟩
∂y

)
, (3.40)

where z and zs are the heights of pressure levels p and ps, respectively.

Derivation of (3.40):

(3.5):
(
∂u

∂x
+
∂v

∂y

)
p

+
∂ω

∂p
= 0 =⇒ ∂ω

∂p
= −

(
∂u

∂x
+
∂v

∂y

)
Integrate this expression with respect to pressure from a reference level ps to any level p:∫ p

ps

∂ω

∂p
dp = −

∫ p

ps

(
∂u

∂x
+
∂v

∂y

)
dp

∴ ω(p)− ω(ps) = −
[
∂

∂x

∫ p

ps

udp+
∂

∂y

∫ p

ps

vdp

]
Define a pressure weighted vertical average:

⟨A⟩ ≡ (p− ps)
−1

∫ p

ps

Adp

∴
∫ p

ps

Adp = (p− ps) ⟨A⟩ = −(ps − p) ⟨A⟩

∴ ω(p)− ω(ps) = −
[
∂

∂x
{−(ps − p) ⟨u⟩}+ ∂

∂y
{−(ps − p) ⟨v⟩}

]
= (ps − p)

∂ ⟨u⟩
∂x

+ (ps − p)
∂ ⟨v⟩
∂y

∴ ω(p) = ω(ps) + (ps − p)

(
∂ ⟨u⟩
∂x

+
∂ ⟨v⟩
∂y

)

Since ω = −ρgw, we get −ρ(z)gw(z) = −ρ(zs)gw(zs) + (ps − p)

(
∂ ⟨u⟩
∂x

+
∂ ⟨v⟩
∂y

)

w(z) =
ρ(zs)w(zs)

ρ(z)
− ps − p

ρ(z)g

(
∂ ⟨u⟩
∂x

+
∂ ⟨v⟩
∂y

)
To infer the vertical velocity from the equation above requires knowledge of the horizontal divergence:

∂u

∂x
+
∂v

∂y

Consider the table below showing the u and v components of the wind (m · s−1) for the 200 hPa level, on a
2.5° lat–long grid:
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u11

u21

u12

u22

25◦E 27.5◦E

20◦S

22.5◦S

25◦E 27.5◦E

20◦S

22.5◦S

v11 v12

v21 v22

Using finite difference approximations:

δu

δx
= [(u12 + u22)/2− (u11 + u21)/2]/δx

δv

δy
= [(v11 + v12)/2− (v21 + v22)/2]/δy

δy = 2π6.37× 106/144; δx = δy cos(21.25°)

Typical values for u and v:

u = [28.8 28.7; 34.6 37.4]

v = [−20.5 − 18.2; −26.9 − 25.0]

An error in one of the wind components can lead to an exponential growth in the estimated divergence. See
figure below. For this reason, the continuity equation method is not recommended for estimating the vertical
motion field from observed horizontal winds.
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Adiabatic method

The adiabatic method for inferring vertical velocities, which is not so sensitive to errors in the measured
horizontal velocities, is based on the thermodynamic energy equation:

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
− Spω =

J

cp
(3.6)

If J , the diabatic heating, is small:

ω =
1

Sp

(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

)
=

1

Sp

(
∂T

∂t
+ V⃗ · ∇⃗T

)

The temperature advection V⃗ · ∇⃗T can be accurately obtained from geostrophic winds, and so this method
can be applied.

However,
∂T

∂t
is difficult to estimate accurately since observations are not typically at close time intervals.

This method is also inaccurate when J is not small (i.e., strong diabatic heating) as is the case of storms in
which heavy rainfall occurs over a large area.

Exercise: For a high altitude station located near the 750 to 500 hPa layer, the temperature is decreasing at
a rate of 2°C per hour. Compute the vertical velocity in cm/s using the adiabatic method. Suppose the lapse
rate at the station is 4°C/ km, temperature advection is −2.828 × 10−4Ks−1, and that the dry adiabatic
lapse rate is determined by gravity and by the specific heat of dry air at constant pressure.

Solution:
∂T

∂t
= −2°Ch−1 (decreasing)

Adiabatic method: ω =
1

Sp

(
∂T

∂t
+ V⃗ · ∇⃗T

)
, Sp =

Γd − Γ

ρg
and ω = −ρgw

∴ w =

(
∂T

∂t
+ V⃗ · ∇⃗T

)
Γ− Γd

Γd =
g

cp
=

9.81m s−2

1005 JK−1 kg−1 = 9.771× 10−3ms−2(JK−1 kg−1)−1

= 9.771× 10−3ms−2(kgm s−2mK−1 kg−1)−1

= 9.771× 10−3Km−1

Γ = 4Km−1 = 4× 10−3Km−1
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w =

((
− 2

3600

)
Ks−1−2.828× 10−4Ks−1

)
(4× 10−3 − 9.771× 10−3)Km−1

= 0.1453m s−1

= 14.53 cm s−1
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Surface pressure tendency

The development of a negative surface pressure tendency is a classic warning of an approaching cyclonic
weather disturbance.

ω(p) = ω(ps)−
∫ p

ps

(
∂u

∂x
+
∂v

∂y

)
dp (3.39)

where lim
p→0

=⇒ 0 = ω(ps) +

∫ ps

0

(
∂u

∂x
+
∂v

∂y

)
dp

∴ ω(ps) = −
∫ ps

0

(
∂u

∂x
+
∂v

∂y

)
dp

= −
∫ ps

0
(∇⃗ · V⃗ )dp (3.43)

ω =
∂p

∂t
+ V⃗a · ∇⃗p− gρw (3.37)

Assumption: w at the surface = 0, and V⃗a · ∇⃗p can be neglected (scaling considerations)

∴ ω ≈ ∂p

∂t

∴
∂p

∂t
≈ −

∫ ps

0
(∇⃗ · V⃗ )dp (3.44)

In words: The surface pressure tendency at a given point is determined by the total convergence (negative
divergence) of mass into the vertical column of atmosphere above that point.

The utility of the tendency equation is severely limited due to the fact that ∇⃗ · V⃗ is difficult to compute from
observations because it depends on the ageostrophic wind field.

Bonus Homework: Describe qualitatively the origin of surface pressure changes and the relationship of
such changes to the horizontal divergence.
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The circulation theorem

Circulation about a closed contour in a fluid:

C ≡
∮
U⃗ · d⃗l (d⃗l is the displacement vector locally tangent to the contour)

= 2ΩπR2 R: radius of circular ring of fluid

=⇒ the circulation is 2π times the angular momentum of the fluid.

By integrating Newton’s second law, we can obtain the circulation theorem in an absolute coordinate system
as:

DCa
Dt

=
D

Dt

∮
U⃗a · d⃗l = −

∮
1

ρ
dp

The solenoidal term is −
∮

1

ρ
dp

In meteorological analysis it is more convenient to work with the relative circulations C.

C = Ca − Ce [Ce : due to Earth’s rotation]

= Ca − 2ΩAe [A : area]
DC

Dt
=
DCa
Dt

− 2Ω
DAe
Dt

= −
∮

1

ρ
dp− 2Ω

DAe
Dt
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Vorticity

Definition: The microscopic measure of rotation in a fluid. It is a vector field defined as the curl of velocity.

Absolute vorticity ωa ≡ ∇⃗ × U⃗a

Relative vorticity ω ≡ ∇⃗ × U⃗ (U⃗ is the relative velocity)

∴ ω =

(⃗
i
∂

∂x
+ j⃗

∂

∂y
+ k⃗

∂

∂z

)
× (⃗iu+ j⃗v + k⃗w)

=

∣∣∣∣∣∣∣∣
i⃗ j⃗ k⃗
∂

∂x

∂

∂y

∂

∂z
u v w

∣∣∣∣∣∣∣∣
= i⃗

(
∂w

∂y
− ∂v

∂z

)
− j⃗

(
∂w

∂x
− ∂u

∂z

)
+ k⃗

(
∂v

∂x
− ∂u

∂y

)
=

(
∂w

∂y
− ∂v

∂z
;
∂u

∂z
− ∂w

∂x
;
∂v

∂x
− ∂u

∂y

)
For large-scale dynamic meteorology, the concern is only with the vertical components of absolute and
relative vorticity.

Absolute vorticity η ≡ k⃗ · (∇⃗ × U⃗a)

Relative vorticity ζ ≡ k⃗ · (∇⃗ × U⃗)

Regions of ζ < 0 are associated with cyclonic storms in the Southern Hemisphere.

The distribution of ζ is an excellent diagnostic for weather analysis.

Planetary vorticity: the local vertical component of the vorticity of the earth due to its rotation

k⃗ · ∇⃗ × U⃗e = 2Ω sinϕ = f, the Coriolis parameter

η = ζ + f

ζ = k⃗ ·
(⃗
i

(
∂w

∂y
− ∂v

∂z

)
+ j⃗

(
∂u

∂z
− ∂w

∂x

)
+ k⃗

(
∂v

∂x
− ∂u

∂y

))
=
∂v

∂x
− ∂u

∂y

∴ η =
∂v

∂x
− ∂u

∂y
+ f
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Exercise 1: What is the relative vorticity on the side of a current which decreases in magnitude towards the
south at a rate of 10m / s for every 500 km?

ζ =
∂v

∂x
− ∂u

∂y

No west–east component:
∂v

∂x
= 0

∂u

∂y
< 0 (towards the south)

∴
∂u

∂y
= − 10m s−1

500 000m
= −2× 10−5 s−1

∴ ζ = 0− (−2× 10−5 s−1)

= 2× 10−5 s−1

Exercise 2: An air parcel at 30°S moves southward conserving absolute vorticity (the initial absolute vortic-
ity is equal to the final absolute vorticity). If its initial relative vorticity is 5× 10−5 s−1, what is its relative
vorticity upon reaching 90°S?

Solution:
(ζ + f)initial = (ζ + f)final

finitial = 2Ω sin(−30°) = 2Ω

(
−1

2

)
= −Ω

ffinal = 2Ω sin(−90°) = 2Ω (−1) = −2Ω

ζinitial = 5× 10−5 s−1 (given)

ζfinal = (ζ + f)initial − ffinal

= 5× 10−5 − Ω− (−2Ω)

= 5× 10−5 +Ω

= 5× 10−5 + 7.292× 10−5 rad s−1

= 12.292× 10−5 s−1

Bonus Homework: Determine the relationship between relative vorticity and relative circulation (macro-
scopic).

73



Potential vorticity

Definition and characteristics of potential vorticity

The potential vorticity (PV) is the absolute circulation of an air parcel that is enclosed between two isentropic
surfaces (a surface in space on which potential temperature is everywhere equal). If PV is displayed on a
surface of constant potential temperature, then it is officially called IPV (isentropic potential vorticity). PV
could also be displayed on another surface, for example a pressure surface. Note from the relation below, that
PV is simply the product of absolute vorticity on an isentropic surface and static stability. So PV consists,
in contrast to vorticity on isobaric surfaces, of two factors, a dynamical element and a thermodynamical
element.

PV ≡ (ζθ + f)

(
−g∂θ

∂p

)
where,

f is the Coriolis parameter

g is the gravitational acceleration

p is the pressure

PV is the potential vorticity

θ is the potential temperature: θ = T

(
ps
p

)R/cp
ζθ is the relative isentropic vorticity [the vertical component of relative vorticity evaluated on an isen-

tropic surface]

Within the troposphere, the values of PV are usually low. However, the potential vorticity increases rapidly
from the troposphere to the stratosphere due to the significant change of the static stability. Typical changes
of the potential vorticity within the area of the tropopause are from 1 (tropospheric air) to 4 (stratospheric air)
PV units (PV unit: 1PVU = 10−6Kkg−1m2 s−1). Today in most of the literature the 2 PV unit anomaly,
which separates tropospheric from stratospheric air, is referred to as dynamical tropopause. The traditional
way of describing the tropopause, is with use of the potential temperature or static stability. This is only a
thermodynamical way of characterising the tropopause. The benefit of using PV is that the tropopause can
be understood in both thermodynamic and dynamic terms. An abrupt folding or lowering of the dynamical
tropopause can also be called an upper PV-anomaly. When this occurs, stratospheric air penetrates into the
troposphere resulting in high values of PV with respect to the surroundings, creating a positive PV-anomaly.
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In the lower levels of the troposphere, strong baroclinic zones often occur which can be regarded as low
level PV anomalies.

It must be stressed that this other way of looking at the dynamics of the atmosphere will not necessarily
result in new conclusions. However, it may give new dimensions to things that, in fact, were already known.

The two main advantages of potential vorticity (with certain assumptions) are: conservation and invertibility.
The two advantages will be discussed briefly:

Conservation

With the following assumptions PV is a conserved parameter:

1. Adiabatic stream (no diabatic heating or cooling)

2. No friction

3. Homogenous

4. Non-compressing

A first mathematical consequence of the conservation can be derived from the definition of PV: A parcel
will keep the same value of PV if it moves along an adiabat through the atmosphere thus the equation for
PV can be written as:

PV ≡ (ζθ + f)

(
−g∂θ

∂p

)
= constant (4.12)

Due to the conservation of PV, there is a close relationship between absolute vorticity and static stability (the
ability of a fluid at rest to become turbulent or laminar [flow taking place along constant streamlines, without
turbulence] due to the effects of buoyancy). The diagram below shows a parcel (cylinder) that is confined
between potential temperature (isentropic) surfaces θ and θ + δθ which are separated by a pressure interval
δp. Difference in potential temperature between the top and bottom is the same for the two cylinders. If
PV is conserved, and the cylinder is stretched, then static stability is decreasing and absolute vorticity must
increase. Alternatively, if one goes from the stretched cylinder to the squashed cylinder, then static stability
is increasing and absolute vorticity must decrease.

Due to the conservation of PV, significant features that are related to synoptic scale weather systems can be
identified and followed in space as well as in time. This is a very powerful characteristic of this property.
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Especially the case of a lowering of the dynamical tropopause, the upper PV-anomaly can be followed in time
and space rather easily. PV anomalies are well related to a lot of dynamical processes in the troposphere. A
distinct example of this are cases of Rapid Cyclogenesis where PV-anomalies play an important role.

The sudden creation or destruction of PV means that diabatic processes are involved (release of latent heat,
friction, radiation). This fact can be used as tool to identify or even quantify the influence of these processes.

Invertibility

The second advantage of PV, invertibility, is a very important tool, because it allows one to obtain familiar
meteorological fields, like the geopotential, wind, temperature and the static stability, when the distribution
of the PV and the boundary conditions, potential temperature at the surface, are known. Further with the
help of the invertibility it is possible to quantify the importance of PV-anomalies and the strength of their
associated circulation and/or temperature pattern.

Inverting the PV for the entire atmosphere is interesting, but a more insightful diagnostic technique is piece-
wise PV inversion (PPVI). This involves dividing the atmosphere into significant layers and independently
inverting the PV in those layers. This technique allows for analysis of the influence of discreet portions of
the total PV field on the flow throughout the domain.

PV-thinking in the real atmosphere

The dynamical tropopause

The tropopause separates the well-mixed troposphere with the highly stratified, statically stable stratosphere.
The tropopause is conventionally thought of from a thermal point of view and is based on the vertical tem-
perature lapse rate. However, since high-PV values are generally associated with highly statically stable air,
the tropopause can also be defined by the isentropic (contours of constant potential temperature) gradient of
PV. The PV definition of the troposphere is known as the dynamical tropopause. By convention, the dynam-
ical tropopause is usually defined by a constant PV contour which separates tightly packed PV contours of
the stratosphere and low vertical gradient PV contours of the troposphere. A value between −1.5 and −2.5
PVU is most commonly used.
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Figure 8: Cross-sectional PV in an idealised, mean atmosphere.

PV anomalies

Mathematically, an anomaly is the departure of a value from the mean distribution. A high-PV anomaly
will thus be where there are anomalously high values (large negative values in the southern hemisphere) of
PV compared to the mean distribution. Conversely, a low-PV anomaly will have anomalously small values
(smaller negative values) of PV compared to the mean distribution.

Upper level PV anomalies

As seen in Fig. 8, there exists a reservoir of high-PV air in the stratosphere. Thus, stratospheric air is a
source of high-PV anomalies in the troposphere. Upper-level high-PV anomalies can therefore be viewed,
from a cross-sectional point of view, as tongues of high-PV stratospheric air intruding into the troposphere
towards the surface. An idealised example of this is shown in Fig. 9. We recall that the circulation can
be inferred from the PV distribution by the power of PV inversion and recall that PV can be represented
by equation (4.12). The high-PV (negative PV anomaly) induces a negative vorticity anomaly. Flow is
cyclonic around a negative vorticity anomaly in the Southern Hemisphere and hence cyclonic around the
high-PV anomaly. Since the atmosphere is in thermal wind balance, the velocity of the circulation above
and below the anomaly will also be cyclonic but the flow will be weaker.

The fact that the atmosphere is in thermal wind balance allows for us to decipher the temperature structure
of the sectors. Recalling that the definition of the thermal wind is the difference between the upper and
lower wind vectors (V⃗T = V⃗g(p1)− V⃗g(p0)) and that the cold pool lies to the left (right) of the thermal wind
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Figure 9: A cross-sectional view of an idealised PV intrusion in the upper troposphere inducing upper-level
cyclonic flow around it.

vector in the Northern (Southern) hemisphere, it follows that there must exist a cold pool below the high-PV
anomaly. Similarly, there must exist a warm pool in the stratospheric sector above the high-PV anomaly
with cold air surrounding it. Thus, the potential temperature structure will look as below.

Figure 10: Cross-sectional view of the thermal structure of an idealised PV intrusion in the upper tropo-
sphere inducing upper-level cyclonic flow around it.
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Low-level and surface PV anomalies

PV anomalies are not confined to the upper troposphere. High-PV structures can also be found in the low
levels, often associated with diabatic processes. The PV anomalies act in a similar way to their upper-level
counterparts, stimulating cyclonic flow around them. Similar arguments with respect to the thermal balance
of the atmosphere can be made in order to understand the thermal structure surrounding the anomaly as well
as the cyclonic flow that is induced throughout the atmosphere.

You will recall that for PV to be conserved, the flow must be both frictionless and adiabatic. At the surface,
this is not strictly true. Thus, PV cannot be directly used on the surface and we need to use a PV-like
parameter to analyse the surface is in a PV-thinking framework. It has been shown that surface potential
temperature (θ) anomalies can act as PV-like anomalies. Warm θ anomalies behave in a similar way to high-
PV anomalies on the surface where cyclonic flow is stimulated around a warm θ anomaly and anti-cyclonic
flow results from cold θ anomalies.

Figure 11: A cross-sectional view of an idealised PV intrusion in the lower troposphere inducing low-level
cyclonic flow around it.

Interaction of anomalies

As can be shown schematically in Figure 9 and Figure 10, cyclonic circulation around the upper-level in-
trusion of high-PV stratospheric air into the upper troposphere is not confined to the upper troposphere.
Mirrored, although weaker, cyclogenetic forcing is also present on the surface. As a result of the surface
temperature gradient, the low-level cyclogenetic forcing results in warm air temperature advection ahead of
the upper-level PV intrusion axis. This results in a warm potential temperature anomaly ahead of the upper-
level PV axis. Recall that warm potential temperature anomalies on the surface can be interpreted to be
similar to high-PV anomalies whereby they can induce cyclonic circulation around them. The cyclogenetic
forcing is induced throughout the troposphere above the anomaly, with mirrored cyclogenetic forcing stimu-
lated ahead of the upper level PV intrusion in the upper-levels. Whilst the surface anomaly lies ahead of the
upper-level anomaly there is positive feedback between the two anomalies and thus are mutually beneficial
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to one another. Low-level anomalies induced by diabatic processes can further add to the development of
the surface cyclone. The phase-locked alignment of all 3 of these anomalies is known as a “PV tower” and
can lead to explosive cyclogenesis.

In the atmosphere, these processes lead to the development of baroclinic weather systems such as mid-
latitude cyclones or cut-off lows that extend to the surface, where the system leans westward with height.

Figure 12: Adapted from Hoskins et al. (1985). Interaction between an upper air intrusion of high-PV air
and an induced surface high-PV anomaly.

PV on isentropic maps

Isentropic surfaces, lines of constant potential temperature, are frequently used in the dynamical meteoro-
logical analyses. The analysis of isentropic PV has many applications including the identification of Rossby
wave breaking (RWB) in the upper troposphere. Upper-level PV intrusions are easily identifiable on isen-
tropic surfaces. Potential temperature contours slant surface-ward from the poles to the equator. Thus, an
isentropic contour will cut through the quasi-horizontal dynamical tropopause at some point between the
pole and the equator. High-PV values (stratospheric air) will be found towards the poles whilst low-PV
values (tropospheric air) will be found towards the equator. A PV anomaly in the upper troposphere can be
seen in the isentropic PV field as a tongue of high-PV, stratospheric air extending towards the equator.

Figure 13: Left: Climatological mean isentropic surface of the upper troposphere. Right: An idealised PV
intrusion in the upper troposphere as seen on upper-level isentropic PV surface.
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Useful additional reading:

Lackmann (2011) - Midlatitude synoptic meteorology: Dynamics, analysis and forecasting (Chapter 4)

Hoskins et al. (1985) - On the use and significance of isentropic potential vorticity maps

Barnes et al. (2021) - Cape storm: A dynamical study of a cut-off low and its impact on South Africa

For more information on PV, follow this link: http://www.zamg.ac.at/docu/Manual/SatManu/
main.htm?/docu/Manual/SatManu/Basic/Parameters/PV.htm

For real world examples related to the material above, follow this link: https://weathermanbarnes.
github.io/UPDynamicalForecasts
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The vorticity equation

Objective: Derive an equation for the time rate of change of vorticity without limiting the validity to adia-
batic motion.

Cartesian coordinate form

Approximate horizontal momentum equations:

Du

Dt
= fv − 1

ρ

∂p

∂x
[zonal component equation]

Dv

Dt
= −fu− 1

ρ

∂p

∂y
[meridional component equation]

∂

∂y

(
Du

Dt

)
=

∂

∂y
(fv)− ∂

∂y

(
1

ρ

∂p

∂x

)
∂

∂x

(
Dv

Dt

)
= − ∂

∂x
(fu)− ∂

∂x

(
1

ρ

∂p

∂y

)
∂

∂y

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
− ∂

∂y
(fv) = − ∂

∂y

(
ρ−1 ∂p

∂x

)
and

∂

∂x

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
+

∂

∂x
(fu) = − ∂

∂x

(
ρ−1 ∂p

∂y

)

∴
∂2u

∂y∂t
+
∂u

∂y

∂u

∂x
+ u

∂2u

∂x∂y
+
∂v

∂y

∂u

∂y
+ v

∂2u

∂y2
+
∂w

∂y

∂u

∂z
+ w

∂2u

∂y∂z
− v

∂f

∂y
− f

∂v

∂y

= −∂ρ
−1

∂y

∂p

∂x
− 1

ρ

∂2p

∂x∂y
(1)

and

∴
∂2v

∂x∂t
+
∂u

∂x

∂v

∂x
+ u

∂2v

∂x2
+
∂v

∂x

∂v

∂y
+ v

∂2u

∂x∂y
+
∂w

∂x

∂v

∂z
+ w

∂2v

∂x∂z
+

= 0︷︸︸︷
u
∂f

∂x
+f

∂u

∂x

= −∂ρ
−1

∂x

∂p

∂y
− 1

ρ

∂2p

∂x∂y
(2)
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(2)− (1): LHS

∂

∂t

(
∂v

∂x
− ∂u

∂y

)
+ u

∂

∂x

(
∂v

∂x
− ∂u

∂y

)
+ v

∂

∂y

(
∂v

∂x
− ∂u

∂y

)
+ w

∂

∂z

(
∂v

∂x
− ∂u

∂y

)
+ f

(
∂u

∂x
+
∂v

∂y

)
+

[
∂u

∂x

∂v

∂x
+
∂v

∂x

∂v

∂y
− ∂u

∂y

∂u

∂x
− ∂v

∂y

∂u

∂y

]
+
∂w

∂x

∂v

∂z
− ∂w

∂y

∂u

∂z
+ v

∂f

∂y

∂y
∂x =

∂y
∂u

∂u
∂x y = ρ−1 u = ρ

∂
∂xρ

−1 = ∂
∂ρρ

−1 ∂ρ
∂x

= −ρ−2 ∂ρ
∂x

(2)− (1): RHS

−∂ρ
−1

∂x

∂p

∂y
− 1

ρ

∂2p

∂x∂y
+
∂ρ−1

∂y

∂p

∂x
+

1

ρ

∂2p

∂x∂y
= −(−1)ρ−2 ∂ρ

∂x

∂p

∂y
+ (−1)ρ−2 ∂ρ

∂y

∂p

∂x

=
1

ρ2
∂ρ

∂x

∂p

∂y
− 1

ρ2
∂ρ

∂y

∂p

∂x

Consider
∂u

∂x

∂v

∂x
+
∂v

∂x

∂v

∂y
− ∂u

∂y

∂u

∂x
− ∂v

∂y

∂u

∂y
=
∂v

∂x

(
∂u

∂x
+
∂v

∂y

)
− ∂u

∂y

(
∂u

∂x
+
∂v

∂y

)
=

(
∂v

∂x
− ∂u

∂y

)(
∂u

∂x
+
∂v

∂y

)

Since ζ =

(
∂v

∂x
− ∂u

∂y

)
∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y
+ w

∂ζ

∂z
+ f

(
∂u

∂x
+
∂v

∂y

)
+ ζ

(
∂u

∂x
+
∂v

∂y

)
+

(
∂w

∂x

∂v

∂z
− ∂w

∂y

∂u

∂z

)
+ v

∂f

∂y
=

1

ρ2

(
∂ρ

∂x

∂p

∂y
− ∂ρ

∂y

∂p

∂x

)

Since f = f(y),
Df

Dt
= 0 + 0 + v

∂f

∂y
+ 0

∴
Dζ

Dt
+ (ζ + f)

(
∂u

∂x
+
∂v

∂y

)
+

(
∂w

∂x

∂v

∂z
− ∂w

∂y

∂u

∂z

)
+
Df

Dt
=

1

ρ2

(
∂ρ

∂x

∂p

∂y
− ∂ρ

∂y

∂p

∂x

)

=⇒ D

Dt
(ζ + f) = −(ζ + f)

(
∂u

∂x
+
∂v

∂y

)
−
(
∂w

∂x

∂v

∂z
− ∂w

∂y

∂u

∂z

)
+

1

ρ2

(
∂ρ

∂x

∂p

∂y
− ∂ρ

∂y

∂p

∂x

)
(4.17)

The rate of change of absolute vorticity following the motion is given by the sum of the divergence, the
tilting or twisting, and the solenoidal terms.
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Scale analysis of the vorticity equation

Characteristic scales for the field variables based on typical observed magnitudes for synoptic-scale mo-
tions:

Use an advective time scale because the vorticity pattern tends to move at a speed comparable to the hori-
zontal wind speed.

First, the relative vorticity equation ζ =
∂v

∂x
− ∂u

∂y
≲
U

L
∼ (105 s)−1 = 10−5 s−1

[≲ means less than or equal to in order of magnitude]

The magnitude of the terms of the equation below will be evaluated:

∂ζ

∂t
+u

∂ζ

∂x
+v

∂ζ

∂y
+w

∂ζ

∂z
+(ζ+f)

(
∂u

∂x
+
∂v

∂y

)
+

(
∂w

∂x

∂v

∂z
− ∂w

∂y

∂u

∂z

)
+v

df

dy
=

1

ρ2

(
∂ρ

∂x

∂p

∂y
− ∂ρ

∂y

∂p

∂x

)

The Rossby number Ro ≡ U

f0L

and since ζ ≲
U

L
,

ζ

f0
≲

U

f0L
∼ 10−1

[
10m · s−1 /(104 s−1 106m)

]
∴ ζ ∼ 1

10
f0

∴ (ζ + f)

(
∂u

∂x
+
∂v

∂y

)
≈ f

(
∂u

∂x
+
∂v

∂y

)

Note: Small Ro signifies a system which is strongly affected by Coriolis forces, and a large Ro a system
in which inertial and centrifugal forces dominate. In tornadoes Ro ≈ 103; in low pressure systems Ro ≈
0.1–1.

Near the centre of intense cyclonic storm
∣∣∣∣ ζf
∣∣∣∣ ∼ 1, the relative vorticity should be retained.
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∂ζ

∂t
∼ U/L

L/U
=
U2

L2
∼ 10−10 s−2

[
(10m s−1)2

(106m)2
= 10−10 s−2

]
u
∂ζ

∂x
∼ U

U

L

1

L
=
U2

L2

v
∂ζ

∂y
∼ U

U

L

1

L
=
U2

L2

w
∂ζ

∂z
∼W

U

L

1

H
∼ 10−2ms−1 10m s−1

106m104m
= 10−11 s−2

v
df

dy
∼ Uβ ∼ 10m s−1 10−11m−1 s−1 = 10−10 s−2



f

(
∂u

∂x
+
∂v

∂y

)
≲ f0

(
U

L
+
U

L

)
∼ f0

U

L
∼ 10−4 s−1 10m s−1 10−6m−1 = 10−9 s−2(

∂w

∂x

∂v

∂z
− ∂w

∂y

∂u

∂z

)
≲
W

L

U

H
∼ 10−2ms−1 10m s−1

106m104m
= 10−11 s−2

1

ρ2

(
∂ρ

∂x

∂p

∂y
− ∂ρ

∂y

∂p

∂x

)
≲

1

ρ2

(
δρ

L

δp

L

)
=
δρ

ρ2
δp

L2
∼ 10−2

ρ

10 hPa

1012m2
∼ 10−2103 Pa

1 kgm−3 1012m2

(*)

Consider

1Pa = 1Nm−2

= 1(kgm s−2)m−2

∴
δρ

ρ2
δp

L2
∼ 10−11kgm

−1 s−2

kgm−1
= 10−11 s−2

(*): The inequality (≲) is used here because in each case it is possible that the two parts of the expression
might partially cancel so that the actual magnitude would be less than indicated.

If
∂u

∂x
and

∂v

∂y
are not nearly equal and opposite (i.e., divergence> 0) the divergence term would be an order

of magnitude greater than the other terms (because f
(
∂u

∂x
+
∂v

∂y

)
≲ 10−9 s−2, followed by terms ≲ 10−10

and smaller).

Therefore, scale analysis of the vorticity equation indicates that synoptic-scale motions must be quasi-
nondivergent. The divergence term will be small enough to be balanced by the vorticity advection terms

only if:
∣∣∣∣(∂u∂x +

∂v

∂y

)∣∣∣∣ ≲ 10−6 s−1 since f0 ∼ 10−4 s−1, f0

∣∣∣∣(∂u∂x +
∂v

∂y

)∣∣∣∣ ∼ 10−10 s−2

=⇒ The horizontal divergence must be small compared to the vorticity in synoptic-scale systems.

Retaining only the terms of order 10−10 s−2 in the vorticity equation:

∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y
+ f

(
∂u

∂x
+
∂v

∂y

)
+ v

df

dy
= 0
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Remember that v
df

dy
=
Df

Dt
and for horizontal motion v

df

dy
=
Dhf

Dt

∴
Dhζ

Dt
+ f

(
∂u

∂x
+
∂v

∂y

)
+
Dhf

Dt
= 0

[
Dh

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y

]

=⇒ Dh

Dt
(ζ + f) = −f

(
∂u

∂x
+
∂v

∂y

)
(4.22a)

for synoptic-scale motions.

In intense cyclonic storms |ζ/f | ∼ 1:

=⇒ Dh

Dt
(ζ + f) = −(ζ + f)

(
∂u

∂x
+
∂v

∂y

)
(4.22b)

Equation (4.22a) states that the change of absolute vorticity following the horizontal motion on the synoptic
scale is given approximately by the concentration or dilution of planetary vorticity caused by the conver-
gence or divergence of the horizontal flow, respectively. In (4.22b), however, it is the concentration or
dilution of absolute vorticity that leads to changes in absolute vorticity following the motion.

The form of the vorticity equation given in (4.22b) also indicates why cyclonic disturbances can be much
more intense than anti-cyclones. For a fixed amplitude of convergence, relative vorticity will increase, and
the factor (ζ + f) becomes larger, which leads to even higher rates of increase in the relative vorticity. For a
fixed rate of divergence, however, relative vorticity will decrease, but when ζ → −f , the divergence term on
the right approaches zero and the relative vorticity cannot become more negative no matter how strong the
divergence (This difference in the potential intensity of cyclones and anti-cyclones was discussed in Section
3.2.5 of Holton 4 in connection with the gradient wind approximation).

The approximate forms given in (4.22a) and (4.22b) do not remain valid, however, in the vicinity of atmo-
spheric fronts. The horizontal scale of variation in frontal zones is only ∼ 100 km and the vertical velocity
scale is ∼ 10 cm s−1. For these scales, vertical advection, tilting, and solenoidal terms all may become as
large as the divergence term.

86



Vorticity in barotropic fluids

The barotropic (Rossby) potential vorticity equation

The velocity divergence form of the continuity equation:

1

ρ

Dρ

Dt
+ ∇⃗ · V⃗ = 0 (2.31)

For a homogenous incompressible fluid
Dρ

Dt
= 0

∴ ∇⃗ · V⃗ = 0

∴
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

∴
∂u

∂x
+
∂v

∂y
= −∂w

∂z

∴
Dh

Dt
(ζ + f) = −(ζ + f)

(
−∂w
∂z

)
In a barotropic fluid, we let the vorticity be approximated by ζg and the wind by (ug, vg).

Dh

Dt
(ζg + f) = (ζg + f)

∂w

∂z

Integrate vertically from z1 to z2:∫ z2

z1

Dh

Dt
(ζg + f)dz =

∫ z2

z1

(ζg + f)
∂w

∂z
dz

h
Dh

Dt
(ζg + f) = (ζg + f) [w(z2)− w(z1)]

where h = h(x, y, t); w ≡ Dz

Dt
= z2 − z1

∴ w(z2)− w(z1) =
Dz2
Dt

− Dz1
Dt

=
Dhh

Dt
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Since h
Dh

Dt
(ζg + f) = (ζg + f) [w(z2)− w(z1)] = (ζg + f)

Dhh

Dt

∴
1

(ζg + f)

Dh

Dt
(ζg + f) =

1

h

Dhh

Dt

∴
Dh

Dt
(ln(ζg + f))− Dh

Dt
(lnh) = 0

∴
Dh

Dt

(
ζg + f

h

)
= 0 (4.26)

which is the potential vorticity conservation theorem for a barotropic fluid.

The quantity conserved following the motion in (4.26) is the Rossby potential vorticity.

Note the following:
D

Dt
(ln(ζg + f))− D

Dt
(lnh) = 0

Therefore,
D

Dt
(ln(ζg + f)− lnh) = 0

∴
D

Dt

(
ln
ζg + f

h

)
= 0

From calculus: Dx ln[f(x)] =
f ′(x)

f(x)

=⇒ D

Dt

(
ln
ζg + f

h

)
=

1

ζg + f

h

D

Dt

(
ζg + f

h

)
= 0

∴
D

Dt

(
ζg + f

h

)
= 0

Exercise: By considering the essence of potential vorticity (a measure of the constant ratio of the absolute
vorticity to the effective depth of the vortex), an air column at 60°S with initial relative vorticity equal to
zero, stretches from sea-level to a fixed tropopause level of 10 km in height. If the air column moves until it
is over a mountain range 2.5 km high at 45°S, what is its 1) absolute vorticity and 2) relative vorticity as it
passes the mountain top?

Solution:
ζ + f

H
= constant =⇒

(
ζ + f

H

)
initial

=

(
ζ + f

H

)
final

, and ζinitial = 0 (given)

finitial = 2Ω sin(−60°) = −1.263× 10−4 s−1

ffinal = 2Ω sin(−45°) = −1.031× 10−4 s−1

∴ (ζ + f)final =
Hfinal

Hinitial
finitial

=
10− 2.5

10
(−1.263× 10−4)

= −9.473× 10−5 s−1
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∴ ζfinal = −9.473× 10−5 s−1−(−1.031× 10−4 s−1)

= 8.37× 10−6 s−1

The barotropic vorticity equation

(4.23):
Dh

Dt
(ζ + f) = (ζ + f)

∂w

∂z

If the flow is purely horizontal, as is the case for barotropic flow in a fluid of constant depth, the divergence
term vanishes since w = 0.

As before, let vorticity be approximated by ζg:

Dh

Dt
(ζg + f) = 0

which states that absolute vorticity is conserved following the horizontal motion.

More generally, absolute vorticity is conserved for any fluid layer in which the divergence of the horizontal
wind vanishes, without the requirement that the flow be geostrophic.

For horizontal motion that is nondivergent the flow can be represented by a stream function ψ(x, y) such

that u = −∂ψ
∂y

and v =
∂ψ

∂x
.

ζ =
∂v

∂x
− ∂u

∂y

=
∂

∂x

(
∂ψ

∂x

)
− ∂

∂y

(
−∂ψ
∂y

)
=
∂2ψ

∂x2
+
∂2ψ

∂y2

≡ ∇2ψ

Not a requirement for flow to be geostrophic:
Dh

Dt
(ζ + f) = 0

∴
∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y
+
∂f

∂t
+ u

∂f

∂x
+ v

∂f

∂y
= 0

∴
∂

∂t
∇2ψ + V⃗ψ · ∇⃗(∇2ψ) + V⃗ψ · ∇⃗(f) = 0; V⃗ψ = k⃗ × ∇⃗ψ

∂

∂t
∇2ψ = −V⃗ψ · ∇⃗(∇2ψ + f) (4.28)

=⇒ The local tendency of relative vorticity is given by the advection of absolute vorticity.

Because the flow in the mid-troposphere is often nearly nondivergent on the synoptic scale, (4.28) provides
a good model for short-term forecasts of the synoptic-scale 500 hPa flow field.
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Bjerknes-Holmboe theory

As an introduction to the notion of mid-latitude developing baroclinic systems, we introduce a theory of
relating the horizontal distribution of divergence and convergence to a pattern of high and low pressure
systems. Highs will move towards regions of convergence (rising pressure), and lows towards regions of
divergence (falling pressure). This theory is commonly known as the Bjerknes-Holmboe theory. Here we
discuss it only from a qualitative point of view.

Since the divergence of the geostrophic wind (Vg) is zero (for constant f ), and the divergence of the gradient
wind (V ) is not zero, we will examine the pattern of divergence of idealistic pressure fields for gradient flow.
Our weather pattern has

1. Sinusoidal 500hPa contours extending from west to east,

2. Circular concentric isobars at the surface.

The curvature effect

We have already shown that Vg > V for cyclonic flow, and Vg < V for anticyclonic flow. Therefore, owing
to this curvature effect, we expect a distribution of wind speeds as shown in this figure (the arrows represent
the gradient wind).

L L
H

D
iv C

on
v

air is departing faster than entering

air is departing slower than entering

Such a pattern would lead to falling pressure east of the troughs and rising pressure east of the ridge. The
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expectation is for the pressure system to move eastward because the lows (highs) move towards regions of
falling (rising) pressure. Moreover, for a given fixed amplitude of such systems, short wavelengths and high
wind speeds, the curvature effect results in an eastward moving wave.

The latitude effect

Assume that all other parameters are kept constant, then the geostrophic and gradient wind speeds decrease
with increasing (equatorward) latitude. To demonstrate this statement, consider the gradient wind equation

V 2

R
+ fV = −∂Φ

∂n

∴V = − 1

f

(
∂Φ

∂n
+
V 2

R

)

Apply scale analysis to
∣∣∣∣V 2

R

∣∣∣∣ ≃ (10m s−1)2

106m
= 10−4ms−2, the centrifugal force.

Since a typical parameter value for
∣∣∣∣∂Φ∂n

∣∣∣∣ = 10−3ms−2, the centrifugal force is about a tenth of the pressure

gradient force. This result implies that V ≃ − 1

f

∂Φ

∂n
= Vg, which further implies that both the gradient and

geostrophic wind increase or decrease similarly for a variable Coriolis parameter. Consider the following
table of approximate gradient wind speeds with increasing latitude in the Southern Hemisphere

Latitude Approximate gradient wind speed (m s−1)

−30 13.7

−45 9.7

−60 7.9

From the gradient wind relationship and the table above, wind speed decreases with increasing latitude.

L L
H

C
onv

D
iv

For low wind speeds and long wavelengths, the curvature term may be small, resulting in the wave moving
westward as determined by the latitude effect. This effect is enforced when the wave amplitude is large.

Next, consider the case of equally spaced, concentric, circular isobars of a surface low and high pressure sys-
tem in the Southern Hemisphere, which results in the curvature effect to be the same everywhere. However,
the latitude effect will produce higher winds on the equatorward side.
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div convL conv divH

The result of the latitude effect is convergence with rising pressure to the east (west) of the low (high) pres-
sure and divergence with falling pressure to the west (east). Such systems are expected to move westward.

The idealized model

L H

L L

H

Upper level

Lower level

div

conv

ascending
motion

conv

div

Level of non-divergence

descending motion

T
ro
u
g
h
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n
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T
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u
g
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n
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R
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g
e
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n
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For the usual short-wave systems in which the curvature effect dominates the latitude effect, divergence is
found east of the trough line and convergence ahead of the ridge line. East of the centre of the surface
low, low-level convergence is found with divergence aloft, resulting in ascending motion. The opposite is
found east of the ridge line where upper-level convergence is associated with low-level divergence east of
the surface high, resulting in descending motion.

Consider the level of non-divergence shown in the figure. This is a level of transition from the positive to
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negative divergence, and vice versa. If this level is low in altitude, the high altitude pattern will predominate,
and the system will move eastward. If this level is high in altitude, the low altitude pattern will predominate,
and the system will move westward.

We have introduced here a classic theory qualitatively of the motion of pressure systems in mid-latitudes.
Although this theory may reveal considerable quantitative agreement with synoptic experience, also over the
Southern Hemisphere, we will develop and discuss quantitatively a set of equations that are less complicated
than the full set of primitive equations of motion in order to describe extra-tropical weather systems. This
set of equations represent the so-called quasi-geostrophic approximation. Why the theory is called quasi-
geostrophic? It is because if the winds in mid-latitude systems were perfectly geostrophic, such winds
never cross the isobars, and could thus not cause convergence into the low pressure system and therefore
no vertical velocity. Since we know from observations that vertical motion does exist and are important for
causing clouds and rain development in cyclones, the upward motion cannot be geostrophic. By including
this ageostrophic flow into the set of equations that are otherwise totally geostrophic, the equations are said
to be quasi-geostrophic, meaning partially geostrophic.
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The quasi-geostrophic approximation

To show that for motions that are hydrostatic and nearly geostrophic, the 3-dimensional flow field is deter-
mined approximately by the isobaric distribution of geopotential [Φ(x, y, p, t)].

The use of the isobaric coordinate system simplifies the development of approximate prognostic and diag-
nostic equations.

Scale analysis in isobaric coordinates

Horizontal momentum equation
DV⃗

Dt
+ fk⃗ × V⃗ = −∇⃗Φ (3.2) also (6.1)

Hydrostatic equation
∂Φ

∂p
= −α = −RT

p
(3.27) also (6.2)

Continuity equation ∇⃗ · V⃗ +
∂ω

∂p
= 0 (3.5) also (6.3)

Thermodynamic energy equation
(
∂

∂t
+ V⃗ · ∇⃗

)
T − Spω =

J

cp
(3.6) also (6.4)

Total derivative in (3.2):

D

Dt
≡
(
∂

∂t

)
p

+
(
V⃗ · ∇⃗

)
p
+ ω

∂

∂p

[
ω ≡ Dp

Dt

]
(6.5)

From (3.6): Sp ≡ −T ∂ ln θ
∂p

, static stability parameter
[
Sp ∼ 5× 10−4KPa−1 in mid-troposphere

]
The above set of equations still contain several terms that are of secondary significance for mid-latitude
synoptic-scale systems. They can be simplified further by

1) horizontal flow is nearly geostrophic

2) the magnitude of the ratio of vertical velocity to horizontal velocity is of the order 10−3.

Separate the horizontal velocity into geostrophic and ageostrophic parts:

V⃗ = V⃗g + V⃗a; V⃗g ≡
1

f0
k⃗ × ∇⃗Φ

[
V⃗a = V⃗ − V⃗g

]
(6.7)
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Regarding f0: It is assumed that the meridional length scale (L) is small compared to the radius of the Earth
so that the geostrophic wind (6.7) may be defined using a constant reference latitude value of the Coriolis
parameter.

For the systems of interest∣∣∣V⃗g∣∣∣≫ ∣∣∣V⃗a∣∣∣ or

∣∣∣V⃗a∣∣∣∣∣∣V⃗g∣∣∣ ∼ O(Ro), that is the same order of magnitude as the Rossby number

(
Ro ≡ U

f0L
∼ 0.1 from Page 41 of Holton 4

)
Momentum can then be approximated to O(Ro) by its geostrophic value, and the rate of change of momen-
tum (or temperature) following the horizontal motion can be approximated to the same order by the rate of
change following the geostrophic wind.

In equation (6.5):

1) V⃗ can be replaced by V⃗g

2) the vertical advection which arises only from the ageostrophic flow can be neglected.

∴
DV⃗

Dt
≈ DgV⃗g

Dt
where

Dg

Dt
≡ ∂

∂t
+ V⃗g · ∇⃗ =

∂

∂t
+ ug

∂

∂x
+ vg

∂

∂y
(6.8)

Note: Newton’s second law; a form of the momentum equation:

DU⃗

Dt
= −2Ω⃗× U⃗ − 1⃗

ρ
∇⃗p+ g⃗ + F⃗r (2.8)

The dynamical effect of the variation of the Coriolis parameter with latitude needs to be retained in the
Coriolis force term in the momentum equation. This variation can be approximated using a Taylor series:

f = f0 +

(
df

dy

)
ϕ0

(y + y0) + higher order terms

β ≡
(
df

dy

)
ϕ0

, y = 0 at ϕ0

This approximation is referred to as the: mid-latitude β–plane approximation

f = f0 + βy (6.9)

f0 is the Coriolis parameter computed at a characteristic latitude, ϕ0; the variable y measures the meridional
distance from this latitude.

β =

(
df

dy

)
ϕ0

=
d

dy
(2Ω sinϕ)ϕ0
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From the figure below:

δy = aδϕ

∴
1

δy
=

1

a

1

δϕ

a

δφ δy

∴ β =
1

a

d

dϕ
(2Ω sinϕ)ϕ0

=
2Ωcosϕ0

a

The ratio of the terms on the right of (6.9):

βy

f0
∼ βL

f0
∼ 2Ω cosϕ0

a
L

1

2Ω sinϕ0

=
cosϕ0L

sinϕ0a
∼ O(Ro) ≪ 1

[
Note:

cos(−45°)
sin(−45°)

= −1 and L is small compared to the radius of the Earth, a
]

∴ f0 ≫ βy, which justifies letting the Coriolis parameter be a constant f0
in the geostrophic approximation and using (6.9)

(6.1):
DV⃗

Dt
+ fk⃗× V⃗ + ∇⃗Φ = 0 (the acceleration following the motion, the Coriolis force and the pressure

gradient force are balanced)

Consider

fk⃗ × V⃗ + ∇⃗Φ = (f0 + βy)k⃗ × (V⃗g + V⃗a) + ∇⃗Φ

= f0k⃗ × V⃗g + βyk⃗ × V⃗g + f0k⃗ × V⃗a + βyk⃗ × V⃗a − f0k⃗ × V⃗g

= f0k⃗ × V⃗a + βyk⃗ × V⃗g + βyk⃗ × V⃗a

Neglect the ageostrophic wind compared to the geostrophic wind in the term proportional to βy:

Atmospheric waves influenced by the beta (β) term are characterized as planetary waves (also called Rossby
waves). These waves experience the curvature of a revolving planet through meridional changes in the
Coriolis parameter. The so-called beta effect may be considered to be small when a synoptic-scale storm
moves across only a small range of latitudes during its lifetime.

∴ fk⃗ × V⃗ + ∇⃗Φ ≈ f0k⃗ × V⃗a + βyk⃗ × V⃗g (6.10)
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The horizontal momentum equation i.t.o. geostrophic flow then becomes:

DgV⃗g
Dt

= −f0k⃗ × V⃗a − βyk⃗ × V⃗g

and each of these terms is O(Ro) compared to the pressure gradient force, and the neglected terms are
O(Ro2) or smaller.

Next, ∇⃗ · V⃗ = ∇⃗ · (V⃗g + V⃗a) = ∇⃗ · V⃗g + ∇⃗ · V⃗a

Since V⃗g =
1

f0
k⃗ × ∇⃗Φ is non-divergent, ∇⃗ · V⃗g = 0

∴ ∇⃗ · V⃗ = ∇⃗ · V⃗a =
∂ua
∂x

+
∂va
∂y

(6.3) : ∇⃗ · V⃗ +
∂ω

∂p
= 0 =⇒ ∂ua

∂x
+
∂va
∂y

+
∂ω

∂p
= 0 (6.12)

(6.12) means that ω is determined only by the ageostrophic part of the wind field.

The thermodynamic energy equation (6.4):
(
∂

∂t
+ V⃗ · ∇⃗

)
T − Spω =

J

cp

97



However, the horizontal advection can be approximated by the geostrophic value

∴

(
∂

∂t
+ V⃗g · ∇⃗

)
T − Spω =

J

cp

The vertical advection is not neglected and forms part of the adiabatic heating and cooling term. This term
must be retained because the static stability is usually large enough on the synoptic scale so that the adiabatic
heating/cooling due to vertical motion is of the same order as the horizontal temperature advection.

Simplifying the adiabatic heating and cooling term: Divide the total temperature field, Ttot, into a basic state
(standard atmosphere) portion that depends only on pressure, T0(p), plus a deviation from the basic state,
T (x, y, p, t).

Ttot(x, y, p, t) = T0(p)︸ ︷︷ ︸
Basic state

+

Deviation from the basic state︷ ︸︸ ︷
T (x, y, p, t)

Static stability parameter in the isobaric system

Sp ≡ −T
θ

∂θ

∂p
(3.7)

Sp = −T ∂ ln θ
∂p

= −T0
∂ ln θ

∂p

because
∣∣∣∣dT0dp

∣∣∣∣≫ ∣∣∣∣∂T∂p
∣∣∣∣

θ0 is the potential temperature that corresponds to the basic state temperature T0, which is only a function
of p [T0 = T0(p)].

∴
∂ ln θ0
∂p

=
d ln θ0
dp

∴ Sp = −T0
d ln θ0
dp

= −T0
d ln θ0
dp

( p
R

)(R
p

)
= −RT0

p

d ln θ0
dp

( p
R

)

σ ≡ −RT0
p

d ln θ0
dp

∴ Sp =
σp

R

∴

(
∂

∂t
+ V⃗g · ∇⃗

)
T −

(σp
R

)
ω =

J

cp
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(6.2):
∂Φ

∂p
= −RT

p
=⇒ T = − p

R

∂Φ

∂p

∴

(
∂

∂t
+ V⃗g · ∇⃗

)( p
R

)(∂Φ
∂p

)
−
(σp
R

)
ω =

J

cp(
∂

∂t
+ V⃗g · ∇⃗

)(
∂Φ

∂p

)
− σω =

R

p

J

cp
=
κJ

p

[
κ ≡ R

cp

]
(6.13b)

The quasi-geostrophic equations form a complete set in the dependent variables Φ, V⃗g, V⃗a, and ω.

V⃗g =
1

f0
k⃗ × ∇⃗Φ (6.7)

DgV⃗g
Dt

= −f0k⃗ × V⃗a − βyk⃗ × V⃗g (6.11)

∂ua
∂x

+
∂va
∂y

+
∂ω

∂p
= 0 (6.12)

(
∂

∂t
+ V⃗g · ∇⃗

)(
−∂Φ
∂p

)
− σω =

κJ

p
(6.13b)

The quasi-geostrophic vorticity equation

i

jk

V⃗g =
1

f0
k⃗ × ∇⃗Φ (6.7)

f0V⃗g = f0(ug⃗i+ vg j⃗) = k⃗ ×
(
∂Φ

∂x
i⃗+

∂Φ

∂y
j⃗

)
=
∂Φ

∂x
j⃗ − ∂Φ

∂y
i⃗

∴ f0vg =
∂Φ

∂x
, f0ug = −∂Φ

∂y
(6.14)
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Geostrophic vorticity

ζg = k⃗ · ∇⃗ × V⃗g = k⃗

∣∣∣∣∣∣∣∣
i⃗ j⃗ k⃗
∂

∂x

∂

∂y
0

ug vg 0

∣∣∣∣∣∣∣∣
= k⃗ ·

[
k⃗

(
∂vg
∂x

− ∂ug
∂y

)]
=
∂vg
∂x

− ∂ug
∂y

∴ ζg =
∂

∂x

(
1

f0

∂Φ

∂x

)
− ∂

∂y

(
1

f0

(
−∂Φ
∂y

))
=

1

f0

(
∂2Φ

∂x2
+
∂2Φ

∂y2

)
=

1

f0
∇2Φ (6.15)

This equation can be used to determine ζg(x, y) from a known field Φ(x, y).

It can also be solved by inverting the Laplacian operator to determine Φ from a known distribution of ζg,
provided that suitable conditions on Φ are specified on the boundaries of the region in question.

Vorticity is a useful forecast diagnostic: if the evolution of the vorticity can be predicted, then inversion of
(6.15) yields the evolution of the geopotential field, from which it is possible to determine the geostrophic
wind and temperature distributions.

Note: The Laplacian of a function tends to be a maximum where the function itself is a minimum...

ζg =
1

f0
∇2Φ

It will be shown later in the course that ∇2Φ ∝ −Φ.

In Northern Hemisphere:

1

f0
∇2Φ ∝ −Φ since f0 > 0

∴ ζg ∝ −Φ

=⇒ positive vorticity implies low values of geopotential, and vice versa.

At ridge Φ is a maximum, thus ζg < 0

At trough Φ is a minimum, thus ζg > 0

In Southern Hemisphere:

1

f0
∇2Φ ∝ Φ since f0 < 0

∴ ζg ∝ Φ
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=⇒ positive vorticity implies high values of geopotential, and vice versa.

At ridge Φ is a maximum, thus ζg > 0

At trough Φ is a minimum, thus ζg < 0

The quasi-geostrophic vorticity equation can be obtained from the quasi-geostrophic momentum equation
(6.11):

DgV⃗g
Dt

= −f0k⃗ × V⃗a − βyk⃗ × V⃗g

Dg

Dt
(ug⃗i+ vg j⃗) = −f0k⃗ × (ua⃗i+ vaj⃗)− βyk⃗ × (ug⃗i+ vg j⃗)

= −f0uaj⃗ − f0(−va⃗i)− βyug j⃗ − βy(−vg⃗i)

∴
Dg

Dt
ug = f0va + βyvg

&
Dg

Dt
vg = −f0ua − βyug

∴
Dg

Dt
ug − f0va − βyvg = 0 (6.16)

&
Dg

Dt
vg + f0ua + βyug = 0 (6.17)

∂

∂x
(6.17)− ∂

∂y
(6.16) :

∂

∂y

(
∂ug
∂t

+ ug
∂ug
∂x

+ vg
∂ug
∂y

− f0va − βyvg

)
= 0

∂2ug
∂y∂t

+
∂ug
∂y

∂ug
∂x

+ ug
∂2ug
∂x∂y

+
∂vg
∂y

∂ug
∂y

+ vg
∂2ug
∂y2

− va

= 0︷︸︸︷
∂f0
∂y

− f0
∂va
∂y

− ∂β

∂y
yvg − β

∂y

∂y︸︷︷︸
= 1

vg − βy
∂vg
∂y

= 0 (1)

and
∂

∂x

(
∂vg
∂t

+ ug
∂vg
∂x

+ vg
∂vg
∂y

+ f0ua + βyug

)
= 0

∂2vg
∂x∂t

+
∂ug
∂x

∂vg
∂x

+ ug
∂2vg
∂x2

+
∂vg
∂x

∂vg
∂y

+ vg
∂2vg
∂x∂y

+ ua

= 0︷︸︸︷
∂f0
∂x

+ f0
∂ua
∂x

+
∂β

∂x
yug + β

∂y

∂x︸︷︷︸
= 0

ug + βy
∂ug
∂x

= 0 (2)
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(2)− (1):

∂2vg
∂x∂t

− ∂2ug
∂y∂t

+ ug
∂2vg
∂x2

− ug
∂2ug
∂x∂y

+ vg
∂2vg
∂x∂y

− vg
∂2ug
∂y2

+ f0
∂ua
∂x

+ f0
∂va
∂y

+
∂ug
∂x

∂vg
∂x

− ∂ug
∂y

∂ug
∂x

+
∂vg
∂x

∂vg
∂y

− ∂vg
∂y

∂ug
∂y

+
∂β

∂x
yug +

∂β

∂y
yvg + βvg + βy

∂ug
∂x

+ βy
∂vg
∂y

= 0

∴
∂

∂t

(
∂vg
∂x

− ∂ug
∂y

)
+ ug

∂

∂x

(
∂vg
∂x

− ∂ug
∂y

)
+ vg

∂

∂y

(
∂vg
∂x

− ∂ug
∂y

)
+ f0

(
∂ua
∂x

+
∂va
∂y

)
+
∂ug
∂x

(
∂vg
∂x

− ∂ug
∂y

)
+
∂vg
∂y

(
∂vg
∂x

− ∂ug
∂y

)
+ “β terms” = 0

∴
∂ζg
∂t

+ ug
∂ζg
∂x

+ vg
∂ζg
∂y

+ f0

(
∂ua
∂x

+
∂va
∂y

)
+ ζg

(
∂ug
∂x

+
∂vg
∂y

)
+ 0 + 0 + βvg + βy

(
∂ug
∂x

+
∂vg
∂y

)
= 0

But the divergence of the geostrophic wind vanishes:

∇⃗ · V⃗g = 0

∴
∂ug
∂x

+
∂vg
∂y

= 0

=⇒
(
∂

∂t
+ ug

∂

∂x
+ vg

∂

∂y

)
ζg = −f0

(
∂ua
∂x

+
∂va
∂y

)
− βvg

∴
Dg

Dt
ζg = −f0

(
∂ua
∂x

+
∂va
∂y

)
− βvg (6.18)

Take note
Dgf

Dt
=

∂f

∂t︸︷︷︸
= 0

+ug
∂f

∂x︸︷︷︸
= 0

+vg
∂f

∂y
[f = f(y)]

= 0 + V⃗g · ∇⃗f = βvg

∴
∂ζg
∂t

+ V⃗g · ∇⃗ζg = −f0
(
∂ua
∂x

+
∂va
∂y

)
− V⃗g · ∇⃗f

From (6.12):
∂ua
∂x

+
∂va
∂y

= −∂ω
∂p

∴
∂ζg
∂t

= −V⃗g · ∇⃗ζg − f0

(
−∂ω
∂p

)
− V⃗g · ∇⃗f

= −V⃗g · ∇⃗(ζg + f) + f0
∂ω

∂p
(6.19)
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In words: The local rate of change of geostrophic vorticity is given by the sum of the advection of the
absolute vorticity by the geostrophic wind plus the concentration or dilution of vorticity by stretching or
shrinking of fluid columns (the divergence effect).

Vorticity tendency due to vorticity advection: − V⃗g · ∇⃗(ζg + f)

= −V⃗g · ∇⃗ζg − βvg

V⃗g · ∇⃗ζg : geostrophic advection of relative vorticity

βvg : geostrophic advection of planetary vorticity

For disturbances in the westerlies, these two effects tend to have opposite signs.

Consider the figure for an idealized 500hPa flow in the Northern Hemisphere.

In region I, upstream of the 500hPa trough, the geostrophic wind is directed from the relative vorticity
minimum at the ridge towards the relative vorticity maximum at the trough.

∴ V⃗g · ∇⃗ζg > 0 =⇒ −V⃗g · ∇⃗ζg < 0

At the same time vg < 0 in region I because it is directed southwards.

Take note that β = 2Ωcosϕ0/a > 0 in both hemispheres.

∴ βvg < 0 =⇒ −βvg > 0

We now have in region I that the:

1) advection of relative vorticity tends to decrease the local vorticity

2) advection of planetary vorticity tends to increase the local vorticity.
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The same arguments can be applied for region II.

Therefore, advection of relative vorticity tends to move the vorticity pattern and hence the troughs and
ridges eastward (downstream). However, advection of planetary vorticity tends to move the troughs and
ridges westward against the advecting wind field.

The net effect of advection on the evolution of the vorticity pattern depends on which type of vorticity
advection dominates.

Consider the schematic of the 500hPa geopotential field in the Southern Hemisphere above.

The advection of the absolute vorticity by the geostrophic wind:

−V⃗g · ∇⃗(ζg + f) = −V⃗g · ∇⃗ζg − βvg

Region I: Advection of relative vorticity is positive because we are going from ζg < 0 at the trough to ζg >
at the ridge.

∴ V⃗g · ∇⃗ζg > 0 =⇒ −V⃗g · ∇⃗ζg < 0

We have shown that β > 0. However, in the region vg points southwards. Therefore, vg < 0.

∴ βvg < 0 =⇒ −βvg > 0

Region II: −V⃗g · ∇⃗ζg > 0, because advection of relative vorticity is negative and −βvg < 0 because vg > 0.

Consider an idealised geopotential distribution on a mid-latitude β-plane of the form

Φ(x, y) = Φ0 − f0Uy + f0A sin kx cos ly

Φ0, a constant zonal speed U , and amplitude A depend only on pressure. Wave numbers k and l are defined
as k = 2π/Lx and l = 2π/Ly. Lx and Ly are respectively the wavelengths in the x and y directions. y
in the geopotential distribution equation is given by a(ϕ − ϕ0), with a the radius of the Earth and ϕ0 the
latitude at which f0 is evaluated.

For ϕ− ϕ0 = 6°, y = 6.67× 105m

= 3°, y = 3.34× 105m

= 1°, y = 1.11× 105m

= 10°, y = 1.11× 106m
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Therefore, for 10° displacement in y, y is approximately equal to the length scale, L, of 106m.

ug = − 1

f0

∂

∂y
(Φ0 − f0Uy + f0A sin kx cos ly)

= U −A sin kx(−l sin ly) = U + lA sin kx sin ly

vg =
1

f0

∂

∂x
Φ =

1

f0
(f0kA cos kx cos ly) = kA cos kx cos ly

ζg =
1

f0

(
∂2

∂x2
+

∂2

∂y2

)
Φ

∂

∂x
(f0kA cos kx cos ly) = −f0k2A sin kx cos ly

∂

∂y
(−f0U − f0lA sin kx sin ly) = −f0l2A sin kx cos ly

∴ ζg =
1

f0

(
−f0k2 − f0l

2
)
A sin kx cos ly

= −(k2 + l2)A sin kx cos ly

Advection of relative vorticity:

−V⃗g · ∇⃗ζg = −
(
ug⃗i+ vg j⃗

)
·
(
∂

∂x
i⃗+

∂

∂y
j⃗

)
ζg

= −ug
∂ζg
∂x

− vg
∂ζg
∂y

= −ug(−(k2 + l2)Ak cos kx cos ly)− vg(−(k2 + l2)Al sin kx(− sin ly))

= −ug(−(k2 + l2)vg)− vg((k
2 + l2)(ug − U))

= ugvg(k
2 + l2)− ugvg(k

2 + l2) + vgU(k2 + l2)

= vgU(k2 + l2) = Ak cos kx cos lyU(k2 + l2)

= kU(k2 + l2)A cos kx cos ly

Advection of planetary vorticity:

−vg
df

dy
= −vgβ = −βAk cos kx cos ly [β = 2Ωcosϕ0/a]

Advection of absolute vorticity:

−V⃗g · ∇⃗(ζg + f) = kU(k2 + l2)A cos kx cos ly − βAk cos kx cos ly

= kA cos kx cos ly(U(k2 + l2)− β)

k =
2π

Lx
, l =

2π

Ly
with Lx and Ly the wavelengths in the x and y directions, respectively.

Consider l =
π

2
× 10−7m−1 for fixed Ly wavelengths. However, we want to determine the effect of Lx on

the advection of both relative and planetary vorticity, and so wavenumber k varies with a range of Lx (i.e.,
1000 km to 12000 km). We therefore need to evaluate U(k2 + l2) against β as shown in the figure below.
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Take note that the term representing the advection of relative vorticity (U(k2 + l2)) at Lx = 3000 km is
about ten times larger than the value at Lx = 10000 km. This result implies that relative vorticity advection
is multiple times larger than planetary vorticity advection at 3000 km where there is a clear exponential
inflection on the figure.

By considering a simplified version of an idealised geopotential distribution, a similar result is obtained.

Φ(x, y, p) = Φ0(p)− f0U0y sin

(
πp

p0

)
+ f0A sin kx

ug = − 1

f0

∂

∂y
Φ = − 1

f0

(
−f0U0 sin

(
πp

p0

))
= U0 sin

(
πp

p0

)

vg =
1

f0

∂

∂x
Φ =

1

f0
(f0Ak cos kx) = Ak cos kx

ζg =
1

f0

(
∂

∂x
(f0Ak cos kx) +

∂

∂y

(
−f0U0 sin

(
πp

p0

)))
=

1

f0

(
−f0Ak2 sin kx

)
= −k2A sin kx

−V⃗g · ∇⃗ζg = k2U0 sin

(
πp

p0

)
Ak cos kx
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∴ −V⃗g · ∇⃗(ζg + f) =

(
k2U0 sin

(
πp

p0

)
− β

)
Ak cos kx

=
(
k2U0 − β

)
Ak cos kx

when p0 = 1000hPa and p = 500hPa.

Here we also show the results of having different values ofU0, the constant zonal speed. Clearly, the strength
of a constant zonal wind will affect the wave lengths of short-wave systems, but will have a minimal affect
on the wavelengths of Rossby waves

Exercise 1: Suppose that on the 500hPa surface of the schematic above, the relative vorticity at a certain
location at 45°S latitude is increasing at a rate of 3×10−6 s−1 per 3 hours. The wind is from the northwest at
20m s−1 and the relative vorticity increases towards the southeast at a rate of 4×10−6 s−1 per 100 km. Use
the quasi-geostrophic vorticity equation to estimate the horizontal divergence at this location on a β-plane.

Make use of the following assumptions:

1. The constant Coriolis parameter is equal to −10−4 s−1 in the Southern Hemisphere

2. β is approximated by 10−11m−1 s−1

3. The following relationship is valid for natural coordinates: V⃗g · ∇⃗ζg ∼ v
∂ζg
∂s

, where s is the distance
along the curve (500hPa contour)
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Solution:

∂ζg
∂t

= −V⃗g · ∇⃗(ζg + f) + f0(−∇⃗ · V⃗ )

∴ f0∇⃗ · V⃗ = −∂ζg
∂t

− V⃗g · ∇⃗ζg − vg
∂f

∂y

= −∂ζg
∂t

− v
∂ζg
∂s

− vgβ

∂ζg
∂t

=
3× 10−6 s−1

(3× 3600) s
= 2.778× 10−10 s−2

v
∂ζg
∂s

= (20m s−1)

(
4× 10−6 s−1

100 000m

)
= 8× 10−10 s−2

(20m s−1)2 = ug
2 + vg

2, ug = vg (Pythagoras)

∴ vg = ±
(
202

2

) 1
2

∴ vg = −14.14m s−1 (since vg < 0)

∴ vgβ = −14.14m s−1(10−11m−1 s−1)

= −1.414× 10−10 s−2

∴ ∇⃗ · V⃗ = −f0−1

(
∂ζg
∂t

+ v
∂ζg
∂s

+ vgβ

)
= −(−10−4 s−1)−1

(
2.778× 10−10 + 8× 10−10 − 1.414× 10−10

)
s−2

= 9.364× 10−6 s−1, divergence

Exercise 2: Consider the following expression for the geopotential field:

Φ = Φ0(p) + cf0

{
−y
[
cos

(
πp

p0

)
+ 1

]
+ k−1 sin k(x− ct)

}
is a function of p alone, c is a constant speed, k a zonal wave number, and p0 = 1000hPa.

Consider the following two assumptions:

1. Only consider the dominating vorticity advection (either planetary or relative) term applicable to short-
wave systems

2. Geostrophic relative vorticity only varies between trough and ridge axes in the x-direction

Use the quasi-geostrophic vorticity equation to show that the horizontal divergence field consistent with this
geopotential field can be expressed as:

(f0)
−1(ck)2 cos

(
πp

p0

)
cos k(x− ct)
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Solution: From Exercise 1: ∇⃗ · V⃗ = −f0−1

(
∂

∂t
+ V⃗g · ∇⃗

)
(ζg + f)

ug = − 1

f0

∂Φ

∂y

vg =
1

f0

∂Φ

∂x

ζg =
1

f0
∇2Φ

−f0∇⃗ · V⃗ =

(
∂

∂t
+ V⃗g · ∇⃗

)
(ζg + f) =

∂ζg
∂t

+
∂f

∂t
+ V⃗g · ∇⃗ζg + V⃗g · ∇⃗f

=
∂ζg
∂t

+ (ug⃗i+ vg j⃗) ·
(
∂

∂x
i⃗+

∂

∂y
j⃗

)
ζg + (ug⃗i+ vg j⃗) ·

(
∂

∂x
i⃗+

∂

∂y
j⃗

)
f

=
∂ζg
∂t

+ ug
∂ζg
∂x

+ vg
∂ζg
∂y

+ vg
∂f

∂y

We are considering short-wave systems, which means planetary vorticity advection is dominated by relative
vorticity advection, thus vgβ ∼ 0.

Also according to idealized 500hPa geopotential field, ζg only varies between trough and ridge axes in the

x-direction, therefore vg
∂ζg
∂y

= 0.

∴ −f0∇⃗ · V⃗ =
∂ζg
∂t

+ ug
∂ζg
∂x

∴ ∇⃗ · V⃗ = −f0−1

(
∂

∂t
+ ug

∂

∂x

)
ζg

ζg =
1

f0
∇2Φ

=⇒ f0ζg =

(
∂2

∂x2
+

∂2

∂y2

)(
cf0

{
−y
[
cos

(
πp

p0

)
+ 1

]
+

1

k
sin k(x− ct)

})

∂

∂x

(
∂

∂x

(
cf0

{
−y
[
cos

(
πp

p0

)
+ 1

]
+

1

k
sin k(x− ct)

}))
=

∂

∂x

(
cf0

1

k
k cos k(x− ct)

)
= −cf0k sin k(x− ct)

∂

∂y

(
∂

∂y

(
cf0

{
−y cos

(
πp

p0

)
− y +

1

k
sin k(x− ct)

}))
=

∂

∂y

(
cf0

(
− cos

(
πp

p0

)
− 1

))
= 0
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f0ζg = −cf0k sin k(x− ct)

∴ ζg = −ck sin k(x− ct)

ug = − 1

f0

∂Φ

∂y

=⇒ −f0ug =
∂

∂y

(
cf0

{
−y
[
cos

(
πp

p0

)
+ 1

]
+

1

k
sin k(x− ct)

})
= cf0

(
−
[
cos

(
πp

p0

)
+ 1

])
∴ ug = c

(
cos

(
πp

p0

)
+ 1

)
∂

∂t
ζg =

∂

∂t
(−ck sin k(x− ct))

= −ck(−ck cos k(x− ct))

= c2k2 cos k(x− ct)

∂

∂x
ζg =

∂

∂x
(−ck sin k(x− ct))

= −ck(k cos k(x− ct))

= −ck2 cos k(x− ct)

∴ ∇⃗ · V⃗ = − 1

f0

(
c2k2 cos k(x− ct) +

(
c

(
cos

(
πp

p0

)
+ 1

))
× (−ck2 cos k(x− ct))

)
= − 1

f0

(
c2k2 cos k(x− ct) +

(
c cos

(
πp

p0

)
+ c

)
× (−ck2 cos k(x− ct))

)
= − 1

f0

(
c2k2 cos k(x− ct)− c2k2 cos

(
πp

p0

)
cos k(x− ct)− c2k2 cos k(x− ct)

)
=
c2k2

f0
cos

(
πp

p0

)
cos k(x− ct)

Exercise 3: Suppose that on the 500hPa surface the relative vorticity at a location just left of the ridge line
in the figure used in Exercise 1, at the 45°S latitude (where the Coriolis parameter can be considered to be a
constant value of −10−4 s−1 in the Southern Hemisphere) is increasing at a rate of 3.6× 10−6 s−1 per hour.
The wind is, for all practical purposes, blowing directly from the west above the location (negligible north-
south component) at 20m s−1 and the relative vorticity increases toward the east at a rate of 4×10−6 s−1 per
100 km. Use the quasi-geostrophic vorticity equation to estimate the horizontal divergence at this location
on a β-plane. This is a short-wave system.

Solution:

∂ζg
∂t

= −V⃗g · ∇⃗(ζg + f) + f0
∂ω

∂p

= −(ug⃗i+ vg j⃗) ·
(
∂

∂x
i⃗+

∂

∂y
j⃗

)
(ζg + f) + f0

∂ω

∂p
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Since we can ignore advection of planetary vorticity,

∂ζg
∂t

= −ug
∂ζg
∂x

− vg
∂ζg
∂y

+ f0
∂ω

∂p

Since the wind at the location is blowing from the west, vg = 0

∂ζg
∂t

= −ug
∂ζg
∂x

+ f0
∂ω

∂p

∴
∂ω

∂p
= f0

−1

(
∂ζg
∂t

+ ug
∂ζg
∂x

)
∂ζg
∂t

> 0 (increasing at a rate of 3.6× 10−6 s−1)

ug > 0 (wind from the west)
∂ζg
∂x

> 0 (vorticity increases per distance, and location is in Region I)

∴
∂ω

∂p
=
(
−10−4 s−1

)−1
(
3.6× 10−6 s−1

1× 60× 60 s
+ 20m s−1 4× 10−6 s−1

103m

)
= −104 s

(
36× 10−7

36× 102
s−2+8× 10−10 s−2

)
= −104 ×

(
10−9 s−1+8× 10−10 s−1

)
= −104 ×

(
10× 10−10 + 8× 10−10

)
s−1

= −1.8× 10−5 s−1, divergence since −∂ω
∂p

= ∇⃗ · V⃗

Quasi-geostrophic prediction

The geostrophic vorticity equation

∂ζg
∂t

= −V⃗g · ∇⃗(ζg + f) + f0
∂ω

∂p
(6.19)

ζg =
1

f0
∇2Φ (6.15)

∂

∂t

(
1

f0
∇2Φ

)
= −V⃗g · ∇⃗

(
1

f0
∇2Φ+ f

)
+ f0

∂ω

∂p

1

f0
∇2∂Φ

∂t
= −V⃗g · ∇⃗

(
1

f0
∇2Φ+ f

)
+ f0

∂ω

∂p

Defining the geopotential tendency χ ≡ ∂Φ

∂t

∴
1

f0
∇2χ = −V⃗g · ∇⃗

(
1

f0
∇2Φ+ f

)
+ f0

∂ω

∂p
(6.21)
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Since V⃗g =
1

f0
k⃗ × ∇⃗Φ, the right-hand side of (6.21) depends only on the dependent variables Φ and ω.

Next, we will obtain an analogous equation also dependent on these two variables (Φ and ω)

Consider the thermodynamic energy equation:(
∂

∂t
+ V⃗g · ∇⃗

)(
−∂Φ
∂p

)
− σω =

κJ

p
(6.13b)

∴
∂

∂t

(
−∂Φ
∂p

)
+ V⃗g · ∇⃗

(
−∂Φ
∂p

)
− σω =

κJ

p

∴ − ∂

∂p

(
∂Φ

∂t

)
= V⃗g · ∇⃗

(
∂Φ

∂p

)
+ σω +

κJ

p

∴
∂χ

∂p
= −V⃗g · ∇⃗

(
∂Φ

∂p

)
− σω − κJ

p

Multiply by f0/σ:
f0
σ

∂χ

∂p
= −f0

σ
V⃗g · ∇⃗

(
∂Φ

∂p

)
− f0ω − f0κJ

σp

Differentiate with respect to p:

∴
∂

∂p

(
f0
σ

∂χ

∂p

)
= − ∂

∂p

[
f0
σ
V⃗g · ∇⃗

(
∂Φ

∂p

)]
− f0

∂ω

∂p
− f0

∂

∂p

(
κJ

σp

) [
σ ≡ −RT0

p

d ln θ

dp

]
(6.22)

The ageostrophic vertical motion, ω, has equal and opposite effects on the left-hand sides in
(
6.21 : f−1

0 ∇2χ
)

and
(
6.22 :

∂

∂p

(
f0
σ

∂χ

∂p

))
Vertical stretching

(
∂ω

∂p
> 0

)
forces a positive tendency in the geostrophic vorticity (6.21) and a negative

tendency of equal magnitude in the term on the left side in (6.22).

The left side of (6.22) can be interpreted as the local rate of change of a normalized static stability anomaly
(i.e., a measure of the departure of static stability from Sp, its standard atmosphere value).

To demonstrate this statement:

∂

∂p

(
f0
σ

∂χ

∂p

)
=

∂

∂p

(
f0
σ

∂

∂p

(
∂Φ

∂t

))
=

∂

∂p

(
f0
σ

∂

∂t

(
∂Φ

∂p

))
=

∂

∂p

(
f0
σ

∂

∂t

(
−RT

p

)) {
(6.2) :

∂Φ

∂p
= −RT

p

}
= −f0

∂

∂p

(
R

σp

∂T

∂t

) {
Sp =

pσ

R

}
= −f0

∂

∂p

(
1

Sp

∂T

∂t

)
= −f0

[
∂

∂p

(
1

Sp

)
∂T

∂t
+

1

Sp

∂

∂p

∂T

∂t

]
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Assume that Sp varies only slowly with height in the troposphere, thus Sp is nearly constant and
∂

∂p

(
S−1
p

)
≈

0

∴
∂

∂p

(
f0
σ

∂χ

∂p

)
≈ − f0

Sp

∂

∂p

∂T

∂t
= − f0

Sp

∂

∂t

∂T

∂p
= − ∂

∂t

(
f0
Sp

∂T

∂p

)
From page 5 of the notes:

Ttot = T0 + T {T0 : basic state (standard atmosphere)}
∴ T = Ttot − T0

Therefore
∂T

∂p
∼ local static stability anomaly

∴
1

Sp

∂T

∂p
∼ Local static stability anomaly divided by the standard atmosphere static stability

Take note:
f0
Sp

∂T

∂p
has the same units as vorticity, and is also a normalized static stability value.

When the tendency of the normalized static stability anomaly > 0:

∂

∂t

(
f0
Sp

∂T

∂p

)
> 0

∴
∂

∂p

(
f0
σ

∂χ

∂p

)
< 0, the left side of (6.22)

An air column that moves adiabatically from a region of high static stability to a region of low static stability,
∂ω/∂p > 0.

Since (6.21) and (6.22) are analogous equations, the relative vorticity in (6.21),
1

f0
∇2χ and the normalized

static stability anomaly in (6.22) are changed by equal and opposite amounts. The normalized static stability
anomaly is therefore referred to as the stretching vorticity.

Purely geostrophic motion (ω = 0) is a solution to (6.21) and (6.22) only in a very special situations such as
barotropic flow (no pressure dependence) or zonally symmetric flow. More general purely geostrophic flows
cannot satisfy both these equations simultaneously as there are then two independent equations, and a single
unknown (Φ) so that the system is overdetermined. Thus, the role of the vertical motion distribution must
be to maintain consistency between the geopotential tendencies required by vorticity advection in (6.21) and
thermal advection in (6.22).
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Geopotential tendency

(6.21):

∴
1

f0
∇2χ = −V⃗g · ∇⃗

(
1

f0
∇2Φ+ f

)
+ f0

∂ω

∂p
(1)

Assuming that the diabatic heating rate J = 0, (6.22) becomes:

∂

∂p

(
f0
σ

∂χ

∂p

)
= − ∂

∂p

[
f0
σ
V⃗g · ∇⃗

(
∂Φ

∂p

)]
− f0

∂ω

∂p
(2)

(1) + (2):[
1

f0
∇2 +

∂

∂p

(
f0
σ

∂

∂p

)]
χ = −V⃗g · ∇⃗

(
1

f0
∇2Φ+ f

)
− ∂

∂p

[
f0
σ
V⃗g · ∇⃗

(
∂Φ

∂p

)]
∴

[
∇2 +

∂

∂p

(
f0

2

σ

∂

∂p

)]
︸ ︷︷ ︸

A

χ = −f0V⃗g · ∇⃗
(

1

f0
∇2Φ+ f

)
︸ ︷︷ ︸

B

− ∂

∂p

[
−f0

2

σ
V⃗g · ∇⃗

(
−∂Φ
∂p

)]
︸ ︷︷ ︸

C

(6.23)

(6.23) is often referred to as the geopotential tendency equation.

A. The local geopotential tendency

B. The distribution of vorticity advection

C. The thickness advection

If the distribution of Φ is known at a given time, B and C may be regarded as known forcing functions and
(6.23) is a linear partial differential equation in the unknown χ.

Take note that the term A involves second derivatives in space (x, y) of the field χ, and thus generally
proportional to −χ.

χ =
∂Φ

∂t
and we assume that the horizontal structure of Φ (geopotential) in the extra-tropics can be repre-

sented by a sinusoidal function:

Φ = Φ(x, y, p, t) = A(p, t)B(x, y)

with B(x, y) = sin(kx) cos(ly); k =
2π

Lx
; l =

2π

Ly

∴ χ =
∂

∂t
(A(p, t) sin(kx) cos(ly))

Term A:
[
∇2 +

∂

∂p

(
f0

2

σ

∂

∂p

)]
applied to χ:
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∇2χ =

(
∂2

∂x2
+

∂2

∂y2

)[
∂A

∂t
sin(kx) cos(ly)

]
=
∂A

∂t

(
∂2

∂x2
(sin(kx) cos(ly)) +

∂2

∂y2
(sin(kx) cos(ly))

)
=
∂A

∂t

(
cos(ly)

∂2

∂x2
(sin(kx)) + sin(kx)

∂2

∂y2
(cos(ly))

)
∂2

∂x2
(sin(kx)) =

∂

∂x
(k cos(kx)) = −k2 sin(kx)

∂2

∂y2
(cos(ly)) =

∂

∂y
(−l sin(ly)) = −l2 cos(ly)

∴ ∇2χ =
∂A

∂t

(
cos(ly)(−k2 sin(kx)) + sin(kx)(−l2 cos(ly))

)
=
∂A

∂t
sin(kx)) cos(ly)(−k2 − l2)

= −(k2 + l2)
∂A

∂t
sin(kx)) cos(ly)

= −(k2 + l2)χ ∝ −χ

Since geopotential fields tend to lean westward with height in the mid-latitudes an upper troposphere ridge
often lies over or near the surface trough:

1000hPa

200hPa

p0 = 1000

p = 200

hPa

hPa

Figure 14: A full phase shift with height.

Φ = A(p, t)B(x, y); we dealt with the B(x, y) part on the previous page, and so we now consider

A(p, t) = Q(t) cos

(
πp

p0

)

χ =
∂Φ

∂t
=

∂

∂t

(
Q(t) cos

(
πp

p0

)
B(x, y)

)
= cos

(
πp

p0

)
B
∂Q

∂t
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Regarding term A of the geopotential tendency equation, apply
∂

∂p

(
f0

2

σ

∂

∂p

)
to χ:

∴

[
∂

∂p

(
f0

2

σ

∂

∂p

)]
χ =

[
∂

∂p

(
f0

2

σ

∂

∂p

)](
cos

(
πp

p0

)
B
∂Q

∂t

)
= B

∂Q

∂t

[
∂

∂p

(
f0

2

σ

∂

∂p

)](
cos

(
πp

p0

))
= B

∂Q

∂t

[
∂

∂p

(
f0

2

σ

(
−π
p0

)
sin

(
πp

p0

))]

Assume that the standard atmosphere static stability parameter σ, varies only slowly with height
(

i.e.,
∂

∂p
(σ−1) ≈ 0

)
in the troposphere: [

∂

∂p

(
f0

2

σ

∂

∂p

)]
χ = −B∂Q

∂t

f0
2

σ

π

p0

∂

∂p

(
sin

(
πp

p0

))
∴

[
∂

∂p

(
f0

2

σ

∂

∂p

)]
χ = −B∂Q

∂t

f0
2

σ

π2

p20
cos

(
πp

p0

)
= − cos

(
πp

p0

)
B
∂Q

∂t

(
f0

2

σ

π2

p20

)
= −f0

2

σ

π2

p20
χ ∝ −χ

=⇒
[
∇2 +

∂

∂p

(
f0

2

σ

∂

∂p

)]
χ ∝ −χ

Term A is thus generally proportional to −χ
(
=
∂Φ

∂t

)
Next, consider Term B:

−f0V⃗g · ∇⃗
(

1

f0
∇2Φ+ f

)
= −f0V⃗g · ∇⃗ (ζg + f)

[
(6.15) : ζg =

1

f0
∇2Φ

]
= −f0V⃗g · ∇⃗ζg − f0V⃗g ·

(
∂f

∂x
i⃗+

∂f

∂y
j⃗

)
= −f0V⃗g · ∇⃗ζg − f0(ug⃗i+ vg j⃗) ·

∂f

∂y
j⃗ (f ̸= f(x))

= −f0V⃗g · ∇⃗ζg − f0vg
∂f

∂y

= geostrophic advection of relative vorticity +

geostrophic advection of planetary vorticity

Consider the schematic below of a 500hPa geopotential field in the Southern Hemisphere:
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Region I: Upstream of the 500hPa ridge, the geostrophic wind is directed from the relative vorticity mini-
mum at the trough towards the relative vorticity maximum at the ridge.

=⇒ Advection of relative vorticity is positive.

∴ V⃗g · ∇⃗ζg > 0

∴ f0V⃗g · ∇⃗ζg < 0 in the SH (f0 < 0)

∴ −f0V⃗g · ∇⃗ζg > 0 in the SH

At the same time vg < 0 because it is directed southwards, and
∂f

∂y
= β = 2Ωcosϕ0/a > 0 (both

hemispheres).

∴ vg
∂f

∂y
< 0

∴ f0vg
∂f

∂y
> 0 in the SH (f0 < 0)

∴ −f0vg
∂f

∂y
< 0 in the SH

For advection of relative vorticity:

[
∇2 +

∂

∂p

(
f0

2

σ

∂

∂p

)]
χ ∝− χ > 0

∴ χ < 0

∴
∂Φ

∂t
< 0

therefore the geopotential heights are falling between the trough and the ridge axis, downstream of the
trough axis.
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For advection of planetary vorticity:

− χ < 0

[
−f0vg

∂f

∂y
< 0

]
∴ χ > 0

∴
∂Φ

∂t
> 0

which implies that the advection of planetary vorticity results in increasing geopotential heights.

Similarly for Region II:

−f0V⃗g · ∇⃗ζg < 0 in the SH

∴ −χ < 0

∴ χ > 0

∴
∂Φ

∂t
> 0

and

−f0vg
∂f

∂y
> 0

∴ −χ > 0

∴ χ < 0

∴
∂Φ

∂t
< 0
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For a mid-latitude disturbance of given amplitude the absolute value of the relative vorticity increases for
decreasing wavelength.

Therefore for short wavelengths (≤ 3000km) the advection of relative vorticity tends to dominate, resulting
in the disturbance moving rapidly eastwards.

For long waves (≥ 10000km) the planetary vorticity advection tends to dominate, resulting in these long
planetary waves to be quasi-stationary.

Since ∇⃗ζg and vg are zero at both trough and ridge axes, the vorticity advection term is zero:

Term B: − f0V⃗g · ∇⃗ζg − f0vg
∂f

∂y

= −f0V⃗g · 0⃗− f0(0)
∂f

∂y

= 0

=⇒ Vorticity advection cannot change the strength of this type of disturbance at the levels where the
advection is occurring, but only acts to propagate the disturbance horizontally and (as shown in the next
section) to spread it vertically.

The mechanism for amplification or decay of mid-latitude synoptic systems is contained in Term C:

− ∂

∂p

[
−f0

2

σ
V⃗g · ∇⃗

(
−∂Φ
∂p

)]
=
f0

2

σ

∂

∂p

[
V⃗g · ∇⃗

(
−∂Φ
∂p

)]
This term is called the differential thickness advection and it tends to be a maximum at trough and ridge
lines in a developing baroclinic wave.

The term V⃗g·∇⃗
(
−∂Φ
∂p

)
is proportional to the hydrostatic temperature advection, and

∂

∂p

[
V⃗g · ∇⃗

(
−∂Φ
∂p

)]
is proportional to the rate of change of the temperature advection with height, or the differential temperature advection.

Consider below an idealized schematic representation of a developing baroclinic disturbance:

In order to determine the rate of change of the temperature advection with height (or pressure) at least two
levels in the vertical must be used. Here two layers are considered: 1000– 500hPa layer (lower troposphere),
and the 500– 300hPa layer (upper troposphere).
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The figure above demonstrates that a developing baroclinic disturbance is characterized by the westward tilt
with height of the pressure system (the thick solid contours are to the west of the thin contours).

1. The tilting results in strong cold advection behind the cold front and strong warm advection ahead of
the warm front.

2. In the upper troposphere, the tilt of the pressure system is small.

These statements are demonstrated in the figure below.

Figure 15: West-east cross section through a developing baroclinic wave. Solid lines are trough and ridge
axes; dashed lines are axes of temperature extrema; the chain of open circle denotes the tropopause.

In the upper troposphere the tilt of the pressure system with height in small. The result is that the thick-
ness pattern and the geopotential pattern become approximately parallel, which leads to thermal advection
becoming small there. Term C is thus concentrated in the lower troposphere.

For the case of the lower troposphere, we want to determine the sign and the magnitude of the Term C. The
horizontal thermal advection for this part of the troposphere (1000– 500hPa layer) is given by:

V⃗g · ∇⃗
(
−∂Φ
∂p

)
where V⃗g is the geostrophic wind at the 1000hPa level, and ∇⃗

(
−∂Φ
∂p

)
is a vector that is perpendicular to
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the 1000– 500hPa thickness lines. See diagram B on page 124. This vector points towards the warm sector
of the low pressure system, and is shown in B for two positions (the two arrows).

The sign of the scalar product of V⃗g · ∇⃗
(
−∂Φ
∂p

)
is given by:

∣∣∣V⃗g∣∣∣ ∣∣∣∣∇⃗(−∂Φ∂p
)∣∣∣∣ cos θ

cos θ > 0 if θ < 90°, behind cold front

cos θ < 0 if θ > 90°, ahead of warm front

Behind cold front (below 500hPa trough):

Thermal advection = V⃗g · ∇⃗
(
−∂Φ
∂p

)
> 0, cold advection

Ahead of warm front (below 500hPa ridge):

Thermal advection = V⃗g · ∇⃗
(
−∂Φ
∂p

)
< 0, warm advection

Recalling the discussion above that for a developing system the thermal advection is much smaller in the
upper troposphere than in the lower troposphere, thermal advection (both cold and warm) decreases with
height. So does tropospheric pressure.

∴
∂

∂p

(
V⃗g · ∇⃗

(
−∂Φ
∂p

))
> 0 below 500hPa trough

and
∂

∂p

(
V⃗g · ∇⃗

(
−∂Φ
∂p

))
< 0 below 500hPa ridge

Since
f0

2

σ
:

f0
2

σ

∂

∂p

[
V⃗g · ∇⃗

(
−∂Φ
∂p

)]{
< 0 at ridge
> 0 at trough
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At the ridge:
f0

2

σ

∂

∂p

[
V⃗g · ∇⃗

(
−∂Φ
∂p

)]
< 0 (warm advection)

∴ −χ < 0

∴ χ > 0

∴
∂Φ

∂t
> 0 (geopotential increases with time)

(*)



At the trough:
f0

2

σ

∂

∂p

[
V⃗g · ∇⃗

(
−∂Φ
∂p

)]
> 0 (cold advection)

∴ −χ > 0

∴ χ < 0

∴
∂Φ

∂t
< 0 (geopotential decreases with time)

(+)

(*) The effect of warm advection below the 500hPa ridge is to build the ridge.

(+) The effect of cold advection below the 500hPa trough is to deepen the trough.

=⇒ The differential temperature or thickness advection intensifies the upper level troughs and ridges in a
developing baroclinic system.

The advection of cold air into the air column below the 500hPa trough will reduce the thickness of that
column, and hence will lower the height of the 500hPa surface unless there is a compensating rise in the
surface pressure. Warm advection into the air column below the 500hPa ridge will have the opposite effect.

The traditional omega equation

The vorticity equation (6.19):
∂ζg
∂t

= −V⃗g · ∇⃗(ζg + f) + f0
∂ω

∂p

ζg and V⃗g are both defined in terms of Φ(x, y, p, t):

ζg =
1

f0
∇2Φ and V⃗g =

1

f0
k⃗ × ∇⃗Φ

Therefore the vorticity equation (6.19) can be used to diagnose ω (vertical velocity field) provided that the

fields of both Φ and
∂Φ

∂t
are known.

Φ : primary product of operational weather analysis

∂Φ

∂t
: can only be crudely approximated from observations by taking differences over 12 hours, since
upper level analyses are generally available only twice per day.

Despite this limitation, the vorticity equation method of estimating ω is usually more accurate than the
continuity equation method discussed in WKD352 (the kinematic method). However, neither of these two
methods of estimating ω uses the information available in the thermodynamic energy equation. Here we
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will develop the so-called omega equation for estimating the vertical motion by utilizing both the vorticity
equation and the thermodynamic equation.

Thermodynamic energy equation (6.13b):(
∂

∂t
+ V⃗g · ∇⃗

)(
−∂Φ
∂p

)
− σω =

κJ

p

Apply the horizontal Laplacian:

∇2

(
∂

∂t
+ V⃗g · ∇⃗

)(
−∂Φ
∂p

)
−∇2(σω) = ∇2

(
κJ

p

)
∴∇2 ∂

∂t

(
−∂Φ
∂p

)
= ∇2

[
V⃗g · ∇⃗

(
∂Φ

∂p

)]
+ σ∇2ω +

κ

p
∇2J

∴∇2 ∂

∂p

(
∂Φ

∂t

)
= −∇2

[
V⃗g · ∇⃗

(
∂Φ

∂p

)]
− σ∇2ω − κ

p
∇2J

∴∇2∂χ

∂p
= −∇2

[
V⃗g · ∇⃗

(
∂Φ

∂p

)]
− σ∇2ω − κ

p
∇2J (6.32)

Rewriting the geostrophic vorticity equation:

1

f0
∇2χ = −V⃗g · ∇⃗

(
1

f0
∇2Φ+ f

)
+ f0

∂ω

∂p
(6.21)

Differentiate (6.21) with respect to p:

∴
∂

∂p

(
1

f0
∇2χ

)
= − ∂

∂p

[
V⃗g · ∇⃗

(
1

f0
∇2Φ+ f

)]
+ f0

∂2ω

∂p2

∴
∂

∂p

(
∇2χ

)
= −f0

∂

∂p

[
V⃗g · ∇⃗

(
1

f0
∇2Φ+ f

)]
+ f0

2∂
2ω

∂p2
(6.33)

(6.33) – (6.32):(
f0

2 ∂
2

∂p2
+ σ∇2

)
ω − f0

∂

∂p

[
V⃗g · ∇⃗

(
1

f0
∇2Φ+ f

)]
+∇2

[
V⃗g · ∇⃗

(
∂Φ

∂p

)]
+
κ

p
∇2J

=
∂

∂p

(
∇2χ

)
−∇2∂χ

∂p

Since the operators on the right hand side can be reversed:(
f0

2 ∂
2

∂p2
+ σ∇2

)
ω = f0

∂

∂p

[
V⃗g · ∇⃗

(
1

f0
∇2Φ+ f

)]
−∇2

[
V⃗g · ∇⃗

(
∂Φ

∂p

)]
− κ

p
∇2J

∴

(
∇2 +

f0
2

σ

∂2

∂p2

)
ω =

f0
σ

∂

∂p

[
V⃗g · ∇⃗

(
1

f0
∇2Φ+ f

)]
+

1

σ
∇2

[
V⃗g · ∇⃗

(
−∂Φ
∂p

)]
− κ

σp
∇2J (6.34)

Term A :
(
∇2 +

f0
2

σ

∂2

∂p2

)
ω

Term B :
f0
σ

∂

∂p

[
V⃗g · ∇⃗

(
1

f0
∇2Φ+ f

)]
=
f0
σ

∂

∂p

[
V⃗g · ∇⃗ (ζg + f)

]
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Term C :
1

σ
∇2

[
V⃗g · ∇⃗

(
−∂Φ
∂p

)]
Term D : − κ

σp
∇2J , but as with the geopotential tendency equation we set J = 0; J is the diabatic heat rate.

The resulting omega equation:

(
∇2 +

f0
2

σ

∂2

∂p2

)
ω =

f0
σ

∂

∂p

[
V⃗g · ∇⃗ (ζg + f)

]
+

1

σ
∇2

[
V⃗g · ∇⃗

(
−∂Φ
∂p

)]

The omega equation above involves only derivatives in space (not time). This equation is thus a diagnostic
equation for the field of omega (ω) in terms of the instantaneous geopotential (Φ) field.

Remember the operator in Term A of the tendency equation? It is
(
∇2 +

∂

∂p

(
f0

2

σ

∂

∂p

))
, and is very

similar to the operator of Term A of the omega equation.

The forcing in the omega equation tends to be a maximum in the mid-troposhpere (500hPa), and ω is
required to be zero at the surface and at the top of the troposphere. Therefore, for a qualitative discussion it
is permissible to assume that ω has sinusoidal behaviour in both the horizontal and vertical:

ω =W0 sin

(
πp

p0

)
sin(kx) sin(ly)

∴

(
∇2 +

f0
2

σ

∂2

∂p2

)
ω =

(
∂2

∂x2
+

∂2

∂y2
+
f0

2

σ

∂2

∂p2

)(
W0 sin

(
πp

p0

)
sin(kx) sin(ly)

)
=

∂2

∂x2
sin(kx)

[
W0 sin

(
πp

p0

)
sin(ly)

]
+

∂2

∂y2
sin(ly)

[
W0 sin

(
πp

p0

)
sin(kx)

]
+
f0

2

σ

∂2

∂p2
sin

(
πp

p0

)
[W0 sin(kx) sin(ly)]

= −k2 sin(kx)
[
W0 sin

(
πp

p0

)
sin(ly)

]
− l2 sin(ly)

[
W0 sin

(
πp

p0

)
sin(kx)

]
− f0

2

σ

(
π

p0

)2

sin

(
πp

p0

)
[W0 sin(kx) sin(ly)]

=W0 sin

(
πp

p0

)
sin(kx) sin(ly)

[
−k2 − l2 − 1

σ

(
πf0
p0

)2
]

= −

[
k2 + l2 +

1

σ

(
f0π

p0

)2
]
ω
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∴ Term A is proportional to −ω

For synoptic-scale motions ω = −ρgw
∴ ω ∝ −w
∴ ω < 0 implies upward vertical motion.

Since ω < 0 implies upward motion, and(
∇2 +

f0
2

σ

∂2

∂p2

)
ω ∝ −ω

∴

(
∇2 +

f0
2

σ

∂2

∂p2

)
ω ∝ w, the vertical velocity

=⇒ Upward motion is forced where the right-hand side of the omega equation is positive and downward
motion is forced where it is negative.

The omega equation with negligible diabatic heating:(
∇2 +

f0
2

σ

∂2

∂p2

)
ω =

f0
σ

∂

∂p

[
V⃗g · ∇⃗ (ζg + f)

]
+

1

σ
∇2

[
V⃗g · ∇⃗

(
−∂Φ
∂p

)]

Term B:
f0
σ

∂

∂p

[
V⃗g · ∇⃗ (ζg + f)

]
, the differential vorticity advection.

This term is proportional to the rate of increase with height, or with pressure, of the advection of absolute
vorticity. To discuss the role of this term we consider an idealized developing baroclinic system. Moreover,
we consider a short-wave system where relative vorticity advection is larger than the planetary vorticity
advection. The figure below shows schematically the geopotential contours at 500hPa and 1000hPa for
such a system.

At the centres of the surface high and surface low ∇⃗ζg and V⃗g must be very small: Previously it was
discussed that, since ∇⃗ζg and V⃗g are zero at both trough and ridge axes, the vorticity advection term is zero
at the axes. However, since the H and L centres are not located exactly on the 500hPa trough/ridge axis, ∇⃗ζg
and V⃗g are only very small (not zero) and so vorticity advection must be very small, that is V⃗g · ∇⃗ (ζg + f)
must be very small.
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H L H

V g · ∇η ∼ 0

A B

η = ζg + f

Southern Hemisphere
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500hPa

1000hPa

ζg > 0 ζg > 0
ζg < 0

V g · ∇η < 0

∂
∂p

(
V g · ∇η

)
> 0

f0
σ

∂
∂p

(
V g · ∇η

)
< 0

V g · ∇η > 0

∂
∂p

(
V g · ∇η

)
< 0

f0
σ

∂
∂p

(
V g · ∇η

)
> 0

At point A, V⃗g · ∇⃗η < 0 since the flow is going from a ridge where ζg > 0 towards a trough where ζg < 0.

From the 500hPa level towards the surface where the high is
(
V⃗g · ∇⃗η ∼ 0

)
, there is thus an increase in

V⃗g · ∇⃗η along the vertical pressure axis. Therefore

∂

∂p

(
V⃗g · ∇⃗η

)
> 0

∴
f0
σ

∂

∂p

(
V⃗g · ∇⃗η

)
< 0 above the surface high

At point B, V⃗g · ∇⃗η > 0 since the flow is going from a trough where ζg < 0 towards a ridge where ζg > 0.

From the 500hPa level towards the surface where the low is
(
V⃗g · ∇⃗η ∼ 0

)
, there is thus a decrease in

V⃗g · ∇⃗η along the vertical pressure axis. Therefore

∂

∂p

(
V⃗g · ∇⃗η

)
< 0

∴
f0
σ

∂

∂p

(
V⃗g · ∇⃗η

)
> 0 above the surface low

Considering that
(
∇2 +

f0
2

σ

∂2

∂p2

)
ω ∝ w, and that Term B > 0 above point L, w > 0, that means

ascending motion.
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Since Term B< 0 above point H,w < 0, that means subsiding motion. Now for Term C:
1

σ
∇2

[
V⃗g · ∇⃗

(
−∂Φ
∂p

)]
,

and remembering that

V⃗g · ∇⃗
(
−∂Φ
∂p

)
> 0 for cold advection

and

V⃗g · ∇⃗
(
−∂Φ
∂p

)
< 0 for warm advection

Consider the diagram at the top of Page 126: East of the surface low, in the warm front zone, the warm
advection tends to be a maximum and west of the surface low, behind the cold front, the cold advection
tends to be a maximum.

East of surface low: Warm advection, V⃗g · ∇⃗
(
−∂Φ
∂p

)
< 0

However, we have shown already (twice!) that ∇2Y ∝ −Y

∴ East of surface low ∇2

[
V⃗g · ∇⃗

(
−∂Φ
∂p

)]
> 0

∴
1

σ
∇2

[
V⃗g · ∇⃗

(
−∂Φ
∂p

)]
> 0

w > 0 and maximum

West of surface low ∇2

[
V⃗g · ∇⃗

(
−∂Φ
∂p

)]
< 0

∴
1

σ
∇2

[
V⃗g · ∇⃗

(
−∂Φ
∂p

)]
< 0

w < 0 and minimum

Bonus homework: Write a short essay (not more than one page) on the so-called Dines compensation.
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The Sutcliffe form of the omega equation

A problem with the traditional omega equation is that there exists significant cancellation between the two
terms on the right hand side of this form of the equation. Here we are presenting an alternative approximate
form of the omega equation that can be applied in synoptic analysis in the Southern Hemisphere.

First, employ the chain rule of differentiation for the two terms on the right hand side of the traditional
omega equation.

The omega equation:(
∇2 +

f0
2

σ

∂2

∂p2

)
ω =

f0
σ

∂

∂p

[
V⃗g · ∇⃗ (ζg + f)

]
︸ ︷︷ ︸

B

+
1

σ
∇2

[
V⃗g · ∇⃗

(
−∂Φ
∂p

)]
︸ ︷︷ ︸

C

Apply the chain rule of differentiation on Term B:

f0
σ

[
∂V⃗g
∂p

· ∇⃗
(

1

f0
∇2Φ+ f

)
+ V⃗g ·

(
1

f0

∂∇2Φ

∂p
+
∂f

∂p

)]

=
f0
σ

[
∂V⃗g
∂p

· ∇⃗
(

1

f0
∇2Φ+ f

)]
+

1

σ
V⃗g · ∇⃗

(
∂∇2Φ

∂p

)
(6.35a)

Also for Term C:

1

σ

(
∇2V⃗g

)
·
(
−∂Φ
∂p

)
+

1

σ
V⃗g · ∇2

(
∇⃗
(
−∂Φ
∂p

))
= − 1

σ

((
∇2ug

)
i⃗+
(
∇2vg

)
j⃗
)
·
(
∂

∂x
i⃗+

∂

∂y
j⃗

)(
∂Φ

∂p

)
− 1

σ
V⃗g · ∇⃗

(
∂∇2Φ

∂p

)
= − 1

σ

[(
∇2ug

) ∂

∂x

(
∂Φ

∂p

)
+
(
∇2vg

) ∂
∂y

(
∂Φ

∂p

)]
− 1

σ
V⃗g · ∇⃗

(
∂∇2Φ

∂p

)
(6.35b)

NOTE: The last terms in (6.35a) and (6.35b) are equal and opposite, therefore they cancel.

∴

(
∇2 +

f0
2

σ

∂2

∂p2

)
ω = Term B + Term C

=
f0
σ

[
∂V⃗g
∂p

· ∇⃗
(

1

f0
∇2Φ+ f

)]
(B1)

− 1

σ

[(
∇2ug

) ∂

∂x

(
∂Φ

∂p

)
+
(
∇2vg

) ∂
∂y

(
∂Φ

∂p

)]
(C1)

Scale analysis of these two expanded terms can help to compare the relative sizes of the two terms in order
to reduce them.

128



Note: R = 287 JK−1 kg−1

1Pa = 1Nm−2

1 J = 1Nm

Term B1:
f0
σ

[
∂V⃗g
∂p

· ∇⃗
(

1

f0
∇2Φ+ f

)]
=
f0
σ

[
∂V⃗g
∂p

· ∇⃗ (ζg + f)

]

∂V⃗g
∂p

∼ 10m s−1

10× 102 Pa
=

1ms−1

102Nm−2

= 10−2N−1m3 s−1

= 10−2 kg−1m−1 s2m3 s−1

= 10−2 kg−1m2 s

∇⃗ (ζg + f) ∼ 1

L

(
10−5 − 10−4

)
s−1

∼ 10−6m−1
(
10−4

)
s−1

= 10−10m−1 s−1

∴ B1 ∼ 10−4 s−1

σ

[
10−2 kg−1m2 s

] [
10−10m−1 s−1

]
=

1

σ
10−16 kg−1ms−1

Term C1: − 1

σ

[(
∇2ug

) ∂

∂x

(
∂Φ

∂p

)
+
(
∇2vg

) ∂
∂y

(
∂Φ

∂p

)]

∂Φ

∂p
= −RT

p
∼

102 JK−1 kg−1
(
102K

)
1000× 102 Pa

=
104Nmkg−1

105Nm−2
= 10−1m3 kg−1

∴ C1 ∼ 1

σ

(
1

L2
U
1

L

(
10−1m3 kg−1

))
∼ 1

σ

(
106m

)−3
10m s−1 10−1m3 kg−1

=
1

σ
10−18 kg−1ms−1
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∴ B1 ∼ 100× C1

=⇒
(
∇2 +

f0
2

σ

∂2

∂p2

)
ω ≈ f0

σ

[
∂V⃗g
∂p

· ∇⃗ (ζg + f)

]

The remaining term on the right of this equation represents the advection of absolute vorticity by the thermal

wind. The left hand side,
(
∇2 +

f0
2

σ

∂2

∂p2

)
ω, is proportional to −ω. When ω < 0 upward vertical motion

is implied, and the left hand side is proportional to the vertical velocity. Therefore, upward motion is forced

where
f0
σ

[
∂V⃗g
∂p

· ∇⃗ (ζg + f)

]
> 0, and downward motion is forced where

f0
σ

[
∂V⃗g
∂p

· ∇⃗ (ζg + f)

]
< 0.

Consider an idealized schematic for a developing synoptic-scale system in the Southern Hemisphere mid-
latitudes.

VT

VT

VT

VT

VT
Iso

th
erm

50
0h
P
a

10
00
hP
a

I
ω < 0
Upward

L H
Vg

Vg

VgL L

H

ζg < 0 ζg < 0ζg > 0
V g · ∇ζg > 0

Isotherm: level of constant thickness

VT : thermal wind, directed along the
isotherms with cold air to the right

V
g
·
∇
( −∂Φ ∂p

) >0
V
g
·
∇
( −∂Φ ∂p

) <0

V g · ∇ζg < 0

ω > 0
Downward

Take note that the 500 hPa contours lead the 1000 hPa contours due to the westward tilt of the system. The
result is that the 500 hPa geopotential field lead the isotherm pattern on the figure. The thermal wind, VT , is
parallel to the isotherms, and so the term on the right that represents the advection of absolute vorticity by
the thermal wind can be estimated from the change of absolute vorticity along the isotherms.

Keep in mind that we are working here with short-wavelength synoptic-scale systems where relative vor-
ticity advection dominates planetary vorticity advection. Consider the region marked I on the figure of the
idealized system. In that region a surface low pressure system is located, and above this surface low at the
500 hPa level the relative vorticity advection is a positive maximum since

(
V⃗g · ∇⃗ζg

)
500 hPa

> 0. This
positive advection term is over the surface low pressure center and subsequently contributes to spin-up of
the cyclone because the wind is blowing higher positive vorticity into the area of the surface low. However,
on the vertical axis of this surface low pressure

(
V⃗g · ∇⃗ζg

)
1000 hPa

≈ 0 because
(
∇⃗ζg

)
1000 hPa

≈ 0.
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Apply the operator
∂

∂p
to the absolute vorticity advection term. We get

∂

∂p

(
V⃗g · ∇⃗ (ζg + f)

)
≈ ∂

∂p

(
V⃗g · ∇⃗ζg

)
for the short-wavelength system considered here.

∂

∂p

(
V⃗g · ∇⃗ζg

)
=
∂V⃗g
∂p

· ∇⃗ζg + V⃗g ·
∂

∂p

(
∇⃗ζg

)
=
∂V⃗g
∂p

· ∇⃗ζg since ζg = ζg(x, y)

We can write

δV⃗g
δp

· ∇⃗ζg =
δ(V⃗g · ∇⃗ζg)

δp

=
(V⃗g · ∇⃗ζg)1000 hPa − (V⃗g · ∇⃗ζg)500 hPa

1000 hPa−500 hPa

≈ 0− positive value
positive value

< 0

=⇒ ∂V⃗g
∂p

· ∇⃗ζg < 0

For short-wave systems:

∂V⃗g
∂p

· ∇⃗ (ζg + f) < 0

∴
f0
σ

[
∂V⃗g
∂p

· ∇⃗ (ζg + f)

]
> 0

In region I where
f0
σ

[
∂V⃗g
∂p

· ∇⃗ (ζg + f)

]
has now been demonstrated to be a positive value, upward motion

is forced. Using similar arguments for the region over the surface high pressure system, downward motion is
forced. Therefore, upward (downward) motion is forced east (west) of the 500 hPa trough above the surface
low (high) pressure system.

Revisiting the idealized schematic for a developing system, upward motion occurs where relative vorticity
increases moving left to right along an isotherm, and downward motion occurs where relative vorticity
decreases moving left to right along an isotherm. Notwithstanding the increase in relative vorticity when
moving along the isotherm, in the Southern Hemisphere cyclonic storms are associated with negative relative
vorticity. Moreover, since ζg ∝ Φ in the Southern Hemisphere the negative vorticity is associated with
negative geopotential deviations in region I, which results in the 1000− 500 hPa thickness decreasing there
leading to a developing trough.

Cold advection occurs behind the cold front, i.e. V⃗g · ∇⃗
(
−∂Φ
∂p

)
> 0, and warm advection ahead of the

warm front, i.e. V⃗g · ∇⃗
(
−∂Φ
∂p

)
< 0. As a result, the horizontal temperature advection is small above
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the centre of the surface low in region I. Therefore, in order to cool the atmosphere—as required by the
thickness tendency—is by adiabatic (no heat or mass exchange with the environment) cooling through the
vertical motion field. As a result, in the presence of differential vorticity advection, the vertical motion
maintains a field in which temperature and thickness are proportional (remember that from the thermal wind

equation we have seen that Φ1−Φ0 = R ⟨T ⟩ ln
(
p0
p1

)
). Because of this proportionality, the vertical motion

maintains the temperature field, which is determined by the geopotential field.

The Q-vector

Objective: To better appreciate the essential role of the divergent ageostrophic motion in quasi-geostrophic
flow.

Here we examine separately the rates of change, following the geostrophic wind, of the vertical shear of the
geostrophic wind and of the horizontal temperature gradient.

The approximate horizontal momentum equation:

DgV⃗g
Dt

= −f0k⃗ × V⃗a − βyk⃗ × V⃗g (6.11)

Quasi-geostrophic momentum equations:

(6.16) :
Dgug
Dt

− f0va − βyvg = 0 (6.38)

(6.17) :
Dgvg
Dt

+ f0ua + βyug = 0 (6.39)

Quasi-geostrophic thermodynamic energy equation(
∂

∂t
+ V⃗g · ∇⃗

)
T −

(σp
R

)
ω =

J

cp
(6.13a)

Dg

Dt
≡ ∂

∂t
+ V⃗g · ∇⃗

∴
DgT

Dt
−
(σp
R

)
ω =

J

cp
(6.40)

p
∂vg
∂p

= −R
f

(
∂T

∂x

)
p

(3.28)

and p
∂ug
∂p

=
R

f

(
∂T

∂y

)
p

(3.29)

On mid-latitude β-plane:

f0
∂ug
∂p

=
R

p

∂T

∂y
and f0

∂vg
∂p

= −R
p

∂T

∂x

Vector form:

f0k⃗ ×
∂V⃗g
∂p

=
R

p
∇⃗T (Bonus homework)
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Obtaining equation for the evolution of the thermal wind components:

f0
∂

∂p
((6.38)) = f0

∂

∂p

(
Dgug
Dt

− f0va − βyvg

)
= 0

∴f0
∂

∂p

[(
∂

∂t
+ ug

∂

∂x
+ vg

∂

∂y

)
ug

]
− f0

2∂va
∂p

− f0βy
∂vg
∂p

= 0

∴f0

[
∂

∂p

(
∂ug
∂t

)
+

∂

∂p

(
ug
∂ug
∂x

)
+

∂

∂p

(
vg
∂ug
∂y

)]
− f0

2∂va
∂p

− f0βy
∂vg
∂p

= 0

∴f0
∂2ug
∂p∂t

+ f0
∂ug
∂p

∂ug
∂x

+ f0ug
∂2ug
∂p∂x

+ f0
∂vg
∂p

∂ug
∂y

+ f0vg
∂2ug
∂p∂y

− f0
2∂va
∂p

− f0βy
∂vg
∂p

= 0

∴f0
∂2ug
∂p∂t

+ f0ug
∂2ug
∂p∂x

+ f0vg
∂2ug
∂p∂y

+ f0
∂ug
∂p

∂ug
∂x

+ f0
∂vg
∂p

∂ug
∂y

− f0
2∂va
∂p

− f0βy
∂vg
∂p

= 0

∴f0

[
∂

∂t
+ ug

∂

∂x
+ vg

∂

∂y

]
∂ug
∂p

+ f0

[
∂ug
∂p

∂ug
∂x

+
∂vg
∂p

∂ug
∂y

]
− f0

2∂va
∂p

− f0βy
∂vg
∂p

= 0

=⇒ Dg

Dt

(
f0
∂ug
∂p

)
= −f0

[
∂ug
∂p

∂ug
∂x

+
∂vg
∂p

∂ug
∂y

]
+ f0

2∂va
∂p

+ f0βy
∂vg
∂p

(6.43a)

Similarly:
Dg

Dt

(
f0
∂vg
∂p

)
= −f0

[
∂ug
∂p

∂vg
∂x

+
∂vg
∂p

∂vg
∂y

]
− f0

2∂ua
∂p

− f0βy
∂ug
∂p

(6.43b)

Bonus homework: Derive (6.43b)

Reminder:

(3.29) : f0
∂ug
∂p

=
R

p

∂T

∂y
=⇒ −f0

[
∂ug
∂p

∂ug
∂x

+
∂vg
∂p

∂ug
∂y

]
= −R

p

[
∂T

∂y

∂ug
∂x

− ∂T

∂x

∂ug
∂y

]

(3.28) : f0
∂vg
∂p

= −R
p

∂T

∂x
=⇒ −f0

[
∂ug
∂p

∂vg
∂x

+
∂vg
∂p

∂vg
∂y

]
= −R

p

[
∂T

∂y

∂vg
∂x

− ∂T

∂x

∂vg
∂y

]

However, the divergence of the geostrophic wind vanishes: ∇⃗ · V⃗g = 0

∴
∂ug
∂x

+
∂vg
∂y

= 0 =⇒ ∂ug
∂x

= −∂vg
∂y

∴ −R
p

[
∂T

∂y

∂ug
∂x

− ∂T

∂x

∂ug
∂y

]
= −R

p

[
∂T

∂y

(
−∂vg
∂y

)
− ∂T

∂x

∂ug
∂y

]
=
R

p

[
∂T

∂y

∂vg
∂y

+
∂T

∂x

∂ug
∂y

]
= −Q2
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Q2 ≡ −R
p

[
∂ug
∂y

∂T

∂x
+
∂vg
∂y

∂T

∂y

]
= −R

p

(
∂ug
∂y

i⃗+
∂vg
∂y

j⃗

)
·
(
∂T

∂x
i⃗+

∂T

∂y
j⃗

)
= −R

p

∂

∂y

(
ug⃗i+ vg j⃗

)
·
(
∂

∂x
i⃗+

∂

∂y
j⃗

)
T

= −R
p

∂

∂y
V⃗g · ∇⃗T (6.45a)

For

∴ −R
p

[
∂T

∂y

∂vg
∂x

− ∂T

∂x

∂vg
∂y

]
= −R

p

[
∂T

∂y

∂vg
∂x

+
∂T

∂x

(
∂ug
∂x

)]
= −R

p

[
∂ug
∂x

∂T

∂x
+
∂vg
∂x

∂T

∂y

]
= Q1

Q1 ≡ −R
p

[
∂ug
∂x

∂T

∂x
+
∂vg
∂x

∂T

∂y

]
= −R

p

∂

∂x

(
ug⃗i+ vg j⃗

)
·
(
∂

∂x
i⃗+

∂

∂y
j⃗

)
T

= −R
p

∂

∂x
V⃗g · ∇⃗T (6.45b)

Consider the thermodynamic energy equation

DgT

Dt
− σp

R
ω =

J

cp
(6.40)

∂

∂x
((6.40)) :

∂

∂x

[
∂

∂t
+ ug

∂

∂x
+ vg

∂

∂y

]
T =

σp

R

∂ω

∂x
+

1

cp

∂J

∂x

∴
∂2T

∂x∂t
+
∂ug
∂x

∂T

∂x
+ ug

∂2T

∂x2
+
∂vg
∂x

∂T

∂y
+ vg

∂2T

∂x∂y
=
σp

R

∂ω

∂x
+

1

cp

∂J

∂x

∴
∂2T

∂x∂t
+ ug

∂2T

∂x2
++vg

∂2T

∂x∂y
= −

(
∂ug
∂x

∂T

∂x
+
∂vg
∂x

∂T

∂y

)
+
σp

R

∂ω

∂x
+

1

cp

∂J

∂x

∴

(
∂

∂t
+ ug

∂

∂x
+ vg

∂

∂y

)
∂T

∂x
= −

(
∂ug
∂x

∂T

∂x
+
∂vg
∂x

∂T

∂y

)
+
σp

R

∂ω

∂x
+

1

cp

∂J

∂x

Multiply throughout by
R

p
:

∴
Dg

Dt

(
R

p

∂T

∂x

)
= −R

p

(
∂ug
∂x

∂T

∂x
+
∂vg
∂x

∂T

∂y

)
+ σ

∂ω

∂x
+

R

pcp

∂J

∂x

= −R
p

(
∂ug
∂x

∂T

∂x
+
∂vg
∂x

∂T

∂y

)
+ σ

∂ω

∂x
+
κ

p

∂J

∂x

[
κ ≡ R

cp

]
(6.46a)

Dg

Dt

(
R

p

∂T

∂y

)
= −R

p

(
∂ug
∂y

∂T

∂x
+
∂vg
∂y

∂T

∂y

)
+ σ

∂ω

∂y
+
κ

p

∂J

∂y
(6.46b)
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Bonus homework: Derive (6.46b). Hint: Start by
∂

∂y
((6.40))

Revisiting (6.43a), and remembering

∂ug
∂x

= −∂vg
∂y

, f0
∂ug
∂p

=
R

p

∂T

∂y
and f0

∂vg
∂p

= −R
p

∂T

∂x

Dg

Dt

(
f0
∂ug
∂p

)
= −f0

[
∂ug
∂p

∂ug
∂x

+
∂vg
∂p

∂ug
∂y

]
+ f0

2∂va
∂p

+ f0βy
∂vg
∂p

= −R
p

[
∂T

∂y

∂ug
∂x

− ∂T

∂x

∂ug
∂y

]
+ f0

2∂va
∂p

+ f0βy
∂vg
∂p

= −R
p

[
∂T

∂y

(
−∂vg
∂y

)
− ∂T

∂x

∂ug
∂y

]
+ f0

2∂va
∂p

+ f0βy
∂vg
∂p

=
R

p

[
∂T

∂y

∂vg
∂y

+
∂T

∂x

∂ug
∂y

]
+ f0

2∂va
∂p

+ f0βy
∂vg
∂p

= −Q2 + f0
2∂va
∂p

+ f0βy
∂vg
∂p

(6.47)

and for (6.46b):

Dg

Dt

(
R

p

∂T

∂y

)
= −R

p

(
∂ug
∂y

∂T

∂x
+
∂vg
∂y

∂T

∂y

)
+ σ

∂ω

∂y
+
κ

p

∂J

∂y
= Q2 + σ

∂ω

∂y
+
κ

p

∂J

∂y
(6.48)

Dg

Dt

(
f0
∂vg
∂p

)
= −f0

[
∂ug
∂p

∂vg
∂x

+
∂vg
∂p

∂vg
∂y

]
− f0

2∂ua
∂p

− f0βy
∂ug
∂p

(6.43b)

= −R
p

[
∂T

∂y

∂vg
∂x

− ∂T

∂x

∂vg
∂y

]
− f0

2∂ua
∂p

− f0βy
∂ug
∂p

= −R
p

[
∂ug
∂x

∂T

∂x
+
∂vg
∂x

∂T

∂y

]
− f0

2∂ua
∂p

− f0βy
∂ug
∂p

= Q1 − f0
2∂ua
∂p

− f0βy
∂ug
∂p

(6.49)

and for (6.46a)

Dg

Dt

(
R

p

∂T

∂x

)
= −R

p

(
∂ug
∂x

∂T

∂x
+
∂vg
∂x

∂T

∂y

)
+ σ

∂ω

∂x
+
κ

p

∂J

∂x
= Q1 + σ

∂ω

∂x
+
κ

p

∂J

∂x
(6.50)

We set out to examine separately the rates of change
(
Dg

Dt

)
of the vertical shear

(
∂

∂p
V⃗g

)
of the geostrophic

wind and of the horizontal temperature gradient (∇⃗T ). We subsequently derived two sets of equations
describing these relationships. The first set of equations, in Q2, is:

(6.47) :
Dg

Dt

(
f0
∂ug
∂p

)
= −Q2 + f0

2∂va
∂p

+ f0βy
∂vg
∂p

(shear)

(6.48) :
Dg

Dt

(
R

p

∂T

∂y

)
= Q2 + σ

∂ω

∂y
+
κ

p

∂J

∂y
(temperature gradient)
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(6.48)− (6.47):

Dg

Dt

(
R

p

∂T

∂y

)
−Q2 − σ

∂ω

∂y
− κ

p

∂J

∂y
−
[
Dg

Dt

(
f0
∂ug
∂p

)
+Q2 − f0

2∂va
∂p

− f0βy
∂vg
∂p

]
= 0

∴
Dg

Dt

(
R

p

∂T

∂y
− f0

∂ug
∂p

)
− 2Q2 − σ

∂ω

∂y
− κ

p

∂J

∂y
+ f0

2∂va
∂p

+ f0βy
∂vg
∂p

= 0

Take note that

f0
∂ug
∂p

=
R

p

∂T

∂y
(6.41a)

∴
R

p

∂T

∂y
− f0

∂ug
∂p

= 0

∴ −2Q2 − σ
∂ω

∂y
− κ

p

∂J

∂y
+ f0

2∂va
∂p

+ f0βy
∂vg
∂p

= 0

σ
∂ω

∂y
− f0

2∂va
∂p

− f0βy
∂vg
∂p

= −2Q2 −
κ

p

∂J

∂y
(6.51)

(6.50) + (6.49):

∴
Dg

Dt

(
f0
∂vg
∂p

+
R

p

∂T

∂x

)
−Q1 + f0

2∂ua
∂p

+ f0βy
∂ug
∂p

−Q1 − σ
∂ω

∂x
− κ

p

∂J

∂x
= 0

Take note that

f0
∂vg
∂p

= −R
p

∂T

∂x
(6.41b)

∴ f0
∂vg
∂p

+
R

p

∂T

∂x
= 0

∴ −2Q1 −
κ

p

∂J

∂x
= −f02

∂ua
∂p

− f0βy
∂ug
∂p

+ σ
∂ω

∂x

σ
∂ω

∂x
− f0

2∂ua
∂p

− f0βy
∂ug
∂p

= −2Q1 −
κ

p

∂J

∂x
(6.52)

∂

∂x
((6.52)):

σ
∂2ω

∂x2
− f0

2 ∂

∂x

(
∂ua
∂p

)
− f0βy

∂

∂x

(
∂ug
∂p

)
= −2

∂Q1

∂x
− κ

p

∂2J

∂x2
(A)

∂

∂y
((6.51)):

σ
∂2ω

∂y2
− f0

2 ∂

∂y

(
∂va
∂p

)
− f0βy

∂

∂y

(
∂vg
∂p

)
− f0β

∂vg
∂p

= −2
∂Q2

∂y
− κ

p

∂2J

∂y2
(B)
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(A)+(B):

σ
∂2ω

∂x2
+ σ

∂2ω

∂y2
− f0

2 ∂

∂x

(
∂ua
∂p

)
− f0

2 ∂

∂y

(
∂va
∂p

)
− f0βy

∂

∂x

(
∂ug
∂p

)
− f0βy

∂

∂y

(
∂vg
∂p

)
− f0β

∂vg
∂p

= −2
∂Q1

∂x
− 2

∂Q2

∂y
− κ

p

∂2J

∂x2
− κ

p

∂2J

∂y2

∴σ∇2ω − f0
2 ∂

∂x

(
∂ua
∂p

)
− f0

2 ∂

∂y

(
∂va
∂p

)
− f0βy

∂

∂x

(
∂ug
∂p

)
− f0βy

∂

∂y

(
∂vg
∂p

)
− f0β

∂vg
∂p

= −2∇⃗ · Q⃗− κ

p
∇2J

We have:

1) The divergence of the geostrophic wind vanishes:

∇⃗ · V⃗g = 0

∴
∂ug
∂x

+
∂vg
∂y

= 0

∴
∂ug
∂x

= −∂vg
∂y

2) (6.12):
∂ua
∂x

+
∂va
∂y

= −∂ω
∂p

σ∇2ω − f0
2 ∂

∂p

(
∂ua
∂x

+
∂va
∂y

)
−f0βy

∂

∂p

(
∂ug
∂x

+
∂vg
∂y

)
− f0β

∂vg
∂p

= −2∇⃗ · Q⃗− κ

p
∇2J

∴ σ∇2ω − f0
2 ∂

∂p

(
−∂ω
∂p

)
= −2∇⃗ · Q⃗+ f0β

∂vg
∂p

− κ

p
∇2J

∴ σ∇2ω + f0
2∂

2ω

∂p2
= −2∇⃗ · Q⃗+ f0β

∂vg
∂p

− κ

p
∇2J (6.53)

=⇒ the Q-vector form of the omega equation.

From (6.45a,b):

Q⃗ = (Q1, Q2)

=

(
−R
p

∂

∂x
V⃗g · ∇⃗T,−

R

p

∂

∂y
V⃗g · ∇⃗T

)
(6.54)

Outside regions of active precipitation, diabatic heating is due primarily to net radiative heating, which is
weak in the troposphere. Therefore, the Laplacian of the diabatic heating can be neglected. Also, the term
related to the beta (β) effect is generally small for synoptic scale motion, and is subsequently also neglected.
The resulting Q vector form of the omega equation is

σ∇2ω + f0
2∂

2ω

∂p2
= −2∇⃗ · Q⃗
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Next we will discuss Q⃗ as a forcing function of the omega equation.

Previously it was demonstrated that
(
∇2 +

f0
2

σ

∂2

∂p2

)
ω ∝ −ω

Multiplying throughout with σ (σ > 0):
(
σ∇2 + f0

2 ∂
2

∂p2

)
ω ∝ −ω

So when
(
f0

2 ∂
2

∂p2
+ σ∇2

)
ω > 0, we have ascending (upward) motion (ω < 0)

∴ −2∇⃗ · Q⃗ > 0

∴ ∇⃗ · Q⃗ < 0

∴ Negative divergence of Q⃗, i.e. convergence of Q⃗, leads to ascending motion.

Similarly, when
(
f0

2 ∂
2

∂p2
+ σ∇2

)
ω < 0, we have descending (downward) motion (ω > 0)

∴ −2∇⃗ · Q⃗ < 0

∴ ∇⃗ · Q⃗ > 0

∴ Divergence of Q⃗ leads to descending motion.

Figure 1q: Omega
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Figure 2q: Divergence

Figures 1q and 2q respectively show the omega (negative for upward motion) and convergence (negative di-
vergence) of the Q-vector fields as observed on 2022-06-08. The units are 10−18 m/kg/s for the divergence
and 10−14 m/kg/s for the Q-vectors. Shown in the diagrams are the values multiplied by 1018 (divergence)
and 1014 (vectors). Converging (diverging) Q-vectors show where upward (ascending) motion is found and
is for the most part in agreement with the omega fields.
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Consider an idealized developing synoptic-scale system in the Southern Hemisphere mid-latitudes at the
500hPa level. The Q-vector direction and magnitude can be estimated by referring the motion to a Cartesian
coordinate system. In this coordinate system, the x-axis is parallel to the local isotherm and the y-axis is
perpendicular to the isotherm. Since warm air is to the left of an observer moving along an isotherm,
temperature increases in the positive y-direction in the Southern Hemisphere. In this configuration, the
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Q-vector may be simplified:

Q1 = −R
p

[
∂ug
∂x

∂T

∂x
+
∂vg
∂x

∂T

∂y

]
= −R

p

∂vg
∂x

∂T

∂y
since

∂T

∂x
= 0 (x-axis parallel to isotherm)

Q2 = −R
p

[
∂ug
∂y

∂T

∂x
+
∂vg
∂y

∂T

∂y

]
= −R

p

∂vg
∂y

∂T

∂y

=
R

p

∂ug
∂x

∂T

∂y
since

∂ug
∂x

+
∂vg
∂y

= 0

=⇒ Q⃗ = −R
p

∂T

∂y

(
∂vg
∂x

i⃗− ∂ug
∂x

j⃗

)
consider − k⃗ ×

(
∂ug
∂x

i⃗+
∂vg
∂x

j⃗

)
= −k⃗ × ∂V⃗g

∂x

= −∂ug
∂x

j⃗ +
∂vg
∂x

i⃗

∴ Q⃗ = −R
p

∂T

∂y

(
−k⃗ × ∂V⃗g

∂x

)

=
R

p

∂T

∂y

(
k⃗ × ∂V⃗g

∂x

)

The Q-vector can be obtained by considering the vectorial change of V⃗g along the isotherm. Consider
two cases, A and B, of an observer moving along an isotherm. For each case, draw an arrow describing
the geostrophic wind vector observed at the start of each movement. Draw a second arrow showing the
geostrophic wind vector at the end of each movement. Next, draw the vector difference from the head of the
start vector to the head of the end vector. The Q-vector direction points 90° to the left (anti-clockwise) from
the geostrophic difference vector in the Southern Hemisphere as dictated by the reduced Q-vector equation
above. The resulting vector, multiplied by ∂T/∂y, provides its magnitude.

Near the 500hPa low, the geostrophic wind change vector produces a Q-vector parallel to the thermal wind,
while near the high the Q-vector is anti-parallel to the thermal wind. The two Q-vectors thus converge in
the area between the trough and ridge lines where we have already shown upward motion to occur.

Ageostrophic flow

The characteristic horizontal scale of the geostrophic wind in the mid-latitude troposphere is about 10 to
20m s−1, while the scale of the ageostrophic wind is an order of magnitude smaller, often only 1− 2m s−1.
Although the ageostrophic flow is only a small component of the wind field, the upward motion, omega
(ω), is determined only by its ageostrophic part. Here we will further demonstrate the significance of the
ageostrophic wind components.
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Consider the following thermal wind relationship

f0
∂ug
∂p

=
R

p

∂T

∂y

Then the evolution of the thermal wind components leads to

Dg

Dt

(
f0
∂ug
∂p

)
= −Q2 + f0

2∂va
∂p

+ f0βy
∂vg
∂p

(1)

Dg

Dt

(
R

p

∂T

∂y

)
= Q2 + σ

∂ω

∂y
+
κ

p

∂J

∂y
(2)

Assume that diabatic heating is small enough to disregard and consider the flow to be purely geostrophic,
i.e. V⃗a = 0⃗, and ω = 0 because ω is determined only by the ageostrophic part of the wind field:

−∂ω
∂p

=
∂ua
∂x

+
∂va
∂y

Equations (1) and (2) are reduced to

Dg

Dt

(
f0
∂ug
∂p

)
= −Q2 + f0βy

∂vg
∂p

(3)

Dg

Dt

(
R

p

∂T

∂y

)
= Q2 (4)

Scale analysis is subsequently performed in order to estimate the magnitudes of the various terms of equation
(3). First, consider the left-hand side of equation (3)

Dg

Dt

(
f0
∂ug
∂p

)
=

∂

∂t

(
f0
∂ug
∂p

)
+ ug

∂

∂x

(
f0
∂ug
∂p

)
+ vg

∂

∂y

(
f0
∂ug
∂p

)
∂

∂t

(
f0
∂ug
∂p

)
∼ 1

L/U
f0
U

δp
=
f0U

2

Lδp

ug
∂

∂x

(
f0
∂ug
∂p

)
and vg

∂

∂y

(
f0
∂ug
∂p

)
∼ U

1

L
f0
U

δp
=
f0U

2

Lδp

Consider the right-hand side of equation (3)

Q2 = −R
p

[
∂ug
∂y

∂T

∂x
+
∂vg
∂y

∂T

∂y

]
, but consider (3.28) and (3.29)

p
∂vg
∂p

= −R
f

∂T

∂x
=⇒ ∂T

∂x
= −fp

R

∂vg
∂p

,

p
∂ug
∂p

=
R

f

∂T

∂y
=⇒ ∂T

∂y
=
fp

R

∂ug
∂p
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∴ Q2 = −R
p

fp

R

[
−∂ug
∂y

∂vg
∂p

+
∂vg
∂y

∂ug
∂p

]
= f

[
∂ug
∂y

∂vg
∂p

− ∂vg
∂y

∂ug
∂p

]
= (f0 + βy)

[
∂ug
∂y

∂vg
∂p

− ∂vg
∂y

∂ug
∂p

]
Assuming that the meridional displacement, y, is at most equal to the length scale of 106m, then

βy ∼ 10−11m−1 s−1×(106m)

= 10−5 s−1 ≪ f0

∴ Q2 = f0

[
∂ug
∂y

∂vg
∂p

− ∂vg
∂y

∂ug
∂p

]
∼ f0U

2

Lδp

Scale analysis has therefore shown that the order of magnitude of the left-hand side of the equation and Q2

is the same, which is

f0U
2

Lδp
∼ 10−4 s−1×(10m s−1)2

(106m)× 1000 kgm−1 s−2

= 10−11 kg−1m2 s−1

Figure 16: Meridional displacement in absolute terms in the Southern Hemisphere.
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Since the meridional displacement y = β−1(f − f0), the figure above shows that meridional displacements
between about 41°S and 49°S, y can be approximated by 105m. As a result, scale analysis of the β term of
equation (3) results in

f0βy
∂vg
∂p

∼ 10−4 s−1×10−11m−1 s−1×105m×10m s−1

1000 kgm−1 s−2

= 10−12 kg−1m2 s−1

The β term is therefore an order of magnitude smaller than the rest of the terms and is subsequently disre-
garded. This result leads to

Dg

Dt

(
f0
∂ug
∂p

)
= −Q2

∴ Q2 = −Dg

Dt

(
f0
∂ug
∂p

)
= −Dg

Dt

(
R

p

∂T

∂y

)
, because of the the thermal wind relationship.

However, the reduced form of equation (4) is

Q2 =
Dg

Dt

(
R

p

∂T

∂y

)
,

which contradicts the scaled result for Q2. The implication is that in order to address this contradiction is

for either the vertical shear
(
∂ug
∂p

)
or the temperature gradient

(
∂T

∂y

)
to vanish or be a constant. We can

therefore not ignore the ageostrophic wind terms, and so the ageostrophic circulation is required to keep the
flow in approximate thermal wind balance.

The role of ageostrophic circulation in vertical motion is implied through the determination of the omega
(ω) motion field, since ω is determined only by the ageostrophic part of the wind field

∂ua
∂x

+
∂va
∂y

= −∂ω
∂p

∇⃗ · V⃗a = −∂ω
∂p

However, the total ageostrophic flow field cannot be determined by the divergence alone, because

DgV⃗g
Dt

= −f0k⃗ × V⃗a − βyk⃗ × V⃗g

By again neglecting the β effect for simplicity

DgV⃗g
Dt

= −f0k⃗ × V⃗a

k⃗ × k⃗ × V⃗a = − 1

f0
k⃗ × DgV⃗g

Dt
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The left-hand side is

k⃗ × k⃗ × V⃗a = k⃗ × k⃗ × (Va1⃗i+ Va2j⃗)

= k⃗ ×

∣∣∣∣∣∣
i⃗ j⃗ k⃗
0 0 1
Va1 Va2 0

∣∣∣∣∣∣
= k⃗ × (⃗i(−Va2)− j⃗(−Va1))
= −Va2j⃗ − (−⃗i)(−Va1)
= −(Va1⃗i+ Va2j⃗)

= −V⃗a

∴ −V⃗a = − 1

f0
k⃗ × DgV⃗g

Dt

∴ V⃗a =
1

f0
k⃗ ×

(
∂V⃗g
∂t

+ V⃗g · ∇⃗V⃗g

)

=
1

f0
k⃗ × ∂V⃗g

∂t
+

1

f0
k⃗ × V⃗g · ∇⃗V⃗g

The ageostrophic wind forcing therefore consists of two parts. The first term on the right represents the
isallobaric1 wind, and the second term is called the advective part of the ageostrophic wind.

Consider the isallobaric term

1

f0
k⃗ × ∂

∂t
V⃗g =

1

f0
k⃗ × ∂

∂t

(
1

f0
k⃗ × ∇⃗Φ

)
=

1

f0
2 k⃗ × k⃗ × ∇⃗

(
∂Φ

∂t

)
=

1

f0
2 k⃗ × k⃗ × ∇⃗χ

=
1

f0
2 k⃗ × k⃗ ×

(
∂χ

∂x
i⃗+

∂χ

∂y
j⃗

)
=

1

f0
2 k⃗ ×

(
∂χ

∂x
j⃗ − ∂χ

∂y
i⃗

)
=

1

f0
2

(
−∂χ
∂x
i⃗− ∂χ

∂y
j⃗

)
= − 1

f0
2 ∇⃗χ

Therefore, the isallobaric wind is proportional to the gradient of the geostrophic tendency. Since f02 is
involved, there is no change of sign in crossing the equator. This isallobaric wind blows towards falling
geopotential in both hemispheres.

Next consider the term that is the advective part of the ageostrophic wind. At the synoptic scale, baro-
clinic waves grow in the mid-latitudes due to baroclinic instability (arising from vertical shear of the mean

1of equal or constant pressure change.
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flow and thermal wind). When such waves are part of the jet stream, the advective term is dominated by
zonal advection, since jet streams are quasi-horizontal with maximum winds embedded in the mid-latitudes
westerlies. Let u⃗ denote the mean zonal flow, then

V⃗g · ∇⃗V⃗g ≃ (u⃗⃗i+ 0⃗j) ·
(
∂

∂x
i⃗+

∂

∂y
j⃗

)
V⃗g

= u⃗
∂

∂x
V⃗g

∴
1

f0
k⃗ ×

(
u⃗
∂

∂x
V⃗g

)
=

1

f0
u⃗
∂

∂x
(k⃗ × V⃗g)

=
1

f0
u⃗
∂

∂x

(
k⃗ ×

(
1

f0
k⃗ × ∇⃗Φ

))
=

1

f0
2 u⃗

∂

∂x

(
k⃗ ×

(
k⃗ ×

(
∂Φ

∂x
i⃗+

∂Φ

∂y
j⃗

)))
=

1

f0
2 u⃗

∂

∂x

(
−∂Φ
∂x

i⃗− ∂Φ

∂y
j⃗

)
= − 1

f0
2 u⃗

∂

∂x
(∇⃗Φ)

=⇒ The ageostrophic wind

V⃗a = − 1

f0
2

[
∇⃗χ+ u⃗

∂

∂x
(∇⃗Φ)

]

Next, we will perform a scale analysis on this ageostrophic wind equation. First, do the scale analysis of the
isallobaric wind

V⃗isall = − 1

f0
2 ∇⃗
(
∂Φ

∂t

)
∼ − 1

f2
1

L

(
L

U

)−1

δΦ

= − 1

f2
U

L2

(
−1

ρ
δp

)
=

Uδp

f2L2ρ

∼
10m s−1×

(
10× 102 kgm s−2m−2

)
10−8 s−2× (106m)2 × 1 kgm−3

=
104

104
s−3

s−2m−1
= 1ms−1
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Next, scale the term that is the advective part of the ageostrophic wind

− 1

f0
2 u⃗

∂

∂x
∇⃗Φ

∼ − 1

f2
U
1

L

1

L
δΦ

= − 1

f2
U

L2

(
−1

ρ
δp

)
=

Uδp

f2L2ρ
, which is the same as was found for the isallobaric wind.

Figure 17: Mean zonal flow distribution at the two pressure levels indicated.

The scale analysis done here shows that both the isallobaric wind and the advective part are about 1m s−1,
given both the typical horizontal wind speed and the mean zonal flow to be 10m s−1. However, profiles of
the time-mean zonal geostrophic wind, averaged over longitudes, show that for two isobaric levels, one at
850 hPa and the other at 300 hPa, that there is a strong jetstream at 300 hPa in the mid-latitudes.

Zonal mean winds of the 300 hPa jetstream are typically of the order of 30 to 40m s−1 in the mid-latitudes,
while at 850 hPa the zonal maximum wind is closer to the 10m s−1 value used in the scale analysis. There-
fore, at the 300 hPa jetstream the advective contribution to the ageostrophic wind dominates over the isal-
lobaric contribution. At both high and low latitudes, that is on the edges or flanks of mid-latitude baroclinic
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systems, zonal wind at the 300 hPa level are of similar strength and weak. Thus, at the flanks the two con-
tributions to the ageostrophic flow are similarly small so that the resulting ageostrophic wind is small. The
net effect is that at 300 hPa the ageostrophic motion is primarily zonal.

At the 850 hPa level, owing to the relatively weak zonal wind in the mid-latitudes, the advective part does
not dominate as it does at the 300 hPa level. Moreover, owing to the weak wind at 850 hPa at the flanks, the
advective contribution is nearly zero there. On the other hand, since the isallobaric wind is always directed
down the gradient of pressure tendency, it will cause a meridional component in both the northern and
southern flanks of the baroclinic wave, and a zonal component along the central axis of the wave. However,
along the zonal axis the isallobaric contribution may balance that of the advective contribution, with the
net result that the ageostrophic motion will only have a meridional component in the northern and southern
flanks at 850 hPa.

Vertical and horizontal motions in a developing short-wave baroclinic system
in the Southern Hemisphere – a summary

This chapter on the quasi-geostrophic theory started off by presenting a classic theory on the motion of mid-
latitude developing baroclinic systems in the Southern Hemisphere. In this theory the atmospheric level of
non-divergence (transition from positive to negative divergence, and vice versa) was introduced and it was
concluded that if this level is low enough in altitude that the system will move eastward. The eastward
movement of these systems fits into the theory of short-wave developing baroclinic systems discussed in
this chapter. The 500 hPa level is often assumed to be the level of non-divergence, and is about halfway
through the vertical depth of the mass of the atmosphere. Next, through the use of highly idealistic circula-
tion fields at the 500 hPa level the relative importance of the advections of relative and planetary vorticity
was investigated – relative vorticity advection dominates planetary vorticity advection for short-wave sys-
tems. Moreover, for fast-moving extratropical short-wave weather systems that are not rapidly amplifying or
decaying the local rate of change of geostrophic vorticity is represented only by the advection of geostrophic
vorticity. However, in the presence of developing systems this rate is also a function of the divergence effect,
which forms part of the ageostrophic flow.

Consider Figure X1 that shows a mean sea-level (i.e., 1000 hPa) pressure pattern represented by fine lines
and 500 hPa pattern by thick lines for the Southern Hemisphere. First we will consider vorticity advection
for short-wave systems at both the 1000 hPa and 500 hPa levels, by neglecting the effect of planetary
vorticity advection. The vertical lines on the figure respectively represent trough and ridge axes at 500 hPa
as well as at the surface. At the surface by the centres of both the low and the high pressure systems, the
geostrophic vorticity advection is close to zero. However, at the 500 hPa level above the surface low (high)
pressure system the advection of geostrophic vorticity is higher (lower) and positive (negative). Vorticity
advection is usually higher in absolute terms at 500 hPa than at the surface because the wind speeds tend
to increase with height, therefore 500 hPa winds near a trough will often be stronger than low-level winds.
Accordingly, there is a positive change in the vertical of the geostrophic vorticity advection, referred to
as differential vorticity advection, which is a negative value above the surface low owing to the decrease
in pressure with increasing height above the surface. However, in the Southern Hemisphere where the
Coriolis parameter is negative, multiplying the differential vorticity advection term with f0 leads to a positive
differential vorticity advection term. Take note that rising air is implied by an increase with height of
cyclonic relative vorticity advection, which is the case above the surface low.
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Figure X1

The positive advection of relative vorticity at the 500 hPa level above the surface low pressure system has
implications for the horizontal displacement of mid-latitude disturbances. Consider Figure X2 as well as
the geopotential tendency equation. This equation consists of two terms on the right respectively represent-
ing vorticity advection (the dominant forcing term in the upper troposphere) and thickness or temperature
advection (largest in magnitude in the lower troposphere). Due to the advection of relative vorticity at
500 hPa above the surface low, geopotential heights are decreasing, while geopotential heights are increas-
ing at 500 hPa above the surface low. Vorticity advection at the 500 hPa level thus acts to propagate the
disturbance horizontally to spread it vertically. Regarding the temperature advection term of the tendency
equation, below the 500 hPa trough cold advection in association with the cold front occurs, while warm
advection in association with the warm front occurs below the 500 hPa ridge. The effect of cold advection
below the 500 hPa trough is to deepen the trough in the upper troposphere, while the effect of the warm
advection below the 500 hPa ridge is to build the ridge in the upper troposphere. What is the source of
this advection? Recalling the figure of a developing synoptic-scale system in the section that discussed the
Sutcliffe form of the omega equation, the 500 hPa contours lead the 1000 hPa contours due to the west-
ward tilt of the developing system. During this development the result is that the 500 hPa geopotential
field leads the isotherm pattern. While the angle between the geopotential height contours and the thickness
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contours increases, an increase in the horizontal temperature advection is the result. However, as the system
is allowed to further develop, the surface low pressure contours, the 500 hPa contours and the thickness
contours come into alignment with each other. This later stage of development results in the weakening of
the horizontal temperature advection and marks the end of the intensification phase in the lifecycle of the
short-wave baroclinic system.

The omega equation was used to determine where upward and downward motion in a developing system
may occur. Figure X3 shows the results from analyzing three versions of this equation, namely its traditional
form that consists of two terms on the right respectively representing differential vorticity advection and
thickness (temperature) advection, the reduced Sutcliffe form that only has one term on the right representing
the advection of vorticity by the thermal wind, and the Q-vector form. The differential vorticity advection
terms have shown that upward (downward) motion in the developing system occurs over the surface low
(high) pressure systems, and that the thickness advection forces upward (downward) motion at the 500 hPa
ridge (trough) axis ahead (behind) the warm (cold) front. Although the interpretations of these two physical
processes have apparent advantages as demonstrated here, in practice there is often a significant amount of
cancellation between them. For this reason an alternative, albeit an approximate form of the omega equation,
is often applied in synoptic analyses – hence the Sutcliffe version of the equation. This version showed that
upward (downward) motion is forced east (west) of the 500 hPa trough above the surface low (high) pressure
system. This finding is in agreement with the interpretation of the Q-vector form of the omega equation as
shown above.
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𝑉𝑉𝑔𝑔 � ∇ −

𝜕𝜕Φ
𝜕𝜕𝜕𝜕

Term A Term B Term C
Vorticity advection Thickness advection

Due to advection of relative
vorticity 𝜕𝜕Φ

𝜕𝜕𝜕𝜕
> 0, an increase

in geopotential heights

Due to advection of relative
vorticity 𝜕𝜕Φ

𝜕𝜕𝜕𝜕
< 0, geopotential

heights are falling

At the 500hPa trough where cold
advection in association with the
cold front occurs, 𝜕𝜕Φ

𝜕𝜕𝜕𝜕
< 0.

The effect of cold advection
below the 500hPa trough is to
deepen the trough in the upper
troposphere.

At the 500hPa ridge where warm
advection in association with the
warm front occurs, 𝜕𝜕Φ

𝜕𝜕𝜕𝜕
> 0.

The effect of warm advection
below the 500hPa trough is to
build the ridge in the upper
troposphere.

Figure X2

Term B: 
Dominant forcing 
term in the upper 
troposphere

𝜒𝜒 =
𝜕𝜕Φ
𝜕𝜕𝜕𝜕

Term C: 
Largest in magnitude
in the lower troposphere

Note: Vorticity advection acts 
to propagate the disturbance
horizontally to spread it 
vertically.
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Figure X3

𝑤𝑤 > 0𝑤𝑤 < 0

𝑤𝑤
<

0

𝑤𝑤
>

0

Term C

Term B

Downward
(Sutcliffe)

Upward
(Sutcliffe)

Q-vectors diverge, 
downward

Q-vectors converge, 
upward

𝑤𝑤 > 0, ascending motion
𝑤𝑤 < 0, subsiding motion

To summarize, temperature advection forces the strengthening of mid-tropospheric troughs and ridges, the
advection of relative vorticity acts to propagate the developing system horizontally, while differential rel-
ative vorticity advection forces rising (sinking) motion over surface low (high) pressure systems, as is the
advection of vorticity by the thermal wind.
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Linear perturbation theory

We wish to gain physical insight of atmospheric waves by employing simplified models. Here we introduce
the perturbation method to examine atmospheric waves and then to gain further insight into the development
of synoptic wave disturbances in terms of their origin and propagation.

Variables are divided into two parts consisting of a basic state portion and a perturbation portion. The basic
state portion is independent of time and longitude. Recall the total derivative of the x-component of the
eastward velocity, u:

Du

Dt
=
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

u
∂u

∂x
is the zonal part of advective acceleration and is non-linear. We want to expand this acceleration by

expanding the complete velocity field, u(x, t), into a time and longitude-average zonal velocity, u, and u′,
the deviation from that average:

u(x, t) = u+ u′(x, t).

The acceleration term then becomes:

u
∂u

∂x
= (u+ u′)

∂

∂x
(u+ u′)

= u
∂u

∂x
+ u

∂u′

∂x
+ u′

∂u

∂x
+ u′

∂u′

∂x

= u
∂u′

∂x
+ u′

∂u′

∂x
since u is independent of longitude.

However,
∣∣∣∣u′u
∣∣∣∣ ≪ 1, therefore |u| ≫ |u′|, which leads to

∣∣∣∣u∂u′∂x

∣∣∣∣ ≫ ∣∣∣∣u′∂u′∂x

∣∣∣∣. Therefore, terms that involve

products of the perturbations may be neglected.

In the case of purely zonal flows:

D

Dt
(u+ u′) =

∂

∂t
(u+ u′) + u

∂u′

∂x

=
∂u′

∂t
+ u

∂u′

∂x
,

which is the original non-linear differential equation reduced to a linear differential equation. For such equa-
tions with constant coefficients (i.e., u), the solutions are of a sinusoidal nature. In fact, when considering a
section of an atmospheric wave along a latitude circle, this flow is equivalent to a sinusoidal shape.

151



A Fourier series represents a periodic function as a sum of sine and cosine waves. Consider the Fourier
series

f(x) = A sin(kx) +B cos(kx),

where A and B are real coefficients. The figure below shows the f(x) results for the phase angles as shown.

The figure shows a propagating wave as oscillations for various phase angles that propagates in the positive
direction. Atmospheric wave motions also are oscillations of variables such as pressure that propagate in
space and time.
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Shallow water gravity waves

In fluid dynamics, gravity waves are generated in a fluid or at the interface between two media, for example
the atmosphere and the ocean or between cold and warm air layers. When a fluid element is displaced on
such an interface, gravity attempts to restore the parcel towards equilibrium resulting in oscillations about
the equilibrium state.

ℎ

wave length

dense cold air

warm air

wind direction

The restoring force is in the vertical, even in the case of horizontally propagating oscillations, such as in the
presence of wind.

To mimic such as a mechanism consider a fluid in a channel. The back-and-forth oscillation of a lever or
paddle. The net result is a sinusoidal disturbance which moves towards the right along the wind direction as
shown in the figure above. Consider the example where the wavelengths of the waves are much greater then
the depth of the fluid. This configuration leads to the vertical velocities to be small so that the hydrostatic
approximation is valid:

∂p

∂z
= −ρg

∴
∂

∂x

(
∂p

∂z

)
= − ∂

∂x
(ρg)

∴
∂

∂z

(
∂p

∂x

)
= −g ∂ρ

∂x

Consider a two-layer fluid system as shown in the figure below. The density in each of the two layers is

constant, therefore
∂

∂z

(
∂p

∂x

)
= 0
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𝐴

𝐷

𝐵

𝐶

𝑝 + 𝛿𝑝1𝑝 + 𝛿𝑝2

𝛿𝑧

𝛿𝑥
𝑝 𝑝

ρ2

ρ1

ρ1 > ρ2 ℎ

Assume that there is no horizontal pressure gradient in the upper layer, so that the pressure, p, at points C
and D are equal. For the pressure at points A and B we have, respectively,

p+ δp2 = p+ ρ2gδz

and
p+ δp1 = p+ ρ1gδz

where the hydrostatic equation was used once more and where the positive sign of both terms is a conse-
quence of the pressure change and the height change acting in opposite directions.

Consider h, the depth of the lower layer. The change of h is equivalent to the change in height, therefore
δz ∼ δh.

∴ δz =
∂h

∂x
δx.

Therefore
p+ δp2 = p+ ρ2g

∂h

∂x
δx

and
p+ δp1 = p+ ρ1g

∂h

∂x
δx.

The pressure gradient in the lower layer, and taking the limit δx→ 0:

∂p

∂x
= lim

δx→0

[
(p+ δp1)− (p+ δp2)

δx

]

= lim
δx→0

g∂h∂x(ρ1 − ρ2)δx

δx


= gδρ

∂h

∂x
, with δρ = ρ1 − ρ2 (ρ1 > ρ2)

With two dimensional motion in the x-, z-plane, the momentum equation for the lower layer is reduced to:

Du

Dt
= fv − 1

ρ

∂p

∂x
= −1

ρ

∂p

∂x
since v = 0.

∴
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −1

ρ

(
gδρ

∂h

∂x

)
The momentum equation for the lower layer becomes

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −gδρ

ρ1

∂h

∂x
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The continuity equation
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 is reduced to

∂u

∂x
= −∂w

∂z
(since v = 0)

By integrating this equation vertically from the lower boundary (z = 0) to the interface between the two
layers (z = h), leads to ∫ h

0

∂w

∂z
dz = −

∫ h

0

∂u

∂x
dz

= −∂u
∂x

∫ h

0
dz ( if it is assumed that u ̸= u(z))

w(h)− w(0) = −h∂u
∂x

For a flat lower boundary w(0) = 0; w(h) is the rate at which the interface height is changing: w(h) =
Dh

Dt

Dh

Dt
=
∂h

∂t
+ u

∂h

∂x
+ w

∂h

∂z
(since v = 0)

=
∂h

∂t
+ u

∂h

∂x
since the change of height at any point is constant

∴
∂h

∂t
+ u

∂h

∂x
= −h∂u

∂x

∴
∂h

∂t
+

∂

∂x
(hu) = 0 (according to the chain rule of differentiation)

We have subsequently obtained a closed set of equations in the variables u and h:

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −gδρ

ρ1

∂h

∂x

and
∂h

∂t
+

∂

∂x
(hu) = 0

Next, we expand these two variables in terms of their basic state and perturbation portions:

u = u+ u′, h = H + h′,

where u is a constant basic state zonal velocity, and H is the mean depth of the lower layer.

∴
∂

∂t
(u+ u′) + (u+ u′)

∂

∂x
(u+ u′) + 0 +

gδρ

ρ1

∂

∂x
(H + h′)

assuming that u ̸= u(z). Using the linear perturbation method

∂

∂t
(u+ u′) =

∂u′

∂t
,
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(u+ u′)
∂

∂x
(u+ u′) = (u+ u′)

∂u′

∂x
= u

∂u′

∂x
+ u′

∂u′

∂x

= u
∂u′

∂x
since products of perturbations may be neglected

and
gδρ

ρ1

∂

∂x
(H + h′) =

gδρ

ρ1

∂h′

∂x
.

∴
∂u′

∂t
+ u

∂u′

∂x
+
gδρ

ρ1

∂h′

∂x
= 0 (1)

For
∂h

∂t
+

∂

∂x
(hu) = 0 :

∂

∂t
(H + h′) =

∂h′

∂t

and

∂

∂x
(hu) =

∂

∂x

[
(H + h′)(u+ u′)

]
=

∂

∂x

[
Hu+Hu′ + uh′ + u′h′

]
=

∂

∂x
(Hu′) +

∂

∂x
(uh′) since Hu is a constant value and u′h′ is a product of perturbations.

= H
∂u′

∂x
+ u

∂h′

∂x

∴
∂h′

∂t
+H

∂u′

∂x
+ u

∂h′

∂x
= 0

∴

(
∂

∂t
+ u

∂

∂x

)
h′ +H

∂u′

∂x
= 0 (2)

Apply the operator H
∂

∂x
to equation (1):

H
∂

∂x

∂u′

∂t
+Hu

∂2u′

∂x2
+
Hgδρ

ρ1

∂2h′

∂x2
= 0 (3)

Then apply the operator
(
∂

∂t
+ u

∂

∂x

)
equation (2):

∴

(
∂

∂t
+ u

∂

∂x

)
∂h′

∂t
+

(
∂

∂t
+ u

∂

∂x

)(
u
∂h′

∂x

)
+

(
∂

∂t
+ u

∂

∂x

)(
H
∂u′

∂x

)
= 0

∴
∂2h′

∂t2
+ u

∂

∂t

∂h′

∂x
+ u

∂

∂t

∂h′

∂x
+ u2

∂2h′

∂x2
+H

∂

∂x

∂u′

∂t
+Hu

∂2u′

∂x2
= 0

∴
∂2h′

∂t2
+ 2u

∂

∂t

∂h′

∂x
+ u2

∂2h′

∂x2
+H

∂

∂x

∂u′

∂t
+Hu

∂2u′

∂x2
= 0 (4)
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Subtract equation (3) from equation (4):

∂2h′

∂t2
+ 2u

∂

∂t

∂h′

∂x
+ u2

∂2h′

∂x2
− Hgδρ

ρ1

∂2h′

∂x2
= 0

∴

(
∂

∂t
+ u

∂

∂x

)2

h′ − Hgδρ

ρ1

∂2h′

∂x2
= 0

which is a form of the standard wave equation with a solution representing a sinusoidal wave propagation in
x. Such a solution can also be represented by an exponential function:

h′ = Aeik(x−ct)

and only the real part has physical significance. A is a Fourier coefficient and c is the phase speed that we
want to obtain.

Apply the following operators to the exponential function:
∂2

∂t2
,
∂2

∂t∂x
and

∂2

∂x2
and keeping in mind that

Dx

(
eg(x)

)
= eg(x)g′(x)

∂2

∂t2
h′ =

∂

∂t

(
∂

∂t

(
Aeik(x−ct)

))
=

∂

∂t

(
Aeik(x−ct)(−ikc)

)
= (−ikc)2Aeik(x−ct)

= −Ak2c2eik(x−ct) since i2 = −1

∂2

∂t∂x
h′ =

∂

∂t

(
Aeik(x−ct)(ik)

)
= Aikeik(x−ct)(−ikc)
= Ak2ceik(x−ct)

∂2

∂x2
h′ =

∂

∂x

(
Aeik(x−ct)(ik)

)
= A(ik)2eik(x−ct)

= −Ak2eik(x−ct)

Therefore,

−Ak2c2eik(x−ct) + 2uAk2ceik(x−ct) + u2
(
−Ak2eik(x−ct)

)
− Hgδρ

ρ1

(
−Ak2eik(x−ct)

)
= 0

∴ −c2 + 2uc− u2 +
Hgδρ

ρ1
= 0
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Solving for a quadratic equation in c:

c =

−(−2u)±
(
(−2u)2 − 4

(
u2 − Hgδρ

ρ1

))1/2

2

= u±
(
Hgδρ

ρ1

)1/2

In the case of the upper layer air and the lower layer is water:

δρ = ρ1 − ρ2 ∼ (1000− 1) kgm3 at 15◦C

∼ 1000 kgm3

∴
δρ

ρ1
∼ 1000

1000
= 1

Therefore, the phase speed c simplifies to u± (Hg)1/2. (Hg)1/2 is called the shallow water wave speed.

In the case of two atmospheric layers,
δρ

ρ1
∼ 10−2. Therefore, the phase speed c ≃ u ± (10−1H)1/2 if the

gravitational acceleration is taken as 10m s−2. The shallow water wave speed then becomes
(
H

10

)1/2

.

Shallow water wave speed for an ocean depth of 3 km the speed is ∼ 170m s−1, while the shallow water
wave speed in the atmosphere at the height of the 700 hPa level, i.e. 3 km above sea level, the speed is
∼ 17m s−1. Long waves on the ocean surface travel very rapidly, while wave speeds for atmospheric waves
travel at about one tenth the speed of ocean waves.
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Rossby waves

The barotropic Rossby wave is an absolute vorticity conserving motion that exists due to the variations of
the Coriolis parameter. Waves need to have a restoring force associated with them, and for Rossby waves
that is the β-effect. The Coriolis force varies as you go north and south away from a reference latitude. This
movement has a response on relative vorticity, causing deviating fluid parcels to be redirected back towards
the reference latitude.

𝛿𝑦 < 0𝛿𝑦 < 0
𝛿𝑦 > 0

ζ < 0

ζ > 0ζ > 0

Figure 18: Solid wavy line shows the original perturbation position of a chain of fluid parcels. Dashed line
shows westward displacement of the pattern to be explained later in this section.

Consider a closed chain of fluid parcels initially aligned along a constant circle of latitude. The absolute
vorticity, which is the sum total of relative vorticity and the Coriolis parameter, or planetary vorticity, is
conserved in large-scale Rossby waves. At time t0, absolute vorticity is zero, and at a later time t1, δy is the
meridional displacement of a fluid parcel away from the initial circle of latitude. As a result, at time t1

(ζ + f)t1 = (0 + f)t0

∴ ζt1 = ft0 − ft1 = −(ft1 − ft0) = −δf

Since β =
df

dy
, δf = βδy, therefore ζt1 = −βδy.

β is always positive and δy is negative (positive) for a parcel displacement to the north (south) of the refer-
ence latitude. Therefore, the perturbation vorticity will be positive (negative) for a southward (northward)
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displacement.

The horizontal distribution of geopotential at the 500 hPa level and the associated relative vorticity field
are shown in Figure 19 for two wavelengths and for two mean zonal flows. The figure is for Southern
Hemisphere cases. Take note how the positive vorticity field corresponds with the 500 hPa ridges, and the
negative vorticity field with the 500 hPa troughs.

Figure 19: Geopotential heights at 500 hPa in units of m, and relative vorticity in units of 10−5 s−1. The
top panels show the results for a 6000 km wavelength, and the bottom panels show results for a 10000 km
wavelength. The mean zonal flow for both cases is 20m s−1.

The fluid parcels oscillate back and forth about their initial circle of latitude. Next, we want to complete the
speed of wave propagation by considering δy to be represented as a sinusoidal meridional displacement:

δy = a sin[k(x− ct)],

where a is the maximum displacement of the fluid parcels, c the wave speed, and k the zonal wave number.

There is no zonal component so u = 0 and
∂u

∂y
= 0.
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Meridional speed:

v =
D

Dy
δy =

D

Dy
(a sin[k(x− ct)])

= −kca cos[k(x− ct)]

Relative vorticity:

ζ =
∂v

∂x
− ∂u

∂y
=

∂

∂x
(−kca cos[k(x− ct)])

= k2ca sin[k(x− ct)].

At t1:

k2ca sin[k(x− ct)] = −βa sin[k(x− ct)]

∴ c = − β

k2
< 0.

Therefore, the phase speed is westward relative to the mean flow.

Next we want to further investigate barotropic Rossby waves by finding solutions of the barotropic vorticity
equation by applying the perturbation method. The Rossby wave is an absolute vorticity conserving motion.
In purely horizontal flow in a fluid of constant depth (the divergence term vanishes) the barotropic vorticity
equation is

D

Dt
(ζg + f) = 0.

Since absolute vorticity is conserved owing to the vanishing of the divergence of the horizontal wind, the
flow is not required to be geostrophic. Therefore,(

∂

∂t
+ u

∂

∂x
+ v

∂

∂y

)
(ζ + f) = 0

∴

(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y

)
ζ + v

∂f

∂y
= 0

∴

(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y

)
ζ + βv = 0

We next apply the perturbation method and assume that the motion is a result of a constant basic state zonal
velocity plus a small horizontal perturbation, u = u + u′, and a meridional perturbation as a result of the

fluid parcels oscillating back and forth about a latitude circle. Therefore, v = v′ and ζ =
∂v′

∂x
− ∂u′

∂y
= ζ ′.

The perturbation stream function is defined according to

u′ = −∂ψ
′

∂y
and v′ =

∂ψ′

∂x
.

Then ζ ′ =
∂

∂x

(
∂ψ′

∂x

)
− ∂

∂y

(
∂ψ′

∂y

)
=

(
∂2

∂x2
+

∂2

∂y2

)
ψ′ = ∇2ψ′.
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Expanding on the barotropic vorticity equation(
∂

∂t
+ (u+ u′)

∂

∂x
+ v′

∂

∂y

)
∇2ψ′ + βv′ = 0.

Ignoring products of perturbation terms leads to(
∂

∂t
+ u

∂

∂x

)
∇2ψ′ + β

∂ψ′

∂x
= 0.

As before, we seek a solution of the form

ψ′ = Re
[
Ψei(kx+ly−νt)

]
where k and l are wave numbers respectively in the zonal and meridional directions, ν is the angular fre-
quency, and Ψ an amplitude coefficient.

Consider the terms of the perturbation barotropic vorticity equation separately:

First

∇2ψ′ =
∂2

∂x2

(
Ψei(kx+ly−νt)

)
+

∂2

∂y2

(
Ψei(kx+ly−νt)

)
= (ik)2Ψei(kx+ly−νt) + (il)2Ψei(kx+ly−νt)

= −(k2 + l2)Ψei(kx+ly−νt)

Then
∂

∂t
∇2ψ′ = iν(k2 + l2)Ψei(kx+ly−νt)

and
u
∂

∂x
∇2ψ′ = −iku(k2 + l2)Ψei(kx+ly−νt)

and

β
∂ψ′

∂x
= ikβΨei(kx+ly−νt)

The perturbation barotropic vorticity equation then reduces to:

ν(k2 + l2)− uk(k2 + l2) + kβ = 0

∴ ν = uk − βk

(k2 + l2)

Since c =
ν

k
,

c = u− β

(k2 + l2)

For the case of the mean wind, u, vanishing and the meridional wave number, l, tending to zero,

c = − β

k2
< 0,
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as before, always westward relative to the mean zonal flow.

The Rossby wave phase speed varies with k, and the wave is therefore dispersive. A zonal wave number can
typically be defined as k = 2πs/L, with s (the planetary wave number) an integer number of waves around
a latitude circle. For a typical mid-latitude synoptic-scale disturbance with l ≈ k (similar meridional and
zonal scales) and a zonal wavelength of about 6000 km

c− u = − β

2k2
= − β

2

(
2πs

L

)2 = − βL2

8π2s2

∼ −10−11m−1 s−1(6× 106m)2

8π2s2

= −4.56

s2
ms−1,

which is the Rossby wave speed relative to the zonal flow. The Rossby wave phase speed therefore depends
inversely on the square of the number of waves around a latitude circle, the phase speeds decrease rapidly
with decreasing wavelength.

Take note that since the mean zonal wind is generally westerly, synoptic-scale Rossby waves usually move
eastward if the zonal wind is stronger than the Rossby wave speed. However, the Rossby waves move
eastward at a phase speed relative to the ground that is somewhat less than the mean zonal wind speed.

For longer wavelengths, say L ∼ 8× 106m, the westward Rossby wave speed may be large enough so that

the resulting disturbance is stationary. This implies that u =
β

2k2
, resulting in u =

8.1

s2
ms−1.

Since Rossby waves are dispersive (these waves may have different wavelengths that propagate at different
phase speeds) the resulting downstream development of new disturbances is of interest to weather forecast-
ing and consequently need to be discussed further. The group velocity, the velocity at which the observable

disturbance propagates, is cgx =
∂ν

∂k
for the zonal case. Therefore,

cgx =
∂

∂k

(
uk − βk

(k2 + l2)

)
= u− β

∂

∂k

[
k

(k2 + l2)

]
Consider the quotient rule of differentiation that states

d

dx

(
f(x)

g(x)

)
=

d

dx
(f(x)) g(x)− d

dx
(g(x)) f(x)

(g(x))2

Therefore,

∂

∂k

[
k

(k2 + l2)

]
=

1× (k2 + l2)− 2k × k

(k2 + l2)2

=
l2 − k2

(k2 + l2)2

163



∴ cgx = u− β
l2 − k2

(k2 + l2)2

For stationary waves (u = 0) and with diminishing meridional wave number l,

cgx =
β

k2
> 0,

therefore always has an eastward zonal component relative to the Earth. Since the wave energy propagates
at the group velocity, Rossby wave energy propagation is downstream.
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A two-layer model to understand baroclinic
instability

Quasi-geostrophic theory accounts for the observed relationships between vorticity, temperature and vertical
velocity in mid-latitude synoptic-scale systems. Lacking, however, is quantitative information on the origin,
growth rates and propagating speeds. In this section we want to analyse the role of relative vorticity in the
development of these systems. For this purpose we will introduce the concept of dynamic instability. This
type of instability deals with waves in a moving fluid system such as the atmosphere.

Barotropic instability arises from vorticity distributions in a non-divergent, two dimensional flow – this
instability is associated with horizontal shear. Such instabilities grow by converting kinetic energy from the
mean flow between the air current and a perturbation. A necessary condition for barotropic instability is that
the vorticity field has both positive and negative signs in the domain, as we have seen in the discussion on
Rossby waves.

0

1

2

3

4

0

250

500

750

1000

hP
a

𝜓𝜓1

𝜓𝜓3

Baroclinic instability is associated with vertical shear arising from the existence of a meridional temperature
gradient of a synoptic-scale disturbance. Such a system converts potential energy of the basic flow into
kinetic energy of an induced perturbation.

In our analyses to follow on baroclinic instability we again assume that a small perturbation consisting of
a small Fourier wave mode of the form eik(x−ct) is introduced into the flow as explained through linear
perturbation theory. First, we discuss a simple model that can incorporate baroclinic processes as shown in
the figure above.

The atmosphere is represented by surfaces at the top of the troposphere (0 hPa; although at this pressure
level we are actually at the stratosphere), middle troposphere (500 hPa) and at the surface (1000 hPa). Take

165



note that although the South African land surface is mostly at approximately 850 hPa, the mid-latitude
systems most often affecting our weather are located on the surface at sea-level.

The quasi-geostrophic vorticity equation is applied at the 750 hPa and 250 hPa levels. The thermodynamic

energy equation is applied at the 500 hPa level. We also define a geostrophic streamfunction, ψ =
Φ

f0
, and

apply it at the same level where the vorticity equation is applied.

Recall the definition of the geostrophic wind V⃗g ≡
1

f0
k⃗ × ∇⃗Φ, and geostrophic vorticity ζg =

1

f0
∇2Φ, and

rewrite them in terms of the geostrophic streamfunction:

V⃗ψ =
1

f0
k⃗ × ∇⃗(f0ψ) =⇒ V⃗ψ = k⃗ × ∇⃗ψ

ζg =
1

f0
∇2(f0ψ) =⇒ ζg = ∇2ψ

Consider the geostrophic vorticity equation

∂ζg
∂t

= −V⃗g · ∇⃗(ζg + f) + f0
∂ω

∂p

∴
∂

∂t
(∇2ψ) = −V⃗ψ · ∇⃗(∇2ψ + f) + f0

∂ω

∂p

Take note that V⃗ψ is still the geostrophic wind, but in terms of a streamfunction.

Consider

V⃗ψ · ∇⃗(∇2ψ + f) = V⃗ψ · ∇⃗(∇2ψ) + (ug⃗i+ vg j⃗)ψ ·
(
∂

∂x
i⃗+

∂

∂y
j⃗

)
f

= V⃗ψ · ∇⃗(∇2ψ) + βvg

= V⃗ψ · ∇⃗(∇2ψ) + β
1

f0

∂Φ

∂x

= V⃗ψ · ∇⃗(∇2ψ) + β
∂ψ

∂x

=⇒ ∂

∂t
∇2ψ + V⃗ψ · ∇⃗(∇2ψ) + β

∂ψ

∂x
= f0

∂ω

∂p

At levels 1 (250 hPa) and 3 (750 hPa), the equation above at each level respectively is expressed as

∂

∂t
∇2ψ1 + V⃗1 · ∇⃗(∇2ψ1) + β

∂ψ1

∂x
= f0

(
∂ω

∂p

)
1

and
∂

∂t
∇2ψ3 + V⃗3 · ∇⃗(∇2ψ3) + β

∂ψ3

∂x
= f0

(
∂ω

∂p

)
3

.

The divergence term on the right-hand side of these equations can be estimated using finite difference ap-
proximations: (

∂ω

∂p

)
1

≈ ω2 − ω0

δp
and

(
∂ω

∂p

)
3

≈ ω4 − ω2

δp
.
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In each case, δp = 500 hPa. We assume that there is no upward motion on the top of the two-layer model,
so that ω0 = 0, and also assume that ω4 ≈ 0 and the surface boundary of the lower layer. So, at levels 1 and
3 the two equations become

∂

∂t
∇2ψ1 + V⃗1 · ∇⃗(∇2ψ1) + β

∂ψ1

∂x
=
f0
δp
ω2

and
∂

∂t
∇2ψ3 + V⃗3 · ∇⃗(∇2ψ3) + β

∂ψ3

∂x
= −f0

δp
ω2.

Next, we consider the thermodynamic energy equation at 500 hPa where the geostrophic wind is again
represented by V⃗ψ: (

∂

∂t
+ V⃗ψ · ∇⃗

)(
−∂Φ
∂p

)
− σω =

RJ

cpp
= 0

if it is assumed that the diabatic heating term, J , can be neglected.

∴
∂

∂t

(
− ∂

∂p
(f0ψ)

)
= −V⃗ψ · ∇⃗

(
− ∂

∂p
(f0ψ)

)
+ σω

∴
∂

∂t

(
∂ψ

∂p

)
= −V⃗ψ · ∇⃗

(
∂ψ

∂p

)
− σ

f0
ω.

We will next, as before, use a finite difference approximation to evaluate
∂ψ

∂p
:

(
∂ψ

∂p

)
≈ ψ3 − ψ1

δp

∴
∂

∂t

(
ψ3 − ψ1

δp

)
= −V⃗ψ · ∇⃗

(
ψ3 − ψ1

δp

)
− σ

f0
ω.

Since this form of the thermodynamic energy equation is applied at level 2 (500 hPa), the equation becomes:

∂

∂t

(
ψ3 − ψ1

δp

)
= −V⃗2 · ∇⃗

(
ψ3 − ψ1

δp

)
− σ

f0
ω2

∴
∂

∂t
(ψ1 − ψ3) = −V⃗2 · ∇⃗ (ψ1 − ψ3) +

σδp

f0
ω2

With the first term on the right the advection of the 250 - 750 hPa thickness by the geostrophic wind at
500 hPa.

To summarise, we have developed a set of prediction equations in the variables ψ1, ψ3 and ω2:

∂

∂t
∇2ψ1 = −V⃗1 · ∇⃗(∇2ψ1)− β

∂ψ1

∂x
+
f0
δp
ω2

∂

∂t
∇2ψ3 = −V⃗3 · ∇⃗(∇2ψ3)− β

∂ψ3

∂x
− f0
δp
ω2.

∂

∂t
(ψ1 − ψ3) = −V⃗2 · ∇⃗ (ψ1 − ψ3) +

σδp

f0
ω2
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Next, we apply linear perturbation analysis to this set of equations, but first we need to define streamfunc-
tions that consist of basic state parts and perturbations. We select

ψ1 = −U1y + ψ′
1(x, t) and ψ3 = −U3y + ψ′

3(x, t).

Since

V⃗ψ = k⃗ × ∇⃗ψ = −∂ψ
∂y

i⃗+
∂ψ

∂x
j⃗

∴ uψ = −∂ψ
∂y

and vψ =
∂ψ

∂x

∴ uψ1 = U1 and uψ3 = U3.

Therefore, the zonal velocities at levels 1 and 3 respectively are U1 and U3.

For vψ we have vψ1 =
∂ψ′

1

∂x
and vψ3 =

∂ψ′
3

∂x
. Therefore the perturbation parts also represent meridional

velocities.

We also include a vertical velocity component represented by ω2 = ω′
2(x, t).

We will next substitute the perturbation equations into the set of three prediction equations. First consider
the vorticity equation at level 1:

∂

∂t
∇2ψ1︸ ︷︷ ︸

Term A

= −V⃗1 · ∇⃗(∇2ψ1)︸ ︷︷ ︸
Term B

−β∂ψ1

∂x︸ ︷︷ ︸
Term C

+
f0
δp
ω2︸ ︷︷ ︸

Term D

Term A:

∂

∂t
∇2ψ1 =

∂

∂t

(
∂2

∂x2
+

∂2

∂y2

)(
−U1y + ψ′

1

)
=

∂

∂t

(
∂2ψ′

1

∂x2

)
Term B:

−V⃗1 · ∇⃗(∇2ψ1) = −
(
U1⃗i+

∂ψ′
1

∂x
j⃗

)
·
(
∂

∂x
i⃗+

∂

∂y
j⃗

)(
∂2

∂x2
+

∂2

∂y2

)
ψ′
1

= −U1
∂

∂x

∂2ψ′
1

∂x2

Term C:

−β∂ψ1

∂x
= −β∂ψ

′
1

∂x

Term D:
f0
δp
ω2 =

f0
δp
ω′
2

=⇒ ∂

∂t

(
∂2ψ′

1

∂x2

)
= −U1

∂

∂x

∂2ψ′
1

∂x2
− β

∂ψ′
1

∂x
+
f0
δp
ω′
2
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∴

(
∂

∂t
+ U1

∂

∂x

)
∂2ψ′

1

∂x2
+ β

∂ψ′
1

∂x
=
f0
δp
ω′
2

And similarly for level 3: (
∂

∂t
+ U3

∂

∂x

)
∂2ψ′

3

∂x2
+ β

∂ψ′
3

∂x
= −f0

δp
ω′
2

Revisiting the thermodynamic energy equation at level 2:

∂

∂t
(ψ1 − ψ3)︸ ︷︷ ︸
Term A

= −V⃗2 · ∇⃗ (ψ1 − ψ3)︸ ︷︷ ︸
Term B

+
σδp

f0
ω2︸ ︷︷ ︸

Term C

Term A:
∂

∂t
(ψ1 − ψ3) =

∂

∂t

(
ψ′
1 − ψ′

3

)
Term B:

−V⃗2 · ∇⃗ (ψ1 − ψ3) = −
(
−∂ψ2

∂y
i⃗+

∂ψ2

∂x
j⃗

)
· ∇⃗ (ψ1 − ψ3) ,

since V⃗ψ = k⃗ × ∇⃗ψ. ψ2 is the 500 hPa streamfunction and not a predicted field in this model. Therefore,
ψ1 has to be obtained by linearly interpolating between the 250 hPa and 750 hPa levels:

ψ2 =
1

2
(ψ1 + ψ3) .

Therefore

∂ψ2

∂y
=

1

2

∂

∂y

(
−U1y + ψ′

1 − U3y + ψ′
3

)
= −1

2
(U1 + U3)

= −Um,

the vertically averaged mean zonal wind, with Um ≡ 1

2
(U1 + U3).

Consider

∂ψ2

∂x
=

1

2

∂

∂x

(
−U1y + ψ′

1 − U3y + ψ′
3

)
= −1

2

(
∂ψ′

1

∂x
+
∂ψ′

3

∂x

)
Next consider

∇⃗(ψ1 − ψ3) =

(
∂

∂x
i⃗+

∂

∂y
j⃗

)(
−U1y + ψ′

1 + U3y − ψ′
3

)
=

∂

∂x

(
ψ′
1 − ψ′

3

)
i⃗+ (−U1 + U3)⃗j

=
∂

∂x

(
ψ′
1 − ψ′

3

)
i⃗− 2UT j⃗,
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with UT ≡ 1

2
(U1 − U3), the vertically averaged mean thermal wind.

Term B then becomes:

−
(
Um⃗i+

1

2

(
∂ψ′

1

∂x
+
∂ψ′

3

∂x

)
j⃗

)
·
(
∂

∂x

(
ψ′
1 − ψ′

3

)
i⃗− 2UT j⃗

)
= −Um

(
∂ψ′

1

∂x
− ∂ψ′

3

∂x

)
+UT

(
∂ψ′

1

∂x
+
∂ψ′

3

∂x

)
Term C:

σδp

f0
ω2 =

σδp

f0
ω′
2

Then put all the terms together again to produce

∂

∂t

(
ψ′
1 − ψ′

3

)
= −Um

(
∂ψ′

1

∂x
− ∂ψ′

3

∂x

)
+ UT

(
∂ψ′

1

∂x
+
∂ψ′

3

∂x

)
+
σδp

f0
ω′
2

∴

(
∂

∂t
+ Um

∂

∂x

)(
ψ′
1 − ψ′

3

)
− UT

∂

∂x

(
ψ′
1 + ψ′

3

)
=
σδp

f0
ω′
2

We also want to express the vorticity equation in terms of Um and UT :

Um + UT =
1

2
(U1 + U3) +

1

2
(U1 − U3) = U1

Um − UT = U3

The vorticity equation at level 1 then becomes[
∂

∂t
+ (Um + UT )

∂

∂x

]
∂2ψ′

1

∂x2
+ β

∂ψ′
1

∂x
=
f0
δp
ω′
2,

and at level 3: [
∂

∂t
+ (Um − UT )

∂

∂x

]
∂2ψ′

3

∂x2
+ β

∂ψ′
3

∂x
= −f0

δp
ω′
2.

In order to eliminate ω′
2 between these two vorticity equations, we define barotropic perturbations by ψm ≡

1

2
(ψ′

1 + ψ′
3) and baroclinic perturbations by ψT ≡ 1

2
(ψ′

1 − ψ′
3).

Adding the two vorticity equations together leads to

∂

∂t

∂2ψ′
1

∂x2
+ (Um + UT )

∂

∂x

∂2ψ′
1

∂x2
+
∂

∂t

∂2ψ′
3

∂x2
+ (Um − UT )

∂

∂x

∂2ψ′
3

∂x2
+ β

∂

∂x
(ψ′

1 + ψ′
3) = 0

∴
∂

∂t

∂2

∂x2
(ψ′

1 + ψ′
3) + Um

∂

∂x

(
∂2ψ′

1

∂x2
+
∂2ψ′

3

∂x2

)
+ UT

∂

∂x

(
∂2ψ′

1

∂x2
− ∂2ψ′

3

∂x2

)
+ β

∂

∂x
(ψ′

1 + ψ′
3) = 0

∴
∂

∂t

∂2

∂x2
ψm + Um

∂

∂x

∂2

∂x2
ψm + UT

∂

∂x

(
∂2ψT

∂x2

)
+ β

∂

∂x
ψm = 0

∴

[
∂

∂t
+ Um

∂

∂x

]
∂2

∂x2
ψm + β

∂

∂x
ψm + UT

∂

∂x

(
∂2ψT

∂x2

)
= 0
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Subtracting the two vorticity equations leads to

∂

∂t

∂2ψ′
1

∂x2
+ (Um + UT )

∂

∂x

∂2ψ′
1

∂x2
− ∂

∂t

∂2ψ′
3

∂x2
− (Um − UT )

∂

∂x

∂2ψ′
3

∂x2
+ β

∂

∂x
(ψ′

1 − ψ′
3) =

f0
δp
ω′
2

∴
∂

∂t

∂2

∂x2
ψT + UT

∂

∂x

∂2

∂x2
ψm + β

∂

∂x
ψT =

f0
δp
ω′
2 + Um

∂

∂x

∂2ψT

∂x2

∴

[
∂

∂t
+ Um

∂

∂x

]
∂2

∂x2
ψT + UT

∂

∂x

∂2ψm

∂x2
+ β

∂

∂x
ψT =

f0
δp
ω′
2

Recall that we have derived an equation that can be used to eliminate ω′
2:(

∂

∂t
+ Um

∂

∂x

)
(ψ′

1 − ψ′
3)− UT

∂

∂x
(ψ′

1 + ψ′
3) =

σδp

f0
ω′
2

∴ ω′
2 =

f0
σδp

[(
∂

∂t
+ Um

∂

∂x

)
(2ψT )− UT

∂

∂x
(2ψm)

]
Now we can eliminate ω′

2:

[
∂

∂t
+ Um

∂

∂x

]
∂2

∂x2
ψT + UT

∂

∂x

∂2

∂x2
ψm + β

∂

∂x
ψT =

2f20
σδp2

[(
∂

∂t
+ Um

∂

∂x

)
ψT − UT

∂

∂x
ψm

]

∴

[
∂

∂t
+ Um

∂

∂x

](
∂2

∂x2
ψT − 2f20

σδp2
ψT

)
+ β

∂

∂x
ψT + UT

∂

∂x

(
∂2

∂x2
ψm +

2f20
σδp2

ψm

)
= 0

We have managed to derive two equations that respectively govern the evolution of the barotropic (vertically
averaged) perturbation vorticity[

∂

∂t
+ Um

∂

∂x

]
∂2

∂x2
ψm + β

∂

∂x
ψm + UT

∂

∂x

(
∂2

∂x2
ψT

)
= 0,

and the evolution of the baroclinic (thermal) perturbation vorticity[
∂

∂t
+ Um

∂

∂x

](
∂2

∂x2
ψT − 2λ2ψT

)
+ β

∂

∂x
ψT + UT

∂

∂x

(
∂2

∂x2
ψm + 2λ2ψm

)
= 0,

where λ2 ≡ f20
σδp2

.

As we have done before, we assume that wave-like solutions exist in the form

ψm = Aeik(x−ct), ψT = Beik(x−ct)
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First, we will apply the relevant differential operators to ψm and ψT .

∂

∂t
ψm = (−ikc)Aeik(x−ct)

∂

∂t
ψT = (−ikc)Beik(x−ct)

∂

∂x
ψm = (ik)Aeik(x−ct)

∂

∂x
ψT = (ik)Beik(x−ct)

∂2

∂x2
ψm = (ik)2Aeik(x−ct)

∂2

∂x2
ψT = (ik)2Beik(x−ct)

∂

∂x

∂2

∂x2
ψm = (ik)3Aeik(x−ct)

∂

∂x

∂2

∂x2
ψT = (ik)3Beik(x−ct)

∂

∂t

∂2

∂x2
ψm = (−ikc)(ik)2Aeik(x−ct)

∂

∂t

∂2

∂x2
ψT = (−ikc)(ik)2Beik(x−ct)

The barotropic perturbation equation is reduced to

(−ikc)(ik)2A+ Um(ik)
3A+ β(ik)A+ UT (ik)

3B = 0

∴ ik
[
ck2A− Umk

2A+ βA
]
− ik3UTB = 0

∴ ik
[
(c− Um)k

2 + β
]
A− ik3UTB = 0

The baroclinic perturbation equation is reduced to

(−ikc)(ik)2B − 2λ2(−ikc)B + Um(ik)
3B − 2λ2Um(ik)B + β(ik)B + UT (ik

3)A+ 2λ2UT (ik)A = 0

∴ ik
[
ck2B + 2λ2cB − k2UmB − 2λ2UmB + βB

]
+ ik

[
−k2UTA+ 2λ2UTA

]
= 0

∴ ik
[
(c− Um)(k

2 + 2λ2) + β
]
B − ikUT (k

2 − 2λ2)A = 0

We obtain a pair of simulations linear algebraic equations for the coefficients A and B (after dividing
throughout by ik): [

(c− Um)k
2 + β

]
A− k2UTB = 0

−UT (k2 − 2λ2)A+
[
(c− Um)(k

2 + 2λ2) + β
]
B = 0

For this set of equations, non-trivial solutions will exist only if the determinant of the coefficients A and B
is zero. ∣∣∣∣∣∣

(c− Um)k
2 + β −k2UT

−UT (k2 − 2λ2) (c− Um)(k
2 + 2λ2) + β

∣∣∣∣∣∣ = 0
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∴ ((c− Um)k
2 + β)((c− Um)(k

2 + 2λ2) + β)− k2U2
T (k

2 − 2λ2) = 0

∴ k2(k2 + 2λ2)(c− Um)
2 + 2β(k2 + λ2)(c− Um) + β2 + U2

Tk
2(k2 − 2λ2) = 0

Here is another relationship in which the phase speed, c, is dependent on the zonal wave number, k, thus
making it a dispersion relationship. To solve this quadratic relationship we have

c− Um =
−2β(k2 + λ2)±

[(
2β(k2 + λ2)

)2 − 4
(
k2(k2 + 2λ2)

) (
β2 + U2

Tk
2(2λ2 − k2)

)]1/2
2k2(k2 + 2λ2)

= − β(k2 + λ2)

k2(k2 + 2λ2)
±
[
β2λ4 − U2

Tk
4(k2 + 2λ2)(2λ2 − k2)

k4(k2 + 2λ2)2

]1/2
= − β(k2 + λ2)

k2(k2 + 2λ2)
± δ1/2

with

δ =
β2λ4 − U2

Tk
4(k2 + 2λ2)(2λ2 − k2)

k4(k2 + 2λ2)2

=
β2λ4

k4(k2 + 2λ2)2
−
U2
T (2λ

2 − k2)

k2 + 2λ2

The proposed wave-like forms are solutions to the system that governs the evolution of the barotropic and
baroclinic vortices, on condition that the phase speed, c has the above solution. At first glance of this
solution, the phase speed has an imaginary component if δ < 0, consequently leading to the perturbations
amplifying exponentially. However, in the special case of UT = 0 (the basic state zonal wind vanishes and
U1 = U3 as a result) and the mean flow is barotropic (the mean thermal wind at the two levels is the same),

δ > 0 since
β2λ4

k2(k4 + 2λ2)2
must be positive.

Two phase speeds, c1 and c2 respectively, are obtained as a result of UT = 0.

c1 = Um − β(k2 + λ2)

k2(k2 + 2λ2)
+ δ1/2

and

c2 = Um − β(k2 + λ2)

k2(k2 + 2λ2)
− δ1/2

c1 = Um − β(k2 + λ2)

k2(k2 + 2λ2)
+

(
β2λ4

k4(k2 + 2λ2)2

)1/2

= Um − βk2 − βλ2 + βλ2

k2(k2 + 2λ2)

= Um − β(k2 + 2λ2)−1,

with

c2 = Um − β(k2 + λ2)

k2(k2 + 2λ2)
= Um − βk−2.
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The solution for c2 should look familiar since it is the dispersion relationship for a barotropic Rossby wave.
Revisiting the pair of simultaneous equations for the coefficients of the wave-like solutions for, respectively,
the barotropic and baroclinic perturbations and substituting the phase speed, c, by Um − βk−2 results in

−UT (k2 − 2λ2)A+
[
(Um − βk−2 − Um)(k

2 + 2λ2) + β
]
B = 0

Since UT = 0, − 2βλ2B = 0

∴ B = 0

Since B = 0, ψT = 0 so that the perturbation is indeed barotropic in structure (ψ′
1 = ψ′

3).

When using the phase speed c2 (for an internal baroclinic Rossby wave), we get[
(Um − β(k2 + 2λ2)−1 − Um)k

2 + β
]
A− k2UTB = 0

Since UT = 0, (βk2(k2 + 2λ2)−1 + β)A = 0

∴ A = 0

Since A = 0, ψm = 0 so that the perturbation is baroclinic in structure even though the mean flow is
barotropic (UT = 0). In fact, for the case of phase speed c1, ψ′

1 ≃ −ψ′
3, which means that the perturbation

fields at, respectively, the 250 and 750 hPa levels are 180◦ out of phase.

By using typical parameters for average mid-latitude tropospheric conditions (σ ≃ 2×10−6N−2m6 s−2, λ2 ≃
2×10−12m−2) we calculate the phase speeds for, respectively, baroclinic Rossby waves (c2) and barotropic
Rossby waves (c1). We assume that the mean zonal wind, Um, is equal to 15m s−1. From the figure below
it is clear that the calculated phase speeds are always less than Um, so that both the barotropic and baro-
clinic disturbances move westward relative to the mean wind. Furthermore, for a barotropic disturbance
long wavelengths cause the phase speeds to be strong westward – a scenario that is not found in nature.
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In order to gain further insight into the effect of varying zonal wavelengths (Lx) on baroclinic (ψT ) and
barotropic (ψm) perturbation streamfunctions, we again consider their respective wave-like solutions. Also,
we want to investigate the streamfunction perturbations of, respectively, the 250 hPa level (ψ′

1 = ψm+ψT )
and at the 750 hPa level (ψ′

3 = ψm − ψT ). The figure below shows the result for the three wavelengths
of, respectively, 3000 km, 6000 km and 9000 km. Only for the 6000 km wavelength the phase speed has an
imaginary component (c = 6.1 + 9.9ims−1), which leads to the perturbation amplifying exponentially. In
fact, for the unstable mode associated with the 6000 km wavelength, the perturbation amplitude increases
to four times the initial amplitude after about 40 hours. Take note that the barotropic and baroclinic stream-
functions are not synchronised as can be seen on the figure for this wavelength. However, at a wavelength of
9000 km these two streamfunctions are in phase, but the streamfunction perturbations are 180◦ out of phase
(i.e., ψ′

1 = −ψ′
3, which means ψm = 0) so that the perturbation has a baroclinic structure.

The forcing of vertical motion in a quasi-geostrophic system as described by the two-level model can be
expressed in terms of the sum of the forcing by thermal advection (level 2) plus the differential vorticity
advection. By the latter is meant that the evaluation is done by the difference between the vorticity advection
at level 1 and that at level 3. Next we evaluate the forcing of vertical motion in terms of the divergence of
the Q-vector. Recall that

σ∇2ω + f20
∂2ω

∂p2
= −2∇⃗ · Q⃗+ f0β

∂vg
∂p

with Q⃗ = −R
p

∂V⃗g
∂x

· ∇⃗T i⃗− R

p

∂V⃗g
∂y

· ∇⃗T j⃗.
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First consider

∂2ω

∂p2
=

(∂ω/∂p)3 − (∂ω/∂p)1
δp

=
(ω4 − ω2)/δp− (ω2 − ω0)/δp

δp

= −2ω2

δp2
since ω0 = ω4 = 0.

The left-hand side of the omega equation then becomes

σ∇2ω + f20
∂2ω

∂p2
= σ∇2ω + f20

(
−2ω2

δp2

)
= σ∇2ω + λ2σδp2

(
−2ω2

δp2

)
= σ

(
∇2 − 2λ2

)
ω2

= σ

(
∂2

∂x2
− 2λ2

)
ω2 since the perturbation function is independent on y.

To transform the right-hand side of the omega equation we first consider the hydrostatic equation

RT

p
= −∂Φ

∂p
= −f0

∂ψ

∂p

≈ −f0
δp

(ψ3 − ψ1)

=
f0
δp

(ψ1 − ψ3)

∴ T ≈
( p
R

) f0
δp

(ψ1 − ψ3)

Q1 = −R
p

∂V⃗2
∂x

· ∇⃗
( p
R

) f0
δp

(ψ1 − ψ3) since the geostrophic wind is obtained at level 2 where ω ̸= 0.

∴ Q1 = −f0
δp

∂V⃗2
∂x

· ∇⃗(ψ1 − ψ3), and for

Q2 = −f0
δp

∂V⃗2
∂y

· ∇⃗(ψ1 − ψ3)

The omega equation for the two-layer model becomes

σ
(
∇2 − 2λ2

)
ω2 = −2∇⃗ · Q⃗,

if we assume that the β-effect is small enough to disregard.
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Recall that

ψ1 = −U1y + ψ′
1(x, t)

ψ3 = −U3y + ψ′
3(x, t)

ω2 = ω′
2(x, t)

Q1 = −f0
δp

(
−∂ψ2

∂y
i⃗+

∂ψ2

∂y
j⃗

)
· ∇⃗(ψ1 − ψ3)

The perturbation streamfunction at level 2 is independent on y (∂ψ2/∂y = 0, and ∂ψ2/∂x = ∂ψ′
2/∂x)

Q1 = −f0
δp

∂2ψ′
2

∂x2
j⃗ ·
[(

∂

∂x
i⃗+

∂

∂y
j⃗

)
(ψ′

1 − ψ′
3)

]
= −f0

δp

∂2ψ′
2

∂x2
∂

∂y
(ψ′

1 − ψ′
3)

= −f0
δp

∂2ψ′
2

∂x2
(−U1 + U3)

=
f0
δp

∂2ψ′
2

∂x2
(U1 − U3)

=
2f0
δp

UT ζ
′
2 since UT = 1/2(U1 − U3) and ζ ′ = ∇2ψ′

For Q2:

Q2 = −f0
δp

∂V⃗2
∂y

· ∇⃗(ψ1 − ψ3)

= −f0
δp

∂

∂y

(
∂ψ′

2

∂x
j⃗

)
· ∇⃗(ψ1 − ψ3)

= 0 since ψ′
2 ̸= ψ′

2(y)

σ

(
∂2

∂x2
− 2λ2

)
ω2 = −2∇⃗ ·

(
2f0
δp

UT ζ
′
2⃗i

)
∴

(
∂2

∂x2
− 2λ2

)
ω2 = − 4f0

σδp
UT

∂ζ ′2
∂x

Consider an idealised pattern at the 500 hPa level of isobars and isotherms as well as Q-vectors (arrows) in
the Southern Hemisphere.

Cold

Warm

LL HH

isotherm

isobar
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Recall that the Q-vector of the quasi-geostrophic model may be simplified to

Q⃗ =
R

p

∂T

∂y

(
k⃗ × ∂V⃗g

∂x

)
At level 2:

Q⃗ =
R

p

∂T

∂y

(
k⃗ × ∂

∂x

(
∂ψ2

∂x
j⃗

))
∴ Q1 = −R

p

∂T

∂y

∂2ψ′
2

∂x2

= −R
p

∂T

∂y
ζ ′2

Therefore,

2f0
δp

UT ζ
′
2 = −R

p

∂T

∂y
ζ ′2

∴ UT = −Rδp

2pf0

∂T

∂y

In the Southern Hemisphere where f0 < 0, UT ∝ ∂T

∂y
, and therefore the shear of the perturbation meridional

velocity tends to advect cold air equatorward west of the 500 hPa trough and warm air poleward east of the
500 hPa trough so that there is a tendency to produce a positive temperature gradient directed eastward at
the trough, the same direction as the Q-vector.

We have already established that the omega equation for the two-layer model is σ
(
∇2 − 2λ2

)
ω2 = −2∇⃗·Q⃗.

This equation reduces to

σ

(
∂2

∂x2
− 2λ2

)
ω′
2 = −2∇⃗ ·

(
2f0
δp

UT ζ
′
2⃗i

)
∴

(
∂2

∂x2
− 2λ2

)
ω′
2 = − 4f0

σδp
UT

∂ζ ′2
∂x

for baroclinically unstable waves.

As has been shown previously that a Laplacian of a function is the negative of that function, we have

σ

(
∂2

∂x2
− 2λ2

)
ω′
2 ∝ −ω′

2 ∝ w′
2

w2 being the vertical component of velocity at level 2

∴

∣∣∣∣− 4f0
σδp

UT
∂ζ ′2
∂x

∣∣∣∣ ∝ w′
2

For the Southern Hemisphere f0 < 0, therefore, for upward motion (w′
2 > 0)

− 4f0
σδp

UT
∂ζ ′2
∂x

> 0

∴ UT
∂ζ ′2
∂x

> 0
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On the 500 hPa trough axis in the Southern Hemisphere ζ ′2 < 0, and at the 500 hPa ridge ζ ′2 > 0. Therefore,
the advection of perturbation vorticity in the region between the trough axis and ridge axis is positive, that

is
∂ζ ′2
∂x

> 0. Since UT > 0 (the zonal wind at 250 hPa is in general larger than the zonal wind at 750 hPa)

UT
∂ζ ′2
∂x

> 0,

and this relationship is associated with w′
2 > 0, hence upward or rising motion east of the 500 hPa trough.

Similarly, sinking motion is found east of the 500 hPa ridge.

The earlier discussion on the tendency equation showed that below the 500 hPa ridge, ahead of the surface

trough, warm advection is found so that V⃗g · ∇⃗
(
∂Φ

∂p

)
< 0 in the lower troposphere. For the two-layer

model, the lower troposphere is below level 2 (500 hPa) so that the temperature advection can be written as

V⃗2 · ∇⃗
(
RT

p

)
, which equals (u′2⃗i+ v′2j⃗) ·

∂T

∂y
j⃗ = v′2

∂T

∂y
, where T is the average temperature of the lower

troposphere. Therefore, for warm advection east of the surface trough v′2
∂T

∂y
< 0 and for cold advection

east of the surface ridge v′2
∂T

∂y
> 0.

Consider an east-west section of the two-layer model that shows backward tilting trough and ridge axes with
height as straight lines. For baroclinically unstable development, the ψ′

1 field (250 hPa) lags the ψ′
3 field

(750 hPa) by about one-quarter wavelength, similar to the solutions presented earlier for a wavelength of
6000 km.

𝑣𝑣2′
𝛿𝛿𝑇𝑇
𝛿𝛿𝛿𝛿

> 0 𝑣𝑣2′
𝛿𝛿𝑇𝑇
𝛿𝛿𝛿𝛿

< 0

Cold advection Warm advection

𝑤𝑤𝑤2 < 0 𝑤𝑤𝑤2 > 0

0

500

1000

750

250

The thickness and vertical motion fields (w′
2) are in phase, and this thickness field is also in phase with the

temperature advection by the perturbation meridional wind
(
v′2
∂T

∂y

)
. Therefore, the temperature advection

acts to intensify the thickness filed, acting to increase the strength of the disturbance.

Rising air in the atmosphere must be balanced by equal sinking air. Therefore, mass convergence into a
given column of air must be balanced by a net mass divergence. For the two-layer model, this requirement

179



implies that east of the ridge at 750 hPa divergence is a consequence of the sinking or subsiding air, and thus
at 250 hPa convergence occurs. East of the trough, convergence happens at 750 hPa with divergence aloft
at 250 hPa. Next we want to establish the role divergent circulation has on how vorticity changes over time
since extreme values of vorticity at the troughs and ridges act to increase the strength of the disturbance.

We have already developed a set of prediction equations in the variables ψ1, ψ3 and ω2. First consider the
prediction equation for ψ1:

∂

∂t

(
∇2ψ1

)
= −V⃗1 · ∇⃗

(
∇2ψ1

)
− β

∂ψ1

∂x
+
f0
δp
ω2

Applying perturbation analysis and ignoring β terms leads to

∂

∂t

(
∂2ψ′

1

∂x2

)
= −U1

∂

∂x

∂2ψ′
1

∂x2
+
f0
δp
ω′
2

∂

∂t
ζ ′1 = −U1

∂

∂x
ζ ′1 +

f0
δp
ω′
2

This equation state that the vorticity tendency at 250 hPa is determined by the sum of vorticity advection
and the divergent circulation.

Consider the vorticity advection terms first. Between the ridge and trough axes, vorticity decreases in the
x-direction in the Southern Hemisphere. Therefore,

∂ζ ′1
∂x

< 0

∴ −U1
∂ζ ′1
∂x

> 0 since U1 > 0.

Also, −U3
∂ζ ′3
∂x

> 0 east of the ridge axis. However, since the mean zonal wind at 250 hPa is much stronger

than the mean zonal wind at 750 hPa, −U1
∂ζ ′1
∂x

≫ 0 east of the ridge axis. Following similar arguments,

−U1
∂ζ ′1
∂x

≪ 0 and −U3
∂ζ ′3
∂x

> 0 east of the trough axis. This change of the vorticity advection with height,
i.e. differential vorticity advection, would lead to the upper level trough and ridge pattern to move faster
than the lower level pattern. The result is that the westward tilt of the trough-ridge pattern will be destroyed.

The divergent circulation part of the prediction equations at level 1 (250 hPa) is
f0
δp
ω′
2 = −f0

δp
w′
2 and

−f0
δp
ω′
2 =

f0
δp
w′
2 at level 3 (750 hPa).

In the area of sinking motion, east of the ridge, w′
2 < 0, and in the area of rising motion, east of the trough,

w′
2 > 0. Therefore, east of the ridge at level 1, −f0

δp
ω′
2 < 0 in the Southern Hemisphere where f0 < 0. Also

in the Southern Hemisphere, east of the ridge at level 3,
f0
δp
ω′
2 > 0; east of the trough at level 1, −f0

δp
ω′
2 > 0;

east of the trough at level 3,
f0
δp
ω′
2 < 0.
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The schematic below shows the vertical cross section for an unstable baroclinic wave in the two-layer model

that shows the different phases of vorticity change
(
δζ

δt

)
.

0

500

1000

750

250

𝛿𝛿ζ
𝛿𝛿𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎

≫ 0;
𝛿𝛿ζ
𝛿𝛿𝑡𝑡 𝑎𝑎𝑑𝑑𝑎𝑎

< 0
𝛿𝛿ζ
𝛿𝛿𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎

≪ 0;
𝛿𝛿ζ
𝛿𝛿𝑡𝑡 𝑎𝑎𝑑𝑑𝑎𝑎

> 0

𝛿𝛿ζ
𝛿𝛿𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎

> 0;
𝛿𝛿ζ
𝛿𝛿𝑡𝑡 𝑎𝑎𝑑𝑑𝑎𝑎

> 0
𝛿𝛿ζ
𝛿𝛿𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎

< 0;
𝛿𝛿ζ
𝛿𝛿𝑡𝑡 𝑎𝑎𝑑𝑑𝑎𝑎

< 0

From the schematic it is clear that the contributions from the vorticity advection and the divergent circu-
lation at the lower level are working in unison, while at the upper level the two contributions oppose each
other. The result of this configuration is that the westward tilt of the trough-ridge pattern is maintained.
The maintenance of the tilt is thus due to the divergent secondary circulation. Moreover, this secondary
circulation tends to amplify the vorticity perturbations in the troughs and ridges at both levels, resulting in a
further growing of the disturbance.
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Examples of theoretical barotropic and
baroclinic waves

Next we further investigate Rossby waves properties by approximating them by simple sine and cosine
functions. In order to see the effect of phase speed and wave amplitude on barotropic Rossby waves, the
following equation is used to describe a meandering jet stream around a reference latitude of 50◦S.

y′ = A sin

[
2π

(
x− ct

Lx

)]
,

that describes the displacement distance of the Rossby wave streamlines around a reference latitude, in this
case 50◦S. We consider winds of 40m/s in the jet and consider, respectively, long and short waves. The
former has a wave length (Lx) of 8000 km and wave amplitude of 1200 km, while the latter’s wavelength is
3000 km and its amplitude is 800 km.
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The wavenumber, k, is equal to
2π

Lx
, and the barotropic phase speed, c, is equal to 40 − β

k2
with β =

1.47 × 10−11m−1 s−1. The figure below shows the results for the two waves as well as the positioning of
these waves 12 hours later. Also shown in the bottom panel is the result of superimposing the long and short
waves. The short waves move along the long wave streamline. Such fast moving short waves cause rapid
changes in the weather, and weather forecasters need to be paying particular attention to them.

To mimic north-south displacement for a baroclinic wave, we have

y′ = B cos
(πz
z

)
sin

[
2π

(
x− ct

Lx

)]
,

and take into consideration that the phase speed, c, is equal to 40−β
(
k2 + 2λ2

)−1. Recall that λ2 =
f20
σδp2

,

which is a reminder that static stability, σ, has an effect on baroclinic waves. Cold strongly stable air near
the poles restricts vertical movement of air, while warm, weakly stable air near the equator is less limiting in
the vertical. Notwithstanding these effects, we consider average mid-latitude tropospheric conditions with
λ2 ≃ 2× 10−12m−2.

Take note that there is an additional cosine factor introduced into the barotropic Rossby wave stream flow
function

B cos
(πz
z

)
,

with z = 11 km (the tropospheric depth) and B, the wave amplitude, equal to 900 km. Here we used
6000 km as the wavelength. The cosine factor causes the meridional wave amplitude to be equal to 1 at
the surface (since ζ = 0 and cos(0) = 1), and −1 at the top of the troposphere (since ζ = 11 km and
cos(π) = −1). The two resulting waves are subsequently 180◦ out of phase between top and bottom of the
troposphere. Although this out of phase result is an oversimplification, the figure gives some insight into
how baroclinic waves function. As with the barotropic wave example, waves are presented at an initial time
and at a later time. Here we show results after 3 hours. Clearly, one can see that an upper level trough (ridge)
is above a surface ridge (trough).
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The energetics of baroclinic waves

In baroclinic instability, warm air rises and moves poleward, while cold air sinks and moves equatorward.
This motion extracts available potential energy from the mean flow. As the instability grows exponentially,
the energy of the perturbation is not conserved, and both the kinetic energy and available potential energy
of the perturbation increase. Subsequently, it is necessary to determine the role of the potential energy (and
its conversion to kinetic energy) of the mean flow as an energy source.

Recall the set of perturbation equation derived before:(
∂

∂t
+ U1

∂

∂x

)
∂2ψ′

1

∂x2
+ β

∂ψ′
1

∂x
=
f0
δp
ω′
2(

∂

∂t
+ U3

∂

∂x

)
∂2ψ′

3

∂x2
+ β

∂ψ′
3

∂x
= −f0

δp
ω′
2(

∂

∂t
+ Um

∂

∂x

)(
ψ′
1 − ψ′

3

)
− UT

∂

∂x

(
ψ′
1 + ψ′

3

)
=
σδp

f0
ω′
2.

We use these equations to derive the energy equations for the system.

The first prediction equation is multiplied by −ψ′
1 to produce

−ψ′
1

∂

∂t

(
∂2ψ′

1

∂x2

)
− U1ψ

′
1

∂

∂x

(
∂2ψ′

1

∂x2

)
− ψ′

1β
∂ψ′

1

∂x
= −ψ′

1

f0
δp
ω′
2.

In order to manage the first term on the left, we apply the product rule

∂

∂x

(
ψ′
1

∂

∂x

(
∂ψ′

1

∂t

))
= ψ′

1

∂

∂x

(
∂

∂x

(
∂ψ′

1

∂t

))
+
∂ψ′

1

∂x

∂

∂x

(
∂ψ′

1

∂t

)
= ψ′

1

∂

∂t

(
∂2ψ′

1

∂x2

)
+
∂ψ′

1

∂x

∂

∂t

(
∂ψ′

1

∂x

)
∴ −ψ′

1

∂

∂t

(
∂2ψ′

1

∂x2

)
= − ∂

∂x

(
ψ′
1

∂

∂x

(
∂ψ′

1

∂t

))
+
∂ψ′

1

∂x

∂

∂t

(
∂ψ′

1

∂x

)
Integrate the resulting prediction equation over one wavelength of the perturbation in the zonal direction.
The zonally averaged terms, ( ), are presented by

1

L

∫ L

0
( )dx,

where L is the wavelength of the perturbation.
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The integral of the prediction equation in ψ′
1 is then

1

L

∫ L

0

[
− ∂

∂x

(
ψ′
1

∂

∂x

(
∂ψ′

1

∂t

))
+
∂ψ′

1

∂x

∂

∂t

(
∂ψ′

1

∂x

)
− U1ψ

′
1

∂

∂x

(
∂2ψ′

1

∂x2

)
− ψ′

1β
∂ψ′

1

∂x
+ ψ′

1

f0
δp
ω′
2

]
dx = 0

Consider the first term of the left

− 1

L

∫ L

0

∂

∂x

(
ψ′
1

∂

∂x

(
∂ψ′

1

∂t

))
dx

This term is equal to zero because of the rule of integrals of a perfect differential. To better understand this
rule, consider a scalar function in the zonal direction, Q = Q(x)

dQ ≡ ∂Q

∂x
dx

for the zonal case.

The perfect differential for a differentiable function Q is equal to dQ = ∇⃗Q · dr⃗ with dr⃗ = dx in our case
of zonal flow, and ∇⃗Q is the gradient of Q so that the gradient theorem states∫ f

i
dQ =

∫ f

i
∇⃗Q · dr⃗ = Q(f)−Q(i)

where i and f represent endpoints of an integral path. This result means that the integral of a perfect
differential is independent of the integration path. Owing to this integral path independence, ∇⃗ × ∇⃗Q = 0,
and according to Stoke’s theorem ∮

∇⃗Q · dr⃗ =
∫∫

∇⃗ × ∇⃗Q · da⃗ = 0.

∴
1

L

∫ L

0

∂ψ′
1

∂x

∂

∂t

(
∂ψ′

1

∂x

)
︸ ︷︷ ︸

A

−U1ψ
′
1

∂

∂x

(
∂2ψ′

1

∂x2

)
︸ ︷︷ ︸

B

−ψ′
1β
∂ψ′

1

∂x︸ ︷︷ ︸
C

+ψ′
1

f0
δp
ω′
2︸ ︷︷ ︸

D

 dx = 0

To evaluate Term A, first consider
1

2

∂

∂t

(
∂ψ′

1

∂x

)2

, which is equal to

1

2

∂

∂t

[(
∂ψ′

1

∂x

)(
∂ψ′

1

∂x

)]
=
1

2

[
∂

∂t

(
∂ψ′

1

∂x

)
∂ψ′

1

∂x
+
∂ψ′

1

∂x

∂

∂t

(
∂ψ′

1

∂x

)]
=
1

2

[
2
∂ψ′

1

∂x

∂

∂t

(
∂ψ′

1

∂x

)]

Therefore, Term A,
∂ψ′

1

∂x

∂

∂t

(
∂ψ′

1

∂x

)
, can be written as

1

2

∂

∂t

(
∂ψ′

1

∂x

)2

. This term represents the rate of

change of the perturbation kinetic energy per unit mass averaged over a wavelength.
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To evaluate Term B, consider the following expansion

∂

∂x

(
ψ′
1

∂

∂x

(
∂ψ′

1

∂x

))
=
∂ψ′

1

∂x

∂

∂x

(
∂ψ′

1

∂x

)
+ ψ′

1

∂2

∂x2

(
∂ψ′

1

∂x

)
∴ ψ′

1

∂2

∂x2

(
∂ψ′

1

∂x

)
=

∂

∂x

(
ψ′
1

∂

∂x

(
∂ψ′

1

∂x

))
− ∂ψ′

1

∂x

∂2ψ′
1

∂x2
,

then evaluate the second term on the right by considering

1

2

∂

∂x

(
∂ψ′

1

∂x

)2

=
1

2

∂

∂x

[(
∂ψ′

1

∂x

)(
∂ψ′

1

∂x

)]
=

1

2

[
∂

∂x

(
∂ψ′

1

∂x

)
∂ψ′

1

∂x
+
∂ψ′

1

∂x

∂

∂x

(
∂ψ′

1

∂x

)]
=
∂ψ′

1

∂x

∂2ψ′
1

∂x2

Term B then becomes

−U1ψ′
1

∂

∂x

(
∂2ψ′

1

∂x2

)
= −U1

∂

∂x

(
ψ′
1

∂

∂x

(
∂ψ′

1

∂x

))
+
U1

2

∂

∂x

(
∂ψ′

1

∂x

)2

Both of the terms on the right are perfect differentials and therefore vanish. However, take note that the term
U1

2

∂

∂x

(
∂ψ′

1

∂x

)2

is also a kinetic energy term and is also associated with the advection term. Therefore, the

advection of kinetic energy vanishes when integrated over a wavelength.

For Term C, it is easily seen that −βψ′
1

∂ψ′
1

∂x
= −β

2

∂

∂x
(ψ′

1)
2, therefore, −βψ′

1

∂ψ′
1

∂x
= −β

2

∂

∂x
(ψ′

1)
2 = 0.

Since Term D cannot be further simplified, the prediction equation at level 1, that we can apprehend as a
permutation energy equation is thus

1

2

∂

∂t

(
∂ψ′

1

∂x

)2

+
f0
δp
ω′
2ψ

′
1 = 0.

Similarly, at level 3
1

2

∂

∂t

(
∂ψ′

3

∂x

)2

− f0
δp
ω′
2ψ

′
3 = 0.

Next, we consider the prediction equation in terms of Um and UT by multiplying the equation through by
(ψ′

1 − ψ′
3) and integrating over one wavelength.

Therefore,

1

L

∫ L

0

(ψ′
1 − ψ′

3)
∂

∂t
(ψ′

1 − ψ′
3)︸ ︷︷ ︸

A

+Um(ψ
′
1 − ψ′

3)
∂

∂x
(ψ′

1 − ψ′
3)︸ ︷︷ ︸

B

−UT (ψ′
1 − ψ′

3)
∂

∂x
(ψ′

1 + ψ′
3)︸ ︷︷ ︸

C

−(ψ′
1 − ψ′

3)
σδp

f0
ω′
2︸ ︷︷ ︸

D

 dx = 0.

From Term A, integrating (ψ′
1 − ψ′

3)
∂

∂t
(ψ′

1 − ψ′
3) produces, as before, an energy term

1

2

∂

∂t
(ψ′

1 − ψ′
3)

2.
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Similarly, Term B leads to
Um
2

∂

∂x
(ψ′

1 − ψ′
3)

2,

which vanishes since it is a perfect differential. Terms C and D cannot be simplified further. Therefore, we
get the third energy perturbation equation

1

2

∂

∂t
(ψ′

1 − ψ′
3)

2 − UT (ψ′
1 − ψ′

3)
∂

∂x
(ψ′

1 + ψ′
3)−

σδp

f0
(ψ′

1 − ψ′
3)ω

′
2 = 0

The total perturbation kinetic energy is defined as

K ′ ≡ 1

2

[(
∂ψ′

1

∂x

)2

+

(
∂ψ′

3

∂x

)2
]

∴
dK ′

dt
=

1

2

∂

∂t

(
∂ψ′

1

∂x

)2

+
1

2

∂

∂t

(
∂ψ′

3

∂x

)2

= −f0
δp
ω′
2ψ

′
1 +

f0
δp
ω′
2ψ

′
3

= −f0
δp
ω′
2(ψ

′
1 − ψ′

3)

= −2f0
δp

ω′
2ψT > 0 for an increase in perturbation kinetic energy.

ψT is the perturbation thickness for baroclinic flow. Therefore, the rate of change of perturbation kinetic
energy is proportional to the interrelationship between perturbation thickness and vertical motion.

Now we define the perturbation available potential energy as

P ′ ≡ λ2

2
(ψ′

1 − ψ′
3)

2 with λ2 =
f20
σδp2

∴
dP ′

dt
=
λ2

2

∂

∂t
(ψ′

1 − ψ′
3)

2

= λ2UT (ψ′
1 − ψ′

3)
∂

∂x
(ψ′

1 + ψ′
3) +

f20
σδp2

σδp

f0
(ψ′

1 − ψ′
3)ω

′
2

= λ2UT (2ψT )
∂

∂x
(2ψm) +

f0
δp

(2ψT )ω′
2

= 4λ2UTψT
∂

∂x
ψm +

2f0
δp

ω′
2ψT

∴
dP ′

dt
= 4λ2UTψT

∂

∂x
ψm − dK ′

dt

The term
2f0
δp

ω′
2ψT must, therefore, represent a conversion between perturbation potential and perturba-

tion kinetic energy. To further investigate the interrelationship between the vertical motion and thickness
variables, four cases are considered.

The four cases are:
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1. The vertical motion is upward and the thickness is greater than average.

2. The vertical motion is upward and the thickness is less than average.

3. The vertical motion is downward and the thickness is greater than average.

4. The vertical motion is downward and the thickness is less than average.

Take note that in the Northern Hemisphere where ψ′
1 > 0 (since both geopotential and f0 are positive),

thickness is greater then average when (ψ′
1 − ψ′

3)NH > 0, and thickness is less than average when (ψ′
1 −

ψ′
3)NH < 0. Therefore, in the northern Hemisphere case for thickness to be greater than average when

ψ′
1 > ψ′

3 and for thickness in the Northern Hemisphere to be less than average ψ′
1 < ψ′

3.

Recall that

ψ1 = −U1y + ψ′
1

∴ ψ′
1 = ψ1 + U1y =

Φ1

f0
+ U1y.

Since f0 < 0 and y < 0 in the Southern Hemisphere, ψ′
1 < 0. Similarly, ψ′

3 < 0 in the Southern
Hemisphere. As a result for thickness greater than average ψ′

1 < ψ′
3 and thus ψ′

1 − ψ′
3 < 0. Therefore

ψT < 0 when thickness is greater than average in the Southern Hemisphere. For thickness less than average
in the Southern Hemisphere ψ′

1 > ψ′
3 and thus ψ′

1 − ψ′
3 > 0. Therefore ψT > 0 when thickness is less than

average in the Southern Hemisphere.

We can now evaluate the four cases for the Southern Hemisphere:

Case 1.
dK ′

dt
∼ −(f0 < 0)(ω′

2 < 0)(ψT < 0) > 0

Case 2.
dK ′

dt
∼ −(f0 < 0)(ω′

2 < 0)(ψT > 0) < 0

Case 3.
dK ′

dt
∼ −(f0 < 0)(ω′

2 > 0)(ψT < 0) < 0

Case 4.
dK ′

dt
∼ −(f0 < 0)(ω′

2 > 0)(ψT > 0) > 0

Therefore, perturbation potential energy is being converted to kinetic energy when on average the vertical
motion is positive (ω′

2 < 0) where thickness is greater than average (ψ′
1 − ψ′

3 < 0 in the Southern Hemi-
sphere), and vertical motion is negative (ω′

2 > 0) where thickness is less than average (ψ′
1 − ψ′

3 > 0 in the
Southern Hemisphere).

The available potential energy and kinetic energy of a disturbance are able to grow simultaneously on con-
dition that

4λ2UTψT
∂ψm
∂x

>
2f0
δp

ω′
2ψT ,

which means that the potential energy generation needs to exceed the rate of potential energy conversion to
kinetic energy.

The potential energy generation term on the left hand side depends on the interrelationship between the
perturbation thickness (ψT ) and the meridional velocity (∂ψm/∂x, the change of the baroclinic perturbation
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in the zonal direction) at 500 hPa. If we suppose the barotropic and baroclinic parts, this disturbance can be
represented as such

ψm = Am cos k(x− ct) and

ψT = AT cos k(x+ x0 − ct),

with the role of the x0 term to indicate the phase difference, we can investigate the relative positions of
the temperature and geopotential waves of the baroclinic disturbance. Take note that Am and AT represent
amplitudes of respectively the 500 hPa disturbance geopotential and thickness fields.

Appendix A explains how the following relationship is obtained

ψT
∂ψm
∂x

=
1

2
ATAmk sin(kx0).

For the perturbation potential energy to increase, we thus have

2λ2ATAmUTk sin(kx0) +
2f0
δp

ω′
2ψT > 0.

Since we have already discussed under which conditions the energy conversion term is positive (i.e. for
cases 1 and 4), 2λ2ATAmUTk sin(kx0) still needs to be evaluated. For the case of a mid-latitude westerly
thermal wind (UT > 0), sin(kx0) must, therefore, be positive, and thus kx0 > 0. Moreover, for sin(kx0)
to remain positive during one sinusoidal cycle, kx0 < π. Therefore, 0 < kx0 < π. Take note that the
interrelationship, represented by the sinusoidal function has a maximum value at kx0 = π/2 (i.e. 90◦)
which means that the phase of the perturbation thickness (temperature) wave lags the meridional velocity
(geopotential) wave by 90◦ at the 500 hPa level, i.e. a one-quarter cycle.

The phase shift description is shown schematically in the east-west section of the z-layer model that includes
the backward tilting of the trough and ridge axes shown below. In the ideal configuration of a one-quarter
cycle phase shift, the temperature wave lags the geopotential wave, resulting in a southward advection of
warm air by the geostrophic wind east of the 500 hPa trough, and a northward advection of cold air west
of the 500 hPa trough in the Southern Hemisphere. Both of these advections are maximised as a result of
the 90◦ phase shift, since sin(kx0) has a positive maximum value at that phase. This maximisation results
in the cold advection to be strong below the 250 hPa trough and the warm advection to be strong below
the 250 hPa ridge. Therefore, based on our understanding of the geopotential tendency equation, the upper
level disturbance with westward tilting trough and ridge axes, will intensify.

East of the ridge, behind the trough, downward motion (ω′
2 > 0) and cold advection occurs. The latter is

associated with the thickness being less than average, which means that in the Southern Hemisphere ψT > 0

there. Therefore, ω′
2ψT > 0, and

2f0
δp

ω′
2ψT < 0 in the Southern Hemisphere (f0 < 0), which is the second

term of the equation describing the time rate of change of the perturbation available potential energy. The
first term of this equation is positive between the phases of zero and π. As a result, in this westward tilting
configuration we see that the sign of the two terms differs there.

We can therefore conclude that horizontal temperature advection
(
ψT

∂ψm
∂x

)
increases available potential

energy of the perturbation, while the vertical circulation
(
ω′
2ψT

)
converts perturbation available energy to

perturbation kinetic energy since
dK ′

dt
equals the negative of the ω′

2ψT term, resulting in
dK ′

dt
> 0.
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Take note that it is only the potential energy generation term that determines the growth of the total energy
since

d

dt
(P ′ +K ′) = 4λ2UTψT

∂ψm
∂x

.

We therefore see that with UT > 0 and with the positive interrelationship between temperature and the
meridional velocity, the total energy of the perturbation increases. The conversion of the available potential
energy to kinetic energy is brought about by the vertical circulation and this conversion does not affect the
total energy of the perturbation.

The total energy of the perturbation is not conserved since both the potential and kinetic energy are increas-
ing as they extract energy from the mean state. As can be seen from the diagram, the vertical velocity is
in phase with the temperature field. However, if the vertical velocity becomes 90◦ out of phase with the
temperature in the life cycle of the disturbance, there is no longer a conversion of perturbation available
potential energy to perturbation kinetic energy and the disturbance is restored to a mean state.
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The global energy cycle

We showed that there is a positive interrelationship between vertical motion and temperature anomalies that
leads to the generation of kinetic energy of atmospheric flow. We split the energy of the flow (kinetic and
available potential) into energy associated with the mean zonal flow and into energy associated with the
eddies (i.e., deviations from the zonal mean). It is useful to examine the exchange of energy between the
eddies and the mean flow, but before we can do this we first develop the so-called Eulerian mean equations
in log-pressure coordinates. As up to this point in the book, the primary emphasis is on extra-tropical aspects
of the circulation.

The transformation from standard isobaric coordinates to a vertical coordinate based on the logarithm of

pressure, we begin by defining the vertical coordinate z∗ as −H ln

(
p

ps

)
with H as a standard scale height

and ps a standard reference pressure. The horizontal momentum equation is the same as that of the isobaric
system

DV⃗

Dt
+ fk⃗ × V⃗ + ∇⃗Φ = 0,

with
D

Dt
=

∂

∂t
+ V⃗ · ∇⃗+ w∗ ∂

∂z∗

w∗ is the vertical velocity in the log-pressure coordinate system with w∗ ≡ Dz∗

Dt
. Here, z∗ is considered

to be exactly equal to geometric height and the density, ρ0 = ρ0(z
∗). Next we derived the hydrostatic,

continuity and thermodynamic equations for the log-pressure coordinate system.

The transformation of the hydrostatic equation,
∂Φ

∂p
= −RT

p
, is done in the following way. We get

p
∂Φ

∂p
= −RT

∴ −H ∂Φ

∂ ln p
=
RT

H

∴
∂Φ

∂z∗
=
RT

H
when using the definition of z∗

To obtain the log-pressure form of the continuity equation we consider this equation in the isobaric system
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as
∂u

∂x
+
∂v

∂y
+
∂ω

∂p
= 0, and define the vertical velocity w∗ ≡

(
−H
p

)
Dp

Dt
= −H

p
ω, therefore ω = −pw

∗

H
.

∂ω

∂p
=

∂

∂p

(
−pw

∗

H

)
= − 1

H

[
p
∂w∗

∂p
+ w∗∂p

∂p

]
= − ∂w∗

H∂ ln p
− w∗

H

=
∂w∗

∂z∗
− w∗

H

Consider
∂

∂z∗
(ρ0w

∗) = w∗∂ρ0
∂z∗

+ ρ0
∂w∗

∂z∗
, and define the density profile of rho0(z∗) as ρs exp

(
−z

∗

H

)
with ρs the density at z∗ = 0. Therefore

∂

∂z∗
(ρ0w

∗) = w∗
(
−ρs
H

exp

(
−z

∗

H

))
+ ρ0

∂w∗

∂z∗

= −w
∗

H
ρ0 + ρ0

∂w∗

∂z∗

∴
1

ρ0

∂

∂z∗
(ρ0w

∗) =
∂w∗

∂z∗
− w∗

H
=
∂ω

∂p

The continuity equation in log-pressure coordinates then becomes

∂u

∂x
+
∂v

∂y
+

1

ρ0

∂

∂z∗
(ρ0w

∗) = 0.

Next we obtain the thermodynamic energy equation in log-pressure coordinates by using the hydrostatic

equation
∂Φ

∂z∗
=
RT

H
.

We then get to replace T by
H

R

∂Φ

∂z∗
in the thermodynamic energy equation

(
∂

∂t
+ V⃗ · ∇⃗

)
H

R

∂Φ

∂z∗
− Spω =

J

cp

∴

(
∂

∂t
+ V⃗ · ∇⃗

)
∂Φ

∂z∗
− Spω

R

H
=
Jκ

H
with κ =

R

cp

Consider the definition of the static stability parameter,

Sp ≡
RT

cpp
− ∂T

∂p
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∴ −spω
R

H
= −

(
RT

cpp
− ∂T

∂p

)(
−pw

∗

H

)
R

H

=
R

H

(
κT

H
− p

H

∂T

∂p

)
w∗

=
R

H

(
κT

H
− ∂T

H∂ ln p

)
w∗

=
R

H

(
κT

H
+
∂T

∂z∗

)
w∗

∴

(
∂

∂t
+ V⃗ · ∇⃗

)
∂Φ

∂z∗
+N2w∗ =

Jκ

H
,

with N2 ≡ R

H

(
κT

H
+
∂T

∂z∗

)
, a measure of the static stability of the environment.

Form now on for the rest of this discussion, for convenience, the asterisk is dropped, but z still designates
the log-pressure vertical coordinate, and w the vertical velocity in this coordinate system.

Consider the momentum equation, but this time include the frictional force, F⃗r:

DV⃗

Dt
+ fk⃗ × V⃗ + ∇⃗Φ = F⃗r

∴
Du

Dt
− fv +

∂Φ

∂x
= X, and

Dv

Dt
+ fv +

∂Φ

∂x
= Y,

with X and Y representing the zonal and meridional components of drag owing to small-scale eddies.

Since
∂Φ

∂z
=
RT

H
, we can write the thermodynamic equation as(

∂

∂t
+ V⃗ · ∇⃗

)
RT

H
+
R

H

(
κT

H
+
∂T

∂z∗

)
w =

JR

cpH

∴

(
∂

∂t
+ V⃗ · ∇⃗+ w

∂

∂z

)
T +

κT

H
w =

J

cp

∴
DT

Dt
+
κT

H
w =

J

cp
,

with
D

Dt
=

∂

∂t
+ V⃗ · ∇⃗+ w

∂

∂z
.

The continuity equation becomes
∂u

∂x
+
∂v

∂y
+

1

ρ0

∂

∂z
(ρ0w) = 0

The zonally averaged circulation is analysed here by studying the interaction of eddies with the mean flow.
The eddies are longitudinally varying disturbances and the mean flow is longitudinally averaged flow.
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A variable A is expanded as A = A + A′, with A the mean flow and A′ the eddies. Next we create
Eulerian mean equations by taking zonal averages of the equations in the log-pressure coordinate system by
expanding the material derivative for variable A in flux form. See Appendix B how the following form is
obtained:

ρ0
DA

Dt
= ρ0

(
∂

∂t
+ V⃗ · ∇⃗+ w

∂

∂z

)
A+A

[
∇⃗ · (ρ0V⃗ ) +

∂

∂z
(ρ0w)

]

Expanding the RHS of this equation leads to

ρ0

(
∂

∂t
+ (u⃗i+ vj⃗) ·

(
∂

∂x
i⃗+

∂

∂y
j⃗

))
A+A

[(
∂

∂x
i⃗+

∂

∂y
j⃗

)
· (ρ0u⃗i+ ρ0vj⃗) +

∂

∂z
(ρ0w)

]
= ρ0

∂A

∂t
+ ρ0

(
u
∂A

∂x
+ v

∂A

∂y

)
+A

∂

∂x
(ρ0u) +A

∂

∂y
(ρ0v) +A

∂

∂z
(ρ0w)

Since ρ0 ̸= ρ0(x, y, t) and A ̸= A(z), the RHS becomes

∂

∂t
(ρ0A) + u

∂

∂x
(ρ0A) + v

∂

∂y
(ρ0A) +A

∂

∂x
(ρ0u) +A

∂

∂y
(ρ0v) +

∂

∂z
(ρ0Aw)

=
∂

∂t
(ρ0A) +

∂

∂x
(ρ0Au) +

∂

∂y
(ρ0Av) +

∂

∂z
(ρ0Aw)

Consider the product of variables, e.g. Au next, and applying zonal averaging:

Au = (A+A′)(u+ u′)

= Au+Au′ +A′u+A′u′

= Au+Au′ +A′u+A′u′

However, A′ = u′ = 0.

∴ Au = Au+A′u′ and Aw = Aw +A′w′.

Furthermore,
∂( )

∂x
= 0 so that

ρ0
DA

Dt
=

∂

∂t

(
ρ0A

)
+

∂

∂y

(
ρ0
(
Av +A′v′

))
+

∂

∂z

(
ρ0
(
Aw +A′w′

))
.

Next consider the continuity equation and use zonal means again:

∂

∂x
(u+ u′) +

∂

∂y
(v + v′) +

1

ρ0

∂

∂z
(ρ0(w + w′)) = 0

∴ 0 +
∂

∂y
(v + v′) +

1

ρ0

∂

∂z
(ρ0(v + v′)) = 0

∴
∂

∂y
v +

1

ρ0

∂

∂z
(ρ0w) = 0
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Apply the chain rule of differentiation to the right hand side of the ρ0
DA

Dt
equation:

∂

∂t

(
ρ0A

)
+ ρ0

(
A
∂v

∂y
+ v

∂A

∂y

)
+

∂

∂y

(
ρ0A′v′

)
+ ρ

(
A
∂w

∂z
+ w

∂A

∂z

)
+

∂

∂z

(
ρ0A′w′

)
=

∂

∂t

(
ρ0A

)
+ ρ0v

∂A

∂y
+ ρ0w

∂A

∂z
+ ρ0A

[
− 1

ρ0

∂

∂z
(ρ0w)

]
+ ρ0A

∂w

∂z
+

∂

∂y

(
ρ0A′v′

)
+

∂

∂z

(
ρ0A′w′

)
=

∂

∂t

(
ρ0A

)
+ v

∂

∂y

(
ρ0A

)
+ w

∂

∂z

(
ρ0A

)
−A

∂

∂z
(ρ0w) +A

∂

∂z
(ρ0w) +

∂

∂y

(
ρ0A′v′

)
+

∂

∂z

(
ρ0A′w′

)
=

D

Dt

(
ρ0A

)
+

∂

∂y

(
ρ0A′v′

)
+

∂

∂z

(
ρ0A′w′

)
,

with
D

Dt
≡ ∂

∂t
+ v

∂

∂y
+ w

∂

∂z
.

Next we want to examine the exchange of energy between the eddies and the mean flow. Again, we con-
sider quasi-geostrophic flow in a mid-latitude β-plane. First, determine mean equations in the log-pressure
system. We have

Du

Dt
− fv +

∂Φ

∂x
= X

We first evaluate

Du

Dt
=

∂

∂t
(u) + v

∂

∂y
(u) + w

∂

∂z
(u) +

∂

∂y

(
u′v′

)
+

∂

∂z

(
u′w′

)
,

and since we are working in a mid-latitude β-plane, the Coriolis parameter is f0,
∂

∂y
(u) = 0. Also,

u ̸= u(z).

∴
Du

Dt
=
∂u

∂t
+

∂

∂y

(
u′v′

)
For the Coriolis force term f0v = f0(v + v′) = f0v.

For the turbulent drag force X =
(
X +X ′

)
= X.

For the geopotential term
∂Φ

∂x
= 0 since

∂( )

∂x
= 0.

∴
∂u

∂t
+

∂

∂y

(
u′v′

)
− f0v = X.

The y-component of the momentum equation is

Dv

Dt
+ fu+

∂Φ

∂y
= Y.

Neglecting advection by the mean meridional circulation as well as vertical eddy fluxes in a mid-latitude
β-plane

Dv

Dt
= 0 and f0(u+ u′) = f0u
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The geopotential term
∂Φ

∂y
=

∂

∂y

(
Φ+ Φ′

)
=
∂Φ

∂y
.

Y = 0 since we only include a turbulent drag force in the x-component of the momentum equation.

∴ f0u+
∂Φ

∂y
= 0.

Next consider the thermodynamic energy equation:(
∂

∂t
+ V⃗ · ∇⃗

)
∂Φ

∂z
+ wN2 =

Jκ

H
.

Again using the formula for ρ0
DA

Dt
, and considering the assumptions made above, the mean thermodynamic

equation becomes

D

Dt

(
∂Φ

∂z

)
+ wN2 =

Jκ

H

∴
∂

∂t

(
∂Φ

∂z

)
+

∂

∂y

(
∂Φ′

∂z
v′
)
+ wN2 =

Jκ

H

We have neglected the advection by the mean meridional circulation, v
∂

∂y

(
∂Φ

∂z

)
, in the above equation.

Our mean set of equations in log-pressure coordinates is

∂u

∂t
+

∂

∂y

(
u′v′

)
− f0v −X = 0

f0u+
∂Φ

∂y
= 0

∂

∂t

(
∂Φ

∂z

)
+

∂

∂y

(
∂Φ′

∂z
v′
)
+ wN2 − Jκ

H
= 0.

Next we derive a similar set of dynamical equations for the eddy motion. Again consider

Du

Dt
− fv +

∂Φ

∂x
= X

in the mid-latitude β-plane with the Coriolis parameter f0. Since we are neglecting vertical eddy flow

D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y

∂u

∂t
=

∂

∂t

(
u+ u′

)
=
∂u′

∂t

u
∂u

∂x
=
(
u+ u′

) ∂

∂x

(
u+ u′

)
= u

∂

∂x

(
u+ u′

)
+ u′

∂

∂x

(
u+ u′

)
= u

∂u

∂x
+ u

∂u′

∂x
+ u′

∂u

∂x
+ u′

∂u′

∂x
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Since
∂Φ

∂x
= 0 and since we are developing a linearised set of equations we neglect u′

∂u′

∂x
as a non-linear

term.

u
∂u

∂x
= u

∂u′

∂x
.

v
∂u

∂y
=
(
v + v′

) ∂
∂y

(
u+ u′

)
= v

∂u

∂y
+ v

∂u′

∂y
+ v′

∂u

∂y
+ v′

∂u′

∂y

We neglect v terms in the mid-latitude β-plane at f = f0 as well as the non-linear term v′
∂u′

∂y
.

∴ v
∂u

∂y
= v′

∂u

∂y
.

=⇒ Du

Dt
=
∂u′

∂t
+ u

∂u′

∂x
+ v′

∂u

∂y

=

(
∂

∂t
+ u

∂

∂x

)
u′ + v′

∂u

∂y

fv = f0
(
v + v′

)
= f0v

′

∂Φ

∂x
=
∂Φ

∂x
+
∂Φ′

∂x
=
∂Φ′

∂x

X = X +X ′ = X ′

=⇒
(
∂

∂t
+ u

∂

∂x

)
u′ + v′

∂u

∂y
− f0v

′ +
∂Φ′

∂x
= X ′

∴

(
∂

∂t
+ u

∂

∂x

)
u′ −

(
f0 −

∂u

∂y

)
v′ +

∂Φ′

∂x
= X ′

The second momentum equation:
Dv

Dt
+ fu+

∂Φ

∂y
= Y

Dv

Dt
=

∂

∂t

(
v + v′

)
+ u

(
∂v

∂x
+
∂v′

∂x

)
+ u′

(
∂v

∂x
+
∂v′

∂x

)
+ v

(
∂v

∂y
+
∂v′

∂y

)
+ v′

(
∂v

∂y
+
∂v′

∂y

)
=
∂v′

∂t
+ u

∂v′

∂x
+ u′

∂v′

∂x
+ v′

∂v′

∂y

Again neglecting non-linear terms:
Dv

Dt
=
∂v′

∂t
+ u

∂v′

∂x

fu = f0u
′,
∂Φ

∂y
=
∂Φ′

∂y
, and Y = Y ′ in eddy equation.

=⇒
(
∂

∂t
+ u

∂

∂x

)
v′ + f0u

′ +
∂Φ′

∂y
= Y ′
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The thermodynamic energy equation(
∂

∂t
+ V⃗ · ∇⃗

)
∂Φ

∂z
+ wN2 =

Jκ

H

∂

∂t

(
∂Φ

∂z

)
=

∂

∂t

(
∂Φ′

∂z

)
V⃗ · ∇⃗∂Φ

∂z
= u

∂

∂x

(
∂Φ

∂z

)
+ v

∂

∂y

(
∂Φ

∂z

)
= u

∂

∂x

(
∂Φ

∂z
+
∂Φ′

∂z

)
+ u′

∂

∂x

(
∂Φ

∂z
+
∂Φ′

∂z

)
+ v

∂

∂y

(
∂Φ

∂z
+
∂Φ′

∂z

)
+ v′

∂

∂y

(
∂Φ

∂z
+
∂Φ′

∂z

)
= u

∂

∂x

(
∂Φ′

∂z

)
+ u′

∂

∂x

(
∂Φ′

∂z

)
+ v′

∂

∂y

(
∂Φ

∂z

)
+ v′

∂

∂y

(
∂Φ′

∂z

)

Again, neglecting non-linear terms:

V⃗ · ∇⃗∂Φ

∂z
= u

∂

∂x

(
∂Φ′

∂z

)
+ v′

∂

∂y

(
∂Φ

∂z

)

wN2 = w′N2 and
Jκ

H
=
J ′κ

H
in eddy equation

=⇒ ∂

∂t

(
∂Φ′

∂z

)
+ u

∂

∂x

(
∂Φ′

∂z

)
+ v′

∂

∂y

(
∂Φ

∂z

)
+ w′N2 =

J ′κ

H

∴

(
∂

∂t
+ u

∂

∂x

)
∂Φ

∂z
+ v′

∂

∂y

(
∂Φ

∂z

)
+N2w′ =

κ

H
J ′

As an eddy equation, the continuity equation becomes

∂u′

∂x
+
∂v′

∂y
+

1

ρ0

∂

∂z
(ρ0w

′) = 0

Now that we have these two sets of equations, we examine the exchange of energy between the eddies and
the mean flow globally, by first defining a global average

⟨ ⟩ ≡ 1

A

∫ ∞

0

∫ D

0

∫ L

0
( )dxdydz,

with L the distance around a latitude circle and D the meridional extend of the mid-latitude β-plane. A
represents the horizontal area of the β-plane, and so the global average has a length scale

(
m3/m2 = m

)
.

For any quantity Ψ, the atmosphere is confined to a zonal channel in the mid-latitude β-plane with rigid
walls.

Note: X ′ and Y ′ are zonally varying components of drag owing to turbulence.

At y = ±D, 〈
∂Ψ

∂y

〉
= 0
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if Ψ vanishes there.

Also, Ψ remains constant in the zonal direction at y = ±D, and so〈
∂Ψ

∂x

〉
= 0.

If Ψ vanishes at the bottom (z = 0) and at the top of the atmosphere (z → ∞),〈
∂Ψ

∂z

〉
= 0.

Revisiting the mean set of momentum equations in log-pressure coordinates, multiplying them respectively
with ρ0u and ρ0v, and adding the results:(

∂u

∂t
− f0v +

∂

∂y
(u′v′)−X

)
ρ0u = 0

(
f0u+

∂Φ

∂y

)
ρ0v = 0

ρ0u
∂u

∂t
− f0ρ0u v + ρ0u

∂

∂y
(u′v′)− ρ0uX + f0ρ0u v + ρ0v

∂Φ

∂y
= 0

∴
1

2
ρ0
∂

∂t
u2 = −ρ0u

∂

∂y
(u′v′) + ρ0uX − ρ0v

∂Φ

∂y

Consider
∂

∂y
(ρ0uu′v′) = ρ0u

∂

∂y
(u′v′) + ρ0u′v′

∂u

∂y

∴ −ρ0u
∂

∂y
(u′v′) = ρ0u′v′

∂u

∂y
− ∂

∂y
(ρ0uu′v′)

and
∂

∂y

(
ρ0vΦ

)
= ρ0Φ

∂v

∂y
+ ρ0v

∂Φ

∂y

∴ −ρ0v
∂Φ

∂y
= ρ0Φ

∂v

∂y
− ∂

∂y

(
ρ0vΦ

)
∴

1

2
ρ0
∂

∂t
u2 = ρ0u′v′

∂u

∂y
− ∂

∂y
(ρ0uu′v′) + ρ0uX + ρ0Φ

∂v

∂y
− ∂

∂y

(
ρ0vΦ

)
Assuming that v = 0 and u′v′ = 0 for y ± D, after integrating the above equation we get the mean flow
kinetic energy

d

dx

〈
ρ0u

2

2

〉
=

〈
ρ0u′v′

∂u

∂y

〉
+
〈
ρ0uX

〉
+

〈
ρ0Φ

∂v

∂y

〉
Consider the continuity equation:

∂v

∂y
+

1

ρ0

∂

∂z
(ρ0w) = 0,
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since
∂( )

∂x
= 0.

∴

〈
ρ0Φ

∂v

∂y

〉
=

〈
ρ0Φ

(
− 1

ρ0

∂

∂z
(ρ0w)

)〉
= −

〈
Φ
∂

∂z
(ρ0w)

〉
Since

∂

∂z

(
Φ(ρ0w)

)
= Φ

∂

∂z
(ρ0w) + ρ0w

∂Φ

∂z

∴

〈
ρ0Φ

∂v

∂y

〉
=

〈
ρ0w

∂Φ

∂z
− ∂

∂z

(
Φ(ρ0w)

)〉
Assuming that ρ0w = 0 at z = 0, and z → ∞, the result is〈

ρ0Φ
∂v

∂y

〉
=

〈
ρ0w

∂Φ

∂z

〉
Since the hydrostatic equation states that

∂Φ

∂z
=
RT

H

∴

〈
ρ0Φ

∂v

∂y

〉
=
R

H

〈
ρ0wT

〉
In order to better understand the two terms above, we investigate their SI units. The units of the term on the
left hand side is (

kgm−3
) (

m2 s−2
)(ms−1

m

)
The units of Newton’s second law of motion are

F = kgm s−2,

where F represents a force.

Therefore the units of the left hand side become F m−2 s−1 .

The term on the left hand side therefore represents a force per unit area per unit time. Moreover, take note
that Φ at height z is the work required to raise a unit mass to height z and since Φ ∼ δp, the left hand side
term represents work done in terms of vertical pressure changes.

The units of the term on the right hand side are the same as those of the term on the left hand side:

J K−1 kg−1

m
kgm−3ms−1K

= Nmm−3 s−1

= kgm s−2m−2 s−1

= F m−2 s−1
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This right hand side term represents the interrelationship between the zonal-mean vertical mass flux ρ0w
(units are kgm−2 s−1), and the zonal-mean temperature, T . For upward motion ρ0w > 0, and for warm air
rising ρ0wT > 0, since T (thickness) > 0. For downward motion ρ0w < 0, and for sinking cold air T < 0,
therefore ρ0wT > 0. The right hand side term is thus positive if on average warm air is rising and cold air
is sinking so that there is a conversion from potential to kinetic energy.

Recalling that the perturbation available potential energy in the two layer model has the following form

λ2

2
(ψ′

1 − ψ′
3)

2 =
f20

2σ(δp)2

(
Φ′
1

f0
− Φ′

3

f0

)2

=
f0

2σ(δp)2

(
∂Φ′

∂z

)2

Here we similarly define the zonal-mean available potential energy as proportional to squared thickness
changes divided by the static stability

P ≡ 1

2

〈
ρ0
N2

(
∂Φ

∂z

)2
〉

In order to obtain an expression for the rate of change of zonal-mean available potential energy, multiply the

mean thermodynamic energy equation by ρ0

(
∂Φ

∂z

)
/N2

[
∂

∂t

(
∂Φ

∂z

)
+

∂

∂y

(
v′
∂Φ′

∂z

)
+ wN2 − Jκ

H

]
ρ0
N2

∂Φ

∂z
= 0

∴
ρ0
N2

∂Φ

∂z

∂

∂t

(
∂Φ

∂z

)
+

ρ0
N2

∂Φ

∂z

∂

∂y

(
v′
∂Φ′

∂z

)
+ ρ0w

∂Φ

∂z
− ρ0
N2

Jκ

H

∂Φ

∂z
= 0

Take note that

1

2

∂

∂t

[(
∂Φ

∂z

)2
]
=

1

2

∂

∂t

[(
∂Φ

∂z

)(
∂Φ

∂z

)]
=

1

2

[
∂Φ

∂z

∂

∂t

(
∂Φ

∂z

)
+
∂Φ

∂z

∂

∂t

(
∂Φ

∂z

)]
=
∂Φ

∂z

∂

∂t

(
∂Φ

∂z

)

=⇒ ρ0
2N2

∂

∂t

[(
∂Φ

∂z

)2
]
+

ρ0
N2

∂Φ

∂z

∂

∂y

(
v′
∂Φ′

∂z

)
+ ρ0w

∂Φ

∂z
− ρ0
N2

Jκ

H

∂Φ

∂z
= 0

After averaging over space, the zonal-mean available potential energy rate is

d

dt

〈
ρ0
2N2

(
∂Φ

∂z

)2
〉

= −

〈
ρ0
N2

∂Φ

∂z

∂

∂y

(
v′
∂Φ′

∂z

)〉
−
〈
ρ0w

∂Φ

∂z

〉
+

〈
ρ0
N2

Jκ

H

∂Φ

∂z

〉
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Recall the mean flow kinetic energy evolution

d

dt

〈
ρ0u

2

2

〉
=

〈
ρ0u′v′

∂u

∂y

〉
+
〈
ρ0uX

〉
+

〈
ρ0w

∂Φ

∂z

〉
where the third term on the right is equal and opposite to the second term on the right of the zonal-mean
available potential energy evolution equation. Therefore, this term represents a conversion between zonal
mean kinetic and potential energies.

The term
〈
ρ0
N2

Jκ

H

∂Φ

∂z

〉
represents the interrelationship between temperature (thickness, ∂Φ/∂z) and dia-

batic heating (J), and describes the generation of zonal-mean potential energy by diabatic processes. The

term

〈
ρ0
N2

∂Φ

∂z

∂

∂y

(
v′
∂Φ′

∂z

)〉
involves meridional (∂/∂y) and eddy heat flux (v′∂Φ′/∂z represents ad-

vection or flux) and describes the conversion between zonal-mean and eddy potential energy. The term〈
ρ0u′v′

∂u

∂y

〉
of the mean flow kinetic energy to zonal-mean kinetic energy.

Recall that the eddy momentum equations are(
∂

∂t
+ u

∂

∂x

)
u′ −

(
f0 −

∂u

∂y

)
v′ +

∂Φ′

∂x
= X ′,

and (
∂

∂t
+ u

∂

∂x

)
v′ + f0u

′ +
∂Φ′

∂y
= Y ′;

multiply these equations respectively by ρ0u′ and ρ0v′ and add the resulting equations.

ρ0

(
∂

∂t
+ u

∂

∂x

)
u′2 − ρ0

(
f0 −

∂u

∂y

)
u′v′ + ρ0u

′∂Φ
′

∂x
= ρ0u

′X ′,

and

ρ0

(
∂

∂t
+ u

∂

∂x

)
v′2 + ρ0f0u

′v′ + ρ0v
′∂Φ

′

∂y
= ρ0v

′Y ′

Adding these two equations together results in

1

2

∂

∂t

(
ρ0u

′2)+ 1

2

∂

∂t

(
ρ0v

′2)+ρ0u∂u′2
∂x

+ρ0u
∂v′2

∂x
+ρ0u

′v′
∂u

∂y
+ρ0u

′∂Φ
′

∂x
+ρ0v

′∂Φ
′

∂y
= ρ0u

′X ′+ρ0v
′Y ′

Consider

∂

∂x

(
u′Φ′) = u′

∂Φ′

∂x
+Φ′∂u

′

∂x

∴ u′
∂Φ′

∂x
=

∂

∂x

(
u′Φ′)− Φ′∂u

′

∂x

Similarly, v′
∂Φ′

∂y
=

∂

∂y

(
v′Φ′)− Φ′∂v

′

∂y
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After applying zonal and global averaging

d

dt

〈
ρ0u′

2

2

〉
+
d

dt

〈
ρ0v′

2

2

〉
+

〈
ρ0u

∂

∂x

(
u′

2
)〉

+

〈
ρ0u

∂

∂x

(
v′

2
)〉

+

〈
ρ0u′v′

∂u

∂y

〉
+

〈
ρ0

(
∂

∂x
(u′Φ′)− Φ′∂u

′

∂x

)〉

+

〈
ρ0

(
∂

∂y
(v′Φ′)− Φ′∂v

′

∂y

)〉
=
〈
ρ0u′X ′

〉
+
〈
ρ0v′Y ′

〉
Since

∂

∂x
( ) = 0 and assuming v′Φ′ = 0 for y = ±D, we get

d

dt

〈
ρ0
u′

2
+ v′

2

2

〉
+

〈
ρ0u′v′

∂u

∂y

〉
−

〈
ρ0

(
Φ′∂u

′

∂x
+Φ′∂v

′

∂y

)〉
=
〈
ρ0
(
u′X ′ + v′Y ′

)〉
d

dt

〈
ρ0
u′

2
+ v′

2

2

〉
=

〈
ρ0Φ′

(
∂u′

∂x
+
∂v′

∂y

)〉
−
〈
ρ0u′v′

∂u

∂y

〉
+
〈
ρ0
(
u′X ′ + v′Y ′

)〉
,

the eddy kinetic energy equation.

Recall the eddy thermodynamic energy equation and multiply it with
ρ0
N2

∂Φ′

∂z[
∂

∂t

(
∂Φ′

∂z

)
+ u

∂

∂x

(
∂Φ′

∂z

)
+ v′

∂2Φ

∂y∂z
+N2w′ − κ

H
J ′
]
ρ0
N2

∂Φ′

∂z
= 0

ρ0
2N2

∂

∂t

(
∂Φ′

∂z

)2

+
ρ0u

2N2

∂

∂x

(
∂Φ′

∂z

)2

+
ρ0
N2

∂2Φ

∂y∂z
v′
∂Φ′

∂z
+ ρ0w

′∂Φ
′

∂z
− ρ0κ

N2H
J ′∂Φ

′

∂z
= 0

After applying zonal and global averaging

d

dt

〈
ρ0
2N2

(
∂Φ′

∂z

)2
〉

+

〈
ρ0
N2

∂2Φ

∂y∂z

(
v′
∂Φ′

∂z

)〉
+

〈
ρ0w′∂Φ

′

∂z

〉
+

〈
ρ0κ

N2H
J ′∂Φ

′

∂z

〉
= 0

∴
d

dt

〈
ρ0
2N2

(
∂Φ′

∂z

)2
〉

= −

〈
ρ0w′∂Φ

′

∂z

〉
−

〈
ρ0
N2

∂2Φ

∂y∂z

(
v′
∂Φ′

∂z

)〉
+

〈
ρ0κ

N2H
J ′∂Φ

′

∂z

〉
,

the eddy potential energy equation.

The first term on the right of the eddy kinetic energy equation when using the eddy continuity equation〈
ρ0Φ′

(
∂u′

∂x
+
∂v′

∂y

)〉
=

〈
ρ0Φ′

(
− 1

ρ0

∂

∂z
(ρ0w′)

)〉

= −
〈
Φ′ ∂

∂z
(ρ0w′)

〉
Consider

∂

∂z

(
Φ′ (ρ0w′)) = Φ′ ∂

∂z

(
ρ0w

′)+ (ρ0w′) ∂Φ′

∂z

∴ −Φ′ ∂

∂z

(
ρ0w

′) = ρ0w
′∂Φ

′

∂z
− ∂

∂z

(
Φ′ (ρ0w′))
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=⇒

〈
ρ0Φ′

(
∂u′

∂x
+
∂v′

∂y

)〉
=

〈
ρ0w′∂Φ

′

∂z

〉
,

after assuming that w′ = 0 at z = 0

(
i.e.

〈
ρ0

∂

∂z
w′Φ′

〉)
.

Since the term

〈
ρ0w′∂Φ

′

∂z

〉
is equal to minus the first term on the right of the eddy available potential

energy equation, this term expresses the conversion between eddy kinetic and eddy potential energy.

Consider the term −

〈
ρ0
N2

∂Φ

∂z

∂

∂y

(
v′
∂Φ′

∂z

)〉
of the zonal-mean available potential energy. This term is

further analysed by considering

∂

∂y

[
∂Φ′

∂z

(
v′
∂Φ′

∂z

)]
=

∂2Φ

∂y∂z

(
v′
∂Φ′

∂z

)
+
∂Φ

∂z

∂

∂y

(
v′
∂Φ′

∂z

)
.

Since the term on the left vanishes after applying zonal and global averaging because
〈
∂Ψ

∂y
= 0

〉
at y =

±D,

−

〈
ρ0
N2

∂Φ

∂z

∂

∂y

(
v′
∂Φ′

∂z

)〉
= +

〈
ρ0
N2

∂2Φ

∂y∂z

(
v′
∂Φ′

∂z

)〉
.

Therefore, the second term of the eddy potential energy equation is equal to minus the first term on the
right of the zonal-mean potential energy, and therefore is the conversion term between eddy and zonal-mean
available potential energy.

Next we summarise the four energy equations we derived above as follows:

Mean kinetic energy
(
K ≡

〈
ρ0u

2

2

〉)
d

dt

〈
ρ0u

2

2

〉
=

〈
ρ0u′v′

∂u

∂y

〉
+
〈
ρ0uX

〉
+

〈
ρ0w

∂Φ

∂z

〉

Mean available potential energy

(
P ≡

〈
ρ0
2N2

(
∂Φ

∂z

)2
〉)

d

dt

〈
ρ0
2N2

(
∂Φ

∂z

)2
〉

= −
〈
ρ0w

∂Φ

∂z

〉
+

〈
ρ0
N2

Jκ

H

∂Φ

∂z

〉
+

〈
ρ0
N2

∂Φ

∂z

∂

∂y

(
v′
∂Φ′

∂z

)〉

Eddy kinetic energy

(
K ′ ≡

〈
ρ0
u′

2
+ v′

2

2

〉)

d

dt

〈
ρ0
u′

2
+ v′

2

2

〉
=

〈
ρ0w′∂Φ

′

∂z

〉
−
〈
ρ0u′v′

∂u

∂y

〉
+
〈
ρ0
(
u′X ′ + v′Y ′

)〉
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Eddy available potential energy

(
P ′ ≡

〈
ρ0
2N2

(
∂Φ′

∂z

)2
〉)

d

dt

〈
ρ0
2N2

(
∂Φ′

∂z

)2
〉

= −

〈
ρ0w′∂Φ

′

∂z

〉
−

〈
ρ0
N2

∂Φ

∂z

∂

∂y

(
v′
∂Φ′

∂z

)〉
+

〈
ρ0κ

N2H
J ′∂Φ

′

∂z

〉

The term that represent energy transformations are

[
P •K

]
≡
〈
ρ0w

∂Φ

∂z

〉
[
P ′ •K ′] ≡ 〈ρ0w′∂Φ

′

∂z

〉
[
K ′ •K

]
≡
〈
ρ0u′v′

∂u

∂y

〉
[
P ′ • P

]
≡

〈
ρ0
N2

∂Φ

∂z

∂

∂y

(
v′
∂Φ′

∂z

)〉

The terms describing energy sources are

R ≡
〈
ρ0
N2

Jκ

H

∂Φ

∂z

〉
and R′ ≡

〈
ρ0κ

N2H
J ′∂Φ

′

∂z

〉

The terms describing energy sinks are

ε ≡
〈
ρ0uX

〉
and ε′ ≡

〈
ρ0
(
u′X ′ + v′Y ′

)〉
The four energy equations can then be simplified

d

dt
K =

[
K ′ •K

]
+ ε+

[
P •K

]
d

dt
P = −

[
P •K

]
+R+

[
P ′ • P

]
d

dt
K ′ =

[
P ′ •K ′]− [K ′ •K

]
+ ε′

d

dt
P ′ = −

[
P ′ •K ′]− [P ′ • P

]
+R′

Note on notation: [A •B] means that there is an energy conversion from energy form A to energy form B.

The equation for the rate of change of total energy becomes

d

dt

(
K +K ′ + P + P ′) = ε+R+ ε′ +R′

= R+R′︸ ︷︷ ︸
sources

+ ε+ ε′︸ ︷︷ ︸
dissipation
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R

〈
ρ0
N2

Jκ
H

∂Φ
∂z

〉
(diabatic heating,

〈
ρ0κ
N2HJ ′ ∂Φ′

∂z

〉
R′

ε

ε′

〈
ρ0uX

〉

〈
ρ0

(
u′X ′ + v′Y ′

)〉

P

〈
ρ0
2N2

(
∂Φ
∂z

)2〉
K

〈
ρ0u

2

2

〉

K ′

〈
ρ0

u′2+v′
2

2

〉

P ′

〈
ρ0
2N2

(
∂Φ′

∂z

)2〉

[
P ′ • P

]
〈

ρ0
N2

∂Φ
∂z

∂
∂y

(
v′ ∂Φ

′

∂z

)〉
[
K ′ •K

]
〈
ρ0u′v′

∂u
∂y

〉

[
P •K

]
〈
ρ0w

∂Φ
∂z

〉

[P ′ •K ′]

〈
ρ0w′ ∂Φ′

∂z

〉

(energy source)

including differential
solar heating)

(energy source)

(energy sink)

(energy sink)

(generation of eddy
potential energy by
diabatic processes)

(involves meridional
eddy heat flux)

(energy in terms of
differential thickness

(temperature))

(energy resulting

from zonal mean flow)

(dissipation by
zonal-mean friction)

(energy i.t.o differential
eddy thickness)

(upward energy
bouyancy fluxes)

(upward mean
bouyancy fluxes)

(dissipation by eddy
horizontal friction)

(energy from eddy fluxes)

(poleward fluxes)

Total eddy energy

(P ′ +K ′)

: sources/sinks

: reservoirs

: conversions

For adiabatic processes (take note that synoptic-scale motions are approximately adiabatic outside regions
of active precipitation) the diabatic heat rates can be ignored with the result thatR andR′ vanish. Moreover,
when there is no dissipation of kinetic into thermal energy as a result of turbulent drag force causing friction,

then ε and ε′ vanish. The result is that the total energy is conserved, i.e.
d

dt

(
K +K ′ + P + P ′) = 0.

In the long-term
d

dt

(
K +K ′ + P + P ′) must vanish, so that R + R′ = −(ε + ε′). This equation implies

that the production of available potential energy through zonal-mean and eddy diabatic processes, must be
able to balance the sum of the mean and eddy kinetic energy dissipation.
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Explaining two specific integral
simplifications

Referring to Holton, James R.: Introduction to Dynamic Meteorology, 4th edition, 2004, Elsevier.

The equations (8.40), on page 248, call on us to evaluate the integral∫ L

0
cos k(x+ x0 − ct) sin k(x− ct)dx,

and, as a consequence, also the integral ∫ L

0
[sin k(x− ct)]2 dx.

L is to be taken as the period of the sine and cosine wave expressions. Hence,

L =
2π

k

or

L =
2πn

k
,

for some positive integer n.

Preliminaries

Pr. 1

Compound angle identities:

sin(B + C) = sinB cosC + cosB sinC

sin(B − C) = sinB cosC − cosB sinC

cos(B + C) = cosB cosC − sinB sinC

cos(B − C) = cosB cosC + sinB sinC
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The following double angle identities are obtained from these, by setting C = B:

sin 2B = 2 sinB cosB

cos 2B = cos2B − sin2B

= 2 cos2B − 1

= 1− 2 sin2B

because sin2B + cos2B = 1.

Pr. 2

The analytic sine and cosine functions:

In order to be able to do calculus with wave functions, it was found to be necessary to introduce radian mea-
sure. The trigonometric concept ‘angle’ is modelled (or replaced) by a pure real variable that corresponds
to the arc length of a circular arc with radius = 1 unit, subtending the angle at its centre.

Since a circle with radius r = 1 has circumference P = 2π, we obtain for the analytic R-R-functions sin
and cos:

sin(0) = 0

sin
(π
2

)
= 1

sinπ = 0

sin

(
3π

2

)
= −1

sin 2π = 0

cos(0) = 1

cos
(π
2

)
= 0

cosπ = −1

cos

(
3π

2

)
= 0

cos 2π = 1

At the annoying cost of having to express the independent variable in terms of π in all applications that
involve waves, we obtain the happy results that

d

dx
sinx = cosx

d

dx
sin k(x− v) = k cos k(x− v)

d

dx
cosx = − sinx

d

dx
cos k(x− v) = −k sin k(x− v)
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where k and v are independent of x.

Not only do integration and differential equations become humanly consumable, but many more satisfying
consequences follow, in particular, we get the power series expansions:

sinx = x− x3

3!
+
x5

5!
− · · ·

cosx = 1− x2

2!
+
x4

4!
− · · ·

Pr. 3

The xy graph of a simple wave:

v v + L
2

v + L
x

y

A

−A

y = A sin 2π
L (x− v)

The analytic functions sin and cos have amplitude = 1, and period = 2π. In order to model more general
waves by means of these functions, the equations y = sinx, y = cosx are easily adapted.

It is customary to introduce a parameter, say k, related to the period, L, such that

kL = 2π, k =
2π

L
, L =

2π

k
,

The adaptation y = A sin
2π

L
(x − v) = A sin k(x − v) is shown in the sketch above, for a sine-based

application. For a cosine-based application, see the sketch below:

v
v + L

2

v + L
x

y

A

−A

y = A cos 2π
L (x− v)

In general the xy-graph of the equation y = A sin k(x− v) is a sine wave with period
2π

k
and amplitude A,

with ymax = A, ymin = −A, and zeroes y = 0 at x = v, v ± L

2
, v ± L, · · · , where L = period =

2π

k
. The

parameters k, A and L are understood to be constants (independent of x).
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The same applies to the cosine equation y = A cos k(x − v), except that x = v, v ± L, v ± 2L, · · · , now

correspond to the points at which y = A, while x = v ± L

2
, v ± 3L

2
, · · · give the points at which y = −A.

So given a simple wave with amplitude A, period L, and offset v, set k =
2π

2
; then the xy-graph of the

wave is y = A sin k(x− v) or y = A cos k(x− v) depending on the role of the parameter v.

Pr. 4

The essence of a periodic function:

When kL = 2π, so that L is the period, then sin k(a+ L) = sin k(a), and cos k(a+ L) = cos k(a), for all
a-values.

This can be shown by means of the compound angle identities (Pr. 1), but it is actually obvious from the
graphs.

In the work that follows, we will actually have occasion to look at the related facts that cos 2k(L − ct) −
cos 2k(0− ct) = 0, and sin 2k(L− ct)− sin 2k(0− ct) = 0, the period being

L

2
for these wave functions.

Pr. 5

Two useful derivatives, with corresponding indefinite integrals:

Pr. 5.1

If the parameters k, c, t are independent of the variable x, then

d

dx
[cos 2k(x− ct)] = −2k sin 2k(x− ct)

= −4k sin 2k(x− ct) cos 2k(x− ct)

by Pr. 1.

Therefore ∫
−4k [sin 2k(x− ct)] [cos 2k(x− ct)] dx = cos 2k(x− ct) + C

Furthermore, if kL = 2π, then it follows that∫ L

0
sin k(x− ct) cos k(x− ct)dx = 0

by Pr. 4.

Pr. 5.2

If the parameters k, c, t are independent of the variable x, then

d

dx
[sin 2k(x− ct)] = 2k cos 2k(x− ct)

= 2k
[
1− 2 sin2 k(x− ct)

]
by Pr. 1

= 2k − 4k sin2 k(x− ct)
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Therefore ∫ [
2k − 4k sin2 k(x− ct)

]
dx = sin 2k(x− ct) + C

Furthermore, if kL = 2π, then it follows that∫ L

0
2k − 4k sin2 k(x− ct)dx = 0

by Pr. 4.

Holton’s integrals

By Pr. 1:

cos k(x+ x0 − ct) = cos [kx0 + k(x− ct)]

= cos kx0 cos k(x− ct)− sin kx0 sin k(x− ct),

therefore, multiplying both sides with sin k(x− ct):

cos k(x+ x0 − ct) sin k(x− ct) = cos kx0 [sin k(x− ct) cos k(x− ct)]− sin kx0 sin
2 k(x− ct)

We can now attempt the integral:∫ L

0
cos k(x+ x0 − ct) sin k(x− ct)dx = cos kx0

∫ L

0
sin k(x− ct) cos k(x− ct)dx− sin kx0

∫ L

0
sin2 k(x− ct)dx

= − sin kx0

∫ L

0
sin2 k(x− ct)dx,

because the first term = 0 by Pr. 5.1.

This result agrees with (8.40) as given by Holton.

We continue with the second integral:∫ L

0
sin2 k(x− ct)dx = − 1

4k

∫ L

0
−4k sin2 k(x− ct)dx

= − 1

4k

∫ L

0
−2kdx− 1

4k

∫ L

0

[
2k − 4k sin2 k(x− ct)

]
dx

=
2k

4k

∫ L

0
1dx+ 0 by Pr. 5.2

=
1

2
(L− 0)

=
L

2

Again, we get it right, according to Holton!
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