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Bjerknes-Holmboe theory

As an introduction to the notion of mid-latitude developing baroclinic systems, we introduce a theory of
relating the horizontal distribution of divergence and convergence to a pattern of high and low pressure
systems. Highs will move towards regions of convergence (rising pressure), and lows towards regions of
divergence (falling pressure). This theory is commonly known as the Bjerknes-Holmboe theory. Here we
discuss it only from a qualitative point of view.

Since the divergence of the geostrophic wind (Vg) is zero (for constant f ), and the divergence of the gradient
wind (V ) is not zero, we will examine the pattern of divergence of idealistic pressure fields for gradient flow.
Our weather pattern has

1. Sinusoidal 500hPa contours extending from west to east,

2. Circular concentric isobars at the surface.

The curvature effect

We have already shown that Vg > V for cyclonic flow, and Vg < V for anticyclonic flow. Therefore, owing
to this curvature effect, we expect a distribution of wind speeds as shown in this figure (the arrows represent
the geostrophic wind).
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Such a pattern would lead to falling pressure east of the troughs and rising pressure east of the ridge. The
expectation is for the pressure system to move eastward because the lows (highs) move towards regions of
falling (rising) pressure. Moreover, for a given fixed amplitude of such systems, short wavelengths and high
wind speeds, the curvature effect results in an eastward moving wave.

The latitude effect

Assume that all other parameters are kept constant, then the geostrophic and gradient wind speeds decrease
with increasing (equatorward) latitude. To demonstrate this statement, consider the gradient wind equation

V 2

R
+ fV = −∂Φ

∂n

∴V = − 1

f

(
∂Φ

∂n
+
V 2

R

)

Apply scale analysis to
∣∣∣∣V 2

R

∣∣∣∣ ' (10 m s−1)2

106 m
= 10−4 m s−2, the centrifugal force.

Since a typical parameter value for
∣∣∣∣∂Φ

∂n

∣∣∣∣ = 10−3 m s−2, the centrifugal force is about a tenth of the pressure

gradient force. This result implies that V ' − 1

f

∂Φ

∂n
= Vg, which further implies that both the gradient and

geostrophic wind increase or decrease similarly for a variable Coriolis parameter. Consider the following
table of approximate gradient wind speeds with increasing latitude in the Southern Hemisphere

Latitude Approximate gradient wind speed (m s−1)

−30 13.7

−45 9.7

−60 7.9

From the gradient wind relationship and the table above, wind speed decreases with increasing latitude.
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For low wind speeds and long wavelengths, the curvature term may be small, resulting in the wave moving
westward as determined by the latitude effect. This effect is enforced when the wave amplitude is large.

Next, consider the case of equally spaced, concentric, circular isobars of a surface low and high pressure sys-
tem in the Southern Hemisphere, which results in the curvature effect to be the same everywhere. However,
the latitude effect will produce higher winds on the equatorward side.

2



div convL conv divH

The result of the latitude effect is convergence with rising pressure to the east (west) of the low (high) pres-
sure and divergence with falling pressure to the west (east). Such systems are expected to move westward.

The idealized model
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For the usual short-wave systems in which the curvature effect dominates the latitude effect, divergence is
found east of the trough line and convergence ahead of the ridge line. East of the centre of the surface
low, low-level convergence is found with divergence aloft, resulting in ascending motion. The opposite is
found east of the ridge line where upper-level convergence is associated with low-level divergence east of
the surface high, resulting in descending motion.

Consider the level of non-divergence shown in the figure. This is a level of transition from the positive to
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negative divergence, and vice versa. If this level is low in altitude, the high altitude pattern will predominate,
and the system will move eastward. If this level is high in altitude, the low altitude pattern will predominate,
and the system will move westward.

We have introduced here a classic theory qualitatively of the motion of pressure systems in mid-latitudes.
Although this theory may reveal considerable quantitative agreement with synoptic experience, also over the
Southern Hemisphere, we will develop and discuss quantitatively a set of equations that are less complicated
than the full set of primitive equations of motion in order to describe extra-tropical weather systems. This
set of equations represent the so-called quasi-geostrophic approximation. Why the theory is called quasi-
geostrophic? It is because if the winds in mid-latitude systems were perfectly geostrophic, such winds
never cross the isobars, and could thus not cause convergence into the low pressure system and therefore
no vertical velocity. Since we know from observations that vertical motion does exist and are important for
causing clouds and rain development in cyclones, the upward motion cannot be geostrophic. By including
this ageostrophic flow into the set of equations that are otherwise totally geostrophic, the equations are said
to be quasi-geostrophic, meaning partially geostrophic.
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The quasi-geostrophic approximation

To show that for motions that are hydrostatic and nearly geostrophic, the 3-dimensional flow field is deter-
mined approximately by the isobaric distribution of geopotential [Φ(x, y, p, t)].

The use of the isobaric coordinate system simplifies the development of approximate prognostic and diag-
nostic equations.

Scale analysis in isobaric coordinates

Horizontal momentum equation
DV

Dt
+ fk × V = −∇Φ (3.2) also (6.1)

Hydrostatic equation
∂Φ

∂p
= −α = −RT

p
(3.27) also (6.2)

Continuity equation ∇ · V +
∂ω

∂p
= 0 (3.5) also (6.3)

Thermodynamic energy equation
(
∂

∂t
+ V · ∇

)
T − Spω =

J

cp
(3.6) also (6.4)

Total derivative in (3.2):

D

Dt
≡
(
∂

∂t

)
p

+
(
V · ∇

)
p

+ ω
∂

∂p

[
ω ≡ Dp

Dt

]
(6.5)

From (3.6): Sp ≡ −T
∂ ln θ

∂p
, static stability parameter

[
Sp ∼ 5× 10−4 K Pa−1 in mid-troposphere

]
The above set of equations still contain several terms that are of secondary significance for mid-latitude
synoptic-scale systems. They can be simplified further by

1) horizontal flow is nearly geostrophic

2) the magnitude of the ratio of vertical velocity to horizontal velocity is of the order 10−3.

Separate the horizontal velocity into geostrophic and ageostrophic parts:

V = V g + V a; V g ≡
1

f0
k ×∇Φ

[
V a = V − V g

]
(6.7)
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Regarding f0: It is assumed that the meridional length scale (L) is small compared to the radius of the Earth
so that the geostrophic wind (6.7) may be defined using a constant reference latitude value of the Coriolis
parameter.

For the systems of interest∣∣V g

∣∣� ∣∣V a

∣∣ or

∣∣V a

∣∣∣∣V g

∣∣ ∼ O(Ro), that is the same order of magnitude as the Rossby number(
Ro ≡ U

f0L
∼ 0.1 from Page 41 of Holton 4

)
Momentum can then be approximated to O(Ro) by its geostrophic value, and the rate of change of momen-
tum (or temperature) following the horizontal motion can be approximated to the same order by the rate of
change following the geostrophic wind.

In equation (6.5):

1) V can be replaced by V g

2) the vertical advection which arises only from the ageostrophic flow can be neglected.

∴
DV

Dt
≈ DgV g

Dt
where

Dg

Dt
≡ ∂

∂t
+ V g · ∇ =

∂

∂t
+ ug

∂

∂x
+ vg

∂

∂y
(6.8)

Note: Newton’s second law; a form of the momentum equation:

DU

Dt
= −2Ω× U − 1

ρ
∇p+ g + F r (2.8)

The dynamical effect of the variation of the Coriolis parameter with latitude needs to be retained in the
Coriolis force term in the momentum equation. This variation can be approximated using a Taylor series:

f = f0 +

(
df

dy

)
φ0

(y + y0) + higher order terms

β ≡
(
df

dy

)
φ0

, y = 0 at φ0

This approximation is referred to as the: mid-latitude β–plane approximation

f = f0 + βy (6.9)

f0 is the Coriolis parameter computed at a characteristic latitude, φ0; the variable y measures the meridional
distance from this latitude.

β =

(
df

dy

)
φ0

=
d

dy
(2Ω sinφ)φ0

6



From the figure below:

δy = aδφ

∴
1

δy
=

1

a

1

δφ

a

δφ δy

∴ β =
1

a

d

dφ
(2Ω sinφ)φ0

=
2Ω cosφ0

a

The ratio of the terms on the right of (6.9):

βy

f0
∼ βL

f0
∼ 2Ω cosφ0

a
L

1

2Ω sinφ0

=
cosφ0L

sinφ0a
∼ O(Ro)� 1

[
Note:

cos(−45°)
sin(−45°)

= −1 and L is small compared to the radius of the Earth, a
]

∴ f0 � βy, which justifies letting the Coriolis parameter be a constant f0
in the geostrophic approximation and using (6.9)

(6.1):
DV

Dt
+ fk×V +∇Φ = 0 (the acceleration following the motion, the Coriolis force and the pressure

gradient force are balanced)

Consider

fk × V +∇Φ = (f0 + βy)k × (V g + V a) +∇Φ

= f0k × V g + βyk × V g + f0k × V a + βyk × V a − f0k × V g

= f0k × V a + βyk × V g + βyk × V a

Neglect the ageostrophic wind compared to the geostrophic wind in the term proportional to βy:

Atmospheric waves influenced by the beta (β) term are characterized as planetary waves (also called Rossby
waves). These waves experience the curvature of a revolving planet through meridional changes in the
Coriolis parameter. The so-called beta effect may be considered to be small when a synoptic-scale storm
moves across only a small range of latitudes during its lifetime.

∴ fk × V +∇Φ ≈ f0k × V a + βyk × V g (6.10)
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The horizontal momentum equation i.t.o. geostrophic flow then becomes:

DgV g

Dt
= −f0k × V a − βyk × V g

and each of these terms is O(Ro) compared to the pressure gradient force, and the neglected terms are
O(Ro2) or smaller.

Next,∇ · V = ∇ · (V g + V a) = ∇ · V g +∇ · V a

Since V g =
1

f0
k ×∇Φ is non-divergent,∇ · V g = 0

∴ ∇ · V = ∇ · V a =
∂ua
∂x

+
∂va
∂y

(6.3) : ∇ · V +
∂ω

∂p
= 0 =⇒ ∂ua

∂x
+
∂va
∂y

+
∂ω

∂p
= 0 (6.12)

(6.12) means that ω is determined only by the ageostrophic part of the wind field.

The thermodynamic energy equation (6.4):
(
∂

∂t
+ V · ∇

)
T − Spω =

J

cp
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However, the horizontal advection can be approximated by the geostrophic value

∴

(
∂

∂t
+ V g · ∇

)
T − Spω =

J

cp

The vertical advection is not neglected and forms part of the adiabatic heating and cooling term. This term
must be retained because the static stability is usually large enough on the synoptic scale so that the adiabatic
heating/cooling due to vertical motion is of the same order as the horizontal temperature advection.

Simplifying the adiabatic heating and cooling term: Divide the total temperature field, Ttot, into a basic state
(standard atmosphere) portion that depends only on pressure, T0(p), plus a deviation from the basic state,
T (x, y, p, t).

Ttot(x, y, p, t) = T0(p)︸ ︷︷ ︸
Basic state

+

Deviation from the basic state︷ ︸︸ ︷
T (x, y, p, t)

Static stability parameter in the isobaric system

Sp ≡ −
T

θ

∂θ

∂p
(3.7)

Sp = −T ∂ ln θ

∂p
= −T0

∂ ln θ

∂p

because
∣∣∣∣dT0dp

∣∣∣∣� ∣∣∣∣∂T∂p
∣∣∣∣

θ0 is the potential temperature that corresponds to the basic state temperature T0, which is only a function
of p [T0 = T0(p)].

∴
∂ ln θ0
∂p

=
d ln θ0
dp

∴ Sp = −T0
d ln θ0
dp

= −T0
d ln θ0
dp

( p
R

)(R
p

)
= −RT0

p

d ln θ0
dp

( p
R

)
σ ≡ −RT0

p

d ln θ0
dp

∴ Sp =
σp

R

∴

(
∂

∂t
+ V g · ∇

)
T −

(σp
R

)
ω =

J

cp
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(6.2):
∂Φ

∂p
= −RT

p
=⇒ T = − p

R

∂Φ

∂p

∴

(
∂

∂t
+ V g · ∇

)( p
R

)(∂Φ

∂p

)
−
(σp
R

)
ω =

J

cp(
∂

∂t
+ V g · ∇

)(
∂Φ

∂p

)
− σω =

R

p

J

cp
=
κJ

p

[
κ ≡ R

cp

]
(6.13b)

The quasi-geostrophic equations form a complete set in the dependent variables Φ, V g, V a, and ω.

V g =
1

f0
k ×∇Φ (6.7)

DgV g

Dt
= −f0k × V a − βyk × V g (6.11)

∂ua
∂x

+
∂va
∂y

+
∂ω

∂p
= 0 (6.12)

(
∂

∂t
+ V g · ∇

)(
−∂Φ

∂p

)
− σω =

κJ

p
(6.13b)

The quasi-geostrophic vorticity equation

i

jk

V g =
1

f0
k ×∇Φ (6.7)

f0V g = f0(ugi+ vgj) = k ×
(
∂Φ

∂x
i+

∂Φ

∂y
j

)
=
∂Φ

∂x
j − ∂Φ

∂y
i

∴ f0vg =
∂Φ

∂x
, f0ug = −∂Φ

∂y
(6.14)
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Geostrophic vorticity

ζg = k · ∇ × V g = k

∣∣∣∣∣∣∣∣
i j k
∂

∂x

∂

∂y
0

ug vg 0

∣∣∣∣∣∣∣∣
= k ·

[
k

(
∂vg
∂x
− ∂ug

∂y

)]
=
∂vg
∂x
− ∂ug

∂y

∴ ζg =
∂

∂x

(
1

f0

∂Φ

∂x

)
− ∂

∂y

(
1

f0

(
−∂Φ

∂y

))
=

1

f0

(
∂2Φ

∂x2
+
∂2Φ

∂y2

)
=

1

f0
∇2Φ (6.15)

This equation can be used to determine ζg(x, y) from a known field Φ(x, y).

It can also be solved by inverting the Laplacian operator to determine Φ from a known distribution of ζg,
provided that suitable conditions on Φ are specified on the boundaries of the region in question.

Vorticity is a useful forecast diagnostic: if the evolution of the vorticity can be predicted, then inversion of
(6.15) yields the evolution of the geopotential field, from which it is possible to determine the geostrophic
wind and temperature distributions.

Note: The Laplacian of a function tends to be a maximum where the function itself is a minimum...

ζg =
1

f0
∇2Φ

It will be shown later in the course that∇2Φ ∝ −Φ.

In Northern Hemisphere:

1

f0
∇2Φ ∝ −Φ since f0 > 0

∴ ζg ∝ −Φ

=⇒ positive vorticity implies low values of geopotential, and vice versa.

At ridge Φ is a maximum, thus ζg < 0

At trough Φ is a minimum, thus ζg > 0

In Southern Hemisphere:

1

f0
∇2Φ ∝ Φ since f0 < 0

∴ ζg ∝ Φ
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=⇒ positive vorticity implies low values of geopotential, and vice versa.

At ridge Φ is a maximum, thus ζg > 0

At trough Φ is a minimum, thus ζg < 0

The quasi-geostrophic vorticity equation can be obtained from the quasi-geostrophic momentum equation
(6.11):

DgV g

Dt
= −f0k × V a − βyk × V g

Dg

Dt
(ugi+ vgj) = −f0k × (uai+ vaj)− βyk × (ugi+ vgj)

= −f0uaj − f0(−vai)− βyugj − βy(−vgi)

∴
Dg

Dt
ug = f0va + βyvg

&
Dg

Dt
vg = −f0ua − βyug

∴
Dg

Dt
ug − f0va − βyvg = 0 (6.16)

&
Dg

Dt
vg + f0ua + βyug = 0 (6.17)

∂

∂x
(6.17)− ∂

∂y
(6.16) :

∂

∂y

(
∂ug
∂t

+ ug
∂ug
∂x

+ vg
∂ug
∂y
− f0va − βyvg

)
= 0

∂2ug
∂y∂t

+
∂ug
∂y

∂ug
∂x

+ ug
∂2ug
∂x∂y

+
∂vg
∂y

∂ug
∂y

+ vg
∂2ug
∂y2

− va

= 0︷︸︸︷
∂f0
∂y
− f0

∂va
∂y

− ∂β

∂y
yvg − β

∂y

∂y︸︷︷︸
= 1

vg − βy
∂vg
∂y

= 0 (1)

and
∂

∂x

(
∂vg
∂t

+ ug
∂vg
∂x

+ vg
∂vg
∂y

+ f0ua + βyug

)
= 0

∂2vg
∂x∂t

+
∂ug
∂x

∂vg
∂x

+ ug
∂2vg
∂x2

+
∂vg
∂x

∂vg
∂y

+ vg
∂2vg
∂x∂y

+ ua

= 0︷︸︸︷
∂f0
∂x

+ f0
∂ua
∂x

+
∂β

∂x
yug + β

∂y

∂x︸︷︷︸
= 0

ug + βy
∂ug
∂x

= 0 (2)
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(2)− (1):

∂2vg
∂x∂t

− ∂2ug
∂y∂t

+ ug
∂2vg
∂x2

− ug
∂2ug
∂x∂y

+ vg
∂2vg
∂x∂y

− vg
∂2ug
∂y2

+ f0
∂ua
∂x

+ f0
∂va
∂y

+
∂ug
∂x

∂vg
∂x
− ∂ug

∂y

∂ug
∂x

+
∂vg
∂x

∂vg
∂y
− ∂vg

∂y

∂ug
∂y

+
∂β

∂x
yug +

∂β

∂y
yvg + βvg + βy

∂ug
∂x

+ βy
∂vg
∂y

= 0

∴
∂

∂t

(
∂vg
∂x
− ∂ug

∂y

)
+ ug

∂

∂x

(
∂vg
∂x
− ∂ug

∂y

)
+ vg

∂

∂y

(
∂vg
∂x
− ∂ug

∂y

)
+ f0

(
∂ua
∂x

+
∂va
∂y

)
+
∂ug
∂x

(
∂vg
∂x
− ∂ug

∂y

)
+
∂vg
∂y

(
∂vg
∂x
− ∂ug

∂y

)
+ “β terms” = 0

∴
∂ζg
∂t

+ ug
∂ζg
∂x

+ vg
∂ζg
∂y

+ f0

(
∂ua
∂x

+
∂va
∂y

)
+ ζg

(
∂ug
∂x

+
∂vg
∂y

)
+ 0 + 0 + βvg + βy

(
∂ug
∂x

+
∂vg
∂y

)
= 0

But the divergence of the geostrophic wind vanishes:

∇ · V g = 0

∴
∂ug
∂x

+
∂vg
∂y

= 0

=⇒
(
∂

∂t
+ ug

∂

∂x
+ vg

∂

∂y

)
ζg = −f0

(
∂ua
∂x

+
∂va
∂y

)
− βvg

∴
Dg

Dt
ζg = −f0

(
∂ua
∂x

+
∂va
∂y

)
− βvg (6.18)

Take note
Dgf

Dt
=

∂f

∂t︸︷︷︸
= 0

+ug
∂f

∂x︸︷︷︸
= 0

+vg
∂f

∂y
[f = f(y)]

= 0 + V g · ∇f = βvg

∴
∂ζg
∂t

+ V g · ∇ζg = −f0
(
∂ua
∂x

+
∂va
∂y

)
− V g · ∇f

From (6.12):
∂ua
∂x

+
∂va
∂y

= −∂ω
∂p

∴
∂ζg
∂t

= −V g · ∇ζg − f0
(
−∂ω
∂p

)
− V g · ∇f

= −V g · ∇(ζg + f) + f0
∂ω

∂p
(6.19)
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In words: The local rate of change of geostrophic vorticity is given by the sum of the advection of the
absolute vorticity by the geostrophic wind plus the concentration or dilution of vorticity by stretching or
shrinking of fluid columns (the divergence effect).

Vorticity tendency due to vorticity advection:− V g · ∇(ζg + f)

= −V g · ∇ζg − βvg

V g · ∇ζg : geostrophic advection of relative vorticity

βvg : geostrophic advection of planetary vorticity

For disturbances in the westerlies, these two effects tend to have opposite signs.

Consider the figure for an idealized 500hPa flow in the Northern Hemisphere.

In region I, upstream of the 500hPa trough, the geostrophic wind is directed from the relative vorticity
minimum at the ridge towards the relative vorticity maximum at the trough.

∴ V g · ∇ζg > 0 =⇒ −V g · ∇ζg < 0

At the same time vg < 0 in region I because it is directed southwards.

Take note that β = 2Ω cosφ0/a > 0 in both hemispheres.

∴ βvg < 0 =⇒ −βvg > 0

We now have in region I that the:

1) advection of relative vorticity tends to decrease the local vorticity

2) advection of planetary vorticity tends to increase the local vorticity.
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The same arguments can be applied for region II.

Therefore, advection of relative vorticity tends to move the vorticity pattern and hence the troughs and
ridges eastward (downstream). However, advection of planetary vorticity tends to move the troughs and
ridges westward against the advecting wind field.

The net effect of advection on the evolution of the vorticity pattern depends on which type of vorticity
advection dominates.

Consider the schematic of the 500hPa geopotential field in the Southern Hemisphere above.

The advection of the absolute vorticity by the geostrophic wind:

−V g · ∇(ζg + f) = −V g · ∇ζg − βvg

Region I: Advection of relative vorticity is positive because we are going from ζg < 0 at the trough to ζg >
at the ridge.

∴ V g · ∇ζg > 0 =⇒ −V g · ∇ζg < 0

We have shown that β > 0. However, in the region vg points southwards. Therefore, vg < 0.

∴ βvg < 0 =⇒ −βvg > 0

Region II:−V g ·∇ζg > 0, because advection of relative vorticity is negative and−βvg < 0 because vg > 0.

Consider an idealised geopotential distribution on a mid-latitude β-plane of the form

Φ(x, y) = Φ0 − f0Uy + f0A sin kx cos ly

Φ0, a constant zonal speed U , and amplitude A depend only on pressure. Wave numbers k and l are defined
as k = 2π/Lx and l = 2π/Ly. Lx and Ly are respectively the wavelengths in the x and y directions. y
in the geopotential distribution equation is given by a(φ − φ0), with a the radius of the Earth and φ0 the
latitude at which f0 is evaluated.

For φ− φ0 = 6°, y = 6.67× 105 m

= 3°, y = 3.34× 105 m

= 1°, y = 1.11× 105 m

= 10°, y = 1.11× 106 m

15



Therefore, for 10° displacement in y, y is approximately equal to the length scale, L, of 106 m.

ug = − 1

f0

∂

∂y
(Φ0 − f0Uy + f0A sin kx cos ly)

= U −A sin kx(−l sin ly) = U + lA sin kx sin ly

vg =
1

f0

∂

∂x
Φ =

1

f0
(f0kA cos kx cos ly) = kA cos kx cos ly

ζg =
1

f0

(
∂2

∂x2
+

∂2

∂y2

)
Φ

∂

∂x
(f0kA cos kx cos ly) = −f0k2A sin kx cos ly

∂

∂y
(−f0U − f0lA sin kx sin ly) = −f0l2A sin kx cos ly

∴ ζg =
1

f0

(
−f0k2 − f0l2

)
A sin kx cos ly

= −(k2 + l2)A sin kx cos ly

Advection of relative vorticity:

−V g · ∇ζg = −
(
ugi+ vgj

)
·
(
∂

∂x
i+

∂

∂y
j

)
ζg

= −ug
∂ζg
∂x
− vg

∂ζg
∂y

= −ug(−(k2 + l2)Ak cos kx cos ly)− vg(−(k2 + l2)Al sin kx(− sin ly))

= −ug(−(k2 + l2)vg)− vg((k2 + l2)(ug − U))

= ugvg(k
2 + l2)− ugvg(k2 + l2) + vgU(k2 + l2)

= vgU(k2 + l2) = Ak cos kx cos lyU(k2 + l2)

= kU(k2 + l2)A cos kx cos ly

Advection of planetary vorticity:

−vg
df

dy
= −vgβ = −βAk cos kx cos ly [β = 2Ω cosφ0/a]

Advection of absolute vorticity:

−V g · ∇(ζg + f) = kU(k2 + l2)A cos kx cos ly − βAk cos kx cos ly

= kA cos kx cos ly(U(k2 + l2)− β)

k =
2π

Lx
, l =

2π

Ly
with Lx and Ly the wavelengths in the x and y directions, respectively.

Consider l =
π

2
× 10−7 m−1 for fixed Ly wavelengths. However, we want to determine the effect of Lx on

the advection of both relative and planetary vorticity, and so wavenumber k varies with a range of Lx (i.e.,
1000 km to 12000 km). We therefore need to evaluate U(k2 + l2) against β as shown in the figure below.
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Take note that the term representing the advection of relative vorticity (U(k2 + l2)) at Lx = 3000 km is
about ten times larger than the value at Lx = 10000 km. This result implies that relative vorticity advection
is multiple times larger than planetary vorticity advection at 3000 km where there is a clear exponential
inflection on the figure.

By considering a simplified version of an idealised geopotential distribution, a similar result is obtained.

Φ(x, y, p) = Φ0(p)− f0U0y sin

(
πp

p0

)
+ f0A sin kx

ug = − 1

f0

∂

∂y
Φ = − 1

f0

(
−f0U0 sin

(
πp

p0

))
= U0 sin

(
πp

p0

)
vg =

1

f0

∂

∂x
Φ =

1

f0
(f0Ak cos kx) = Ak cos kx

ζg =
1

f0

(
∂

∂x
(f0Ak cos kx) +

∂

∂y

(
−f0U0 sin

(
πp

p0

)))
=

1

f0

(
−f0Ak2 sin kx

)
= −k2A sin kx

−V g · ∇ζg = k2U0 sin

(
πp

p0

)
Ak cos kx
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∴ −V g · ∇(ζg + f) =

(
k2U0 sin

(
πp

p0

)
− β

)
Ak cos kx

=
(
k2U0 − β

)
Ak cos kx

when p0 = 1000hPa and p = 500hPa.

Here we also show the results of having different values ofU0, the constant zonal speed. Clearly, the strength
of a constant zonal wind will affect the wave lengths of short-wave systems, but will have a minimal affect
on the wavelengths of Rossby waves

Exercise 1: Suppose that on the 500hPa surface of the schematic above, the relative vorticity at a certain
location at 45°S latitude is increasing at a rate of 3×10−6 s−1 per 3 hours. The wind is from the northwest at
20 m s−1 and the relative vorticity increases towards the southeast at a rate of 4×10−6 s−1 per 100 km. Use
the quasi-geostrophic vorticity equation to estimate the horizontal divergence at this location on a β-plane.

Make use of the following assumptions:

1. The constant Coriolis parameter is equal to −10−4 s−1 in the Southern Hemisphere

2. β is approximated by 10−11 m−1 s−1

3. The following relationship is valid for natural coordinates: V g · ∇ζg ∼ v
∂ζg
∂s

, where s is the distance
along the curve (500hPa contour)
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Solution:

∂ζg
∂t

= −V g · ∇(ζg + f) + f0(−∇ · V )

∴ f0∇ · V = −∂ζg
∂t
− V g · ∇ζg − vg

∂f

∂y

= −∂ζg
∂t
− v∂ζg

∂s
− vgβ

∂ζg
∂t

=
3× 10−6 s−1

(3× 3600) s
= 2.778× 10−10 s−2

v
∂ζg
∂s

= (20 m s−1)

(
4× 10−6 s−1

100 000 m

)
= 8× 10−10 s−2

(20 m s−1)2 = ug
2 + vg

2, ug = vg (Pythagoras)

∴ vg = ±
(

202

2

) 1
2

∴ vg = −14.14 m s−1 (since vg < 0)

∴ vgβ = −14.14 m s−1(10−11 m−1 s−1)

= −1.414× 10−10 s−2

∴ ∇ · V = −f0−1

(
∂ζg
∂t

+ v
∂ζg
∂s

+ vgβ

)
= −(−10−4 s−1)−1

(
2.778× 10−10 + 8× 10−10 − 1.414× 10−10

)
s−2

= 9.364× 10−6 s−1, divergence

Exercise 2: Consider the following expression for the geopotential field:

Φ = Φ0(p) + cf0

{
−y
[
cos

(
πp

p0

)
+ 1

]
+ k−1 sin k(x− ct)

}
is a function of p alone, c is a constant speed, k a zonal wave number, and p0 = 1000hPa.

Consider the following two assumptions:

1. Only consider the dominating vorticity advection (either planetary or relative) term applicable to short-
wave systems

2. Geostrophic relative vorticity only varies between trough and ridge axes in the x-direction

Use the quasi-geostrophic vorticity equation to show that the horizontal divergence field consistent with this
geopotential field can be expressed as:

(f0)
−1(ck)2 cos

(
πp

p0

)
cos k(x− ct)
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Solution: From Exercise 1: ∇ · V = −f0−1

(
∂

∂t
+ V g · ∇

)
(ζg + f)

ug = − 1

f0

∂Φ

∂y

vg =
1

f0

∂Φ

∂x

ζg =
1

f0
∇2Φ

−f0∇ · V =

(
∂

∂t
+ V g · ∇

)
(ζg + f) =

∂ζg
∂t

+
∂f

∂t
+ V g · ∇ζg + V g · ∇f

=
∂ζg
∂t

+ (ugi+ vgj) ·
(
∂

∂x
i+

∂

∂y
j

)
ζg + (ugi+ vgj) ·

(
∂

∂x
i+

∂

∂y
j

)
f

=
∂ζg
∂t

+ ug
∂ζg
∂x

+ vg
∂ζg
∂y

+ vg
∂f

∂y

We are considering short-wave systems, which means planetary vorticity advection is dominated by relative
vorticity advection, thus vgβ ∼ 0.

Also according to idealized 500hPa geopotential field, ζg only varies between trough and ridge axes in the

x-direction, therefore vg
∂ζg
∂y

= 0.

∴ −f0∇ · V =
∂ζg
∂t

+ ug
∂ζg
∂x

∴ ∇ · V = −f0−1

(
∂

∂t
+ ug

∂

∂x

)
ζg

ζg =
1

f0
∇2Φ

=⇒ f0ζg =

(
∂2

∂x2
+

∂2

∂y2

)(
cf0

{
−y
[
cos

(
πp

p0

)
+ 1

]
+

1

k
sin k(x− ct)

})
∂

∂x

(
∂

∂x

(
cf0

{
−y
[
cos

(
πp

p0

)
+ 1

]
+

1

k
sin k(x− ct)

}))
=

∂

∂x

(
cf0

1

k
k cos k(x− ct)

)
= −cf0k sin k(x− ct)

∂

∂y

(
∂

∂y

(
cf0

{
−y cos

(
πp

p0

)
− y +

1

k
sin k(x− ct)

}))
=

∂

∂y

(
cf0

(
− cos

(
πp

p0

)
− 1

))
= 0
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f0ζg = −cf0k sin k(x− ct)
∴ ζg = −ck sin k(x− ct)

ug = − 1

f0

∂Φ

∂y

=⇒ −f0ug =
∂

∂y

(
cf0

{
−y
[
cos

(
πp

p0

)
+ 1

]
+

1

k
sin k(x− ct)

})
= cf0

(
−
[
cos

(
πp

p0

)
+ 1

])
∴ ug = c

(
cos

(
πp

p0

)
+ 1

)
∂

∂t
ζg =

∂

∂t
(−ck sin k(x− ct))

= −ck(−ck cos k(x− ct))
= c2k2 cos k(x− ct)

∂

∂x
ζg =

∂

∂x
(−ck sin k(x− ct))

= −ck(k cos k(x− ct))
= −ck2 cos k(x− ct)

∴ ∇ · V = − 1

f0

(
c2k2 cos k(x− ct) +

(
c

(
cos

(
πp

p0

)
+ 1

))
× (−ck2 cos k(x− ct))

)
= − 1

f0

(
c2k2 cos k(x− ct) +

(
c cos

(
πp

p0

)
+ c

)
× (−ck2 cos k(x− ct))

)
= − 1

f0

(
c2k2 cos k(x− ct)− c2k2 cos

(
πp

p0

)
cos k(x− ct)− c2k2 cos k(x− ct)

)
=
c2k2

f0
cos

(
πp

p0

)
cos k(x− ct)

Exercise 3: Suppose that on the 500hPa surface the relative vorticity at a location just left of the ridge line
in the figure used in Exercise 1, at the 45°S latitude (where the Coriolis parameter can be considered to be a
constant value of −10−4 s−1 in the Southern Hemisphere) is increasing at a rate of 3.6× 10−6 s−1 per hour.
The wind is, for all practical purposes, blowing directly from the west above the location (negligible north-
south component) at 20 m s−1 and the relative vorticity increases toward the east at a rate of 4×10−6 s−1 per
100 km. Use the quasi-geostrophic vorticity equation to estimate the horizontal divergence at this location
on a β-plane. This is a short-wave system.

Solution:

∂ζg
∂t

= −V g · ∇(ζg + f) + f0
∂ω

∂p

= −(ugi+ vgj) ·
(
∂

∂x
i+

∂

∂y
j

)
(ζg + f) + f0

∂ω

∂p
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Since we can ignore advection of planetary vorticity,

∂ζg
∂t

= −ug
∂ζg
∂x
− vg

∂ζg
∂y

+ f0
∂ω

∂p

Since the wind at the location is blowing from the west, vg = 0

∂ζg
∂t

= −ug
∂ζg
∂x

+ f0
∂ω

∂p

∴
∂ω

∂p
= f0

−1

(
∂ζg
∂t

+ ug
∂ζg
∂x

)
∂ζg
∂t

> 0 (increasing at a rate of 3.6× 10−6 s−1)

ug > 0 (wind from the west)
∂ζg
∂x

> 0 (vorticity increases per distance, and location is in Region I)

∴
∂ω

∂p
=
(
−10−4 s−1

)−1
(

3.6× 10−6 s−1

1× 60× 60 s
+ 20 m s−1 4× 10−6 s−1

103 m

)
= −104 s

(
36× 10−7

36× 102
s−2 +8× 10−10 s−2

)
= −104 ×

(
10−9 s−1 +8× 10−10 s−1

)
= −104 ×

(
10× 10−10 + 8× 10−10

)
s−1

= −1.8× 10−5 s−1, divergence since −∂ω
∂p

= ∇ · V

Quasi-geostrophic prediction

The geostrophic vorticity equation

∂ζg
∂t

= −V g · ∇(ζg + f) + f0
∂ω

∂p
(6.19)

ζg =
1

f0
∇2Φ (6.15)

∂

∂t

(
1

f0
∇2Φ

)
= −V g · ∇

(
1

f0
∇2Φ + f

)
+ f0

∂ω

∂p

1

f0
∇2∂Φ

∂t
= −V g · ∇

(
1

f0
∇2Φ + f

)
+ f0

∂ω

∂p

Defining the geopotential tendency χ ≡ ∂Φ

∂t

∴
1

f0
∇2χ = −V g · ∇

(
1

f0
∇2Φ + f

)
+ f0

∂ω

∂p
(6.21)

22



Since V g =
1

f0
k ×∇Φ, the right-hand side of (6.21) depends only on the dependent variables Φ and ω.

Next, we will obtain an analogous equation also dependent on these two variables (Φ and ω)

Consider the thermodynamic energy equation:(
∂

∂t
+ V g · ∇

)(
−∂Φ

∂p

)
− σω =

κJ

p
(6.13b)

∴
∂

∂t

(
−∂Φ

∂p

)
+ V g · ∇

(
−∂Φ

∂p

)
− σω =

κJ

p

∴ − ∂

∂p

(
∂Φ

∂t

)
= V g · ∇

(
∂Φ

∂p

)
+ σω +

κJ

p

∴
∂χ

∂p
= −V g · ∇

(
∂Φ

∂p

)
− σω − κJ

p

Multiply by f0/σ:
f0
σ

∂χ

∂p
= −f0

σ
V g · ∇

(
∂Φ

∂p

)
− f0ω −

f0κJ

σp

Differentiate with respect to p:

∴
∂

∂p

(
f0
σ

∂χ

∂p

)
= − ∂

∂p

[
f0
σ
V g · ∇

(
∂Φ

∂p

)]
− f0

∂ω

∂p
− f0

∂

∂p

(
κJ

σp

) [
σ ≡ −RT0

p

d ln θ

dp

]
(6.22)

The ageostrophic vertical motion, ω, has equal and opposite effects on the left-hand sides in
(
6.21 : f−1

0 ∇2χ
)

and
(

6.22 :
∂

∂p

(
f0
σ

∂χ

∂p

))
Vertical stretching

(
∂ω

∂p
> 0

)
forces a positive tendency in the geostrophic vorticity (6.21) and a negative

tendency of equal magnitude in the term on the left side in (6.22).

The left side of (6.22) can be interpreted as the local rate of change of a normalized static stability anomaly
(i.e., a measure of the departure of static stability from Sp, its standard atmosphere value).

To demonstrate this statement:

∂

∂p

(
f0
σ

∂χ

∂p

)
=

∂

∂p

(
f0
σ

∂

∂p

(
∂Φ

∂t

))
=

∂

∂p

(
f0
σ

∂

∂t

(
∂Φ

∂p

))
=

∂

∂p

(
f0
σ

∂

∂t

(
−RT

p

)) {
(6.2) :

∂Φ

∂p
= −RT

p

}
= −f0

∂

∂p

(
R

σp

∂T

∂t

) {
Sp =

pσ

R

}
= −f0

∂

∂p

(
1

Sp

∂T

∂t

)
= −f0

[
∂

∂p

(
1

Sp

)
∂T

∂t
+

1

Sp

∂

∂p

∂T

∂t

]
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Assume that Sp varies only slowly with height in the troposphere, thus Sp is nearly constant and
∂

∂p

(
S−1
p

)
≈

0

∴
∂

∂p

(
f0
σ

∂χ

∂p

)
≈ − f0

Sp

∂

∂p

∂T

∂t
= − f0

Sp

∂

∂t

∂T

∂p
= − ∂

∂t

(
f0
Sp

∂T

∂p

)
From page 5 of the notes:

Ttot = T0 + T {T0 : basic state (standard atmosphere)}
∴ T = Ttot − T0

Therefore
∂T

∂p
∼ local static stability anomaly

∴
1

Sp

∂T

∂p
∼ Local static stability anomaly divided by the standard atmosphere static stability

Take note:
f0
Sp

∂T

∂p
has the same units as vorticity, and is also a normalized static stability value.

When the tendency of the normalized static stability anomaly > 0:

∂

∂t

(
f0
Sp

∂T

∂p

)
> 0

∴
∂

∂p

(
f0
σ

∂χ

∂p

)
< 0, the left side of (6.22)

An air column that moves adiabatically from a region of high static stability to a region of low static stability,
∂ω/∂p > 0.

Since (6.21) and (6.22) are analogous equations, the relative vorticity in (6.21),
1

f0
∇2χ and the normalized

static stability anomaly in (6.22) are changed by equal and opposite amounts. The normalized static stability
anomaly is therefore referred to as the stretching vorticity.

Purely geostrophic motion (ω = 0) is a solution to (6.21) and (6.22) only in a very special situations such as
barotropic flow (no pressure dependence) or zonally symmetric flow. More general purely geostrophic flows
cannot satisfy both these equations simultaneously as there are then two independent equations, and a single
unknown (Φ) so that the system is overdetermined. Thus, the role of the vertical motion distribution must
be to maintain consistency between the geopotential tendencies required by vorticity advection in (6.21) and
thermal advection in (6.22).
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Geopotential tendency

(6.21):

∴
1

f0
∇2χ = −V g · ∇

(
1

f0
∇2Φ + f

)
+ f0

∂ω

∂p
(1)

Assuming that the diabatic heating rate J = 0, (6.22) becomes:

∂

∂p

(
f0
σ

∂χ

∂p

)
= − ∂

∂p

[
f0
σ
V g · ∇

(
∂Φ

∂p

)]
− f0

∂ω

∂p
(2)

(1) + (2):[
1

f0
∇2 +

∂

∂p

(
f0
σ

∂

∂p

)]
χ = −V g · ∇

(
1

f0
∇2Φ + f

)
− ∂

∂p

[
f0
σ
V g · ∇

(
∂Φ

∂p

)]
∴

[
∇2 +

∂

∂p

(
f0

2

σ

∂

∂p

)]
︸ ︷︷ ︸

A

χ = −f0V g · ∇
(

1

f0
∇2Φ + f

)
︸ ︷︷ ︸

B

− ∂

∂p

[
−f0

2

σ
V g · ∇

(
−∂Φ

∂p

)]
︸ ︷︷ ︸

C

(6.23)

(6.23) is often referred to as the geopotential tendency equation.

A. The local geopotential tendency

B. The distribution of vorticity advection

C. The thickness advection

If the distribution of Φ is known at a given time, B and C may be regarded as known forcing functions and
(6.23) is a linear partial differential equation in the unknown χ.

Take note that the term A involves second derivatives in space (x, y) of the field χ, and thus generally
proportional to −χ.

χ =
∂Φ

∂t
and we assume that the horizontal structure of Φ (geopotential) in the extra-tropics can be repre-

sented by a sinusoidal function:

Φ = Φ(x, y, p, t) = A(p, t)B(x, y)

with B(x, y) = sin(kx) cos(ly); k =
2π

Lx
; l =

2π

Ly

∴ χ =
∂

∂t
(A(p, t) sin(kx) cos(ly))

Term A:
[
∇2 +

∂

∂p

(
f0

2

σ

∂

∂p

)]
applied to χ:
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∇2χ =

(
∂2

∂x2
+

∂2

∂y2

)[
∂A

∂t
sin(kx) cos(ly)

]
=
∂A

∂t

(
∂2

∂x2
(sin(kx) cos(ly)) +

∂2

∂y2
(sin(kx) cos(ly))

)
=
∂A

∂t

(
cos(ly)

∂2

∂x2
(sin(kx)) + sin(kx)

∂2

∂y2
(cos(ly))

)
∂2

∂x2
(sin(kx)) =

∂

∂x
(k cos(kx)) = −k2 sin(kx)

∂2

∂y2
(cos(ly)) =

∂

∂y
(−l sin(ly)) = −l2 cos(ly)

∴ ∇2χ =
∂A

∂t

(
cos(ly)(−k2 sin(kx)) + sin(kx)(−l2 cos(ly))

)
=
∂A

∂t
sin(kx)) cos(ly)(−k2 − l2)

= −(k2 + l2)
∂A

∂t
sin(kx)) cos(ly)

= −(k2 + l2)χ ∝ −χ

Since geopotential fields tend to lean westward with height in the mid-latitudes an upper troposphere ridge
often lies over or near the surface trough:

1000hPa

200hPa

p0 = 1000

p = 200

hPa

hPa

Figure 1: A full phase shift with height.

Φ = A(p, t)B(x, y); we dealt with the B(x, y) part on the previous page, and so we now consider

A(p, t) = Q(t) cos

(
πp

p0

)

χ =
∂Φ

∂t
=

∂

∂t

(
Q(t) cos

(
πp

p0

)
B(x, y)

)
= cos

(
πp

p0

)
B
∂Q

∂t
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Regarding term A of the geopotential tendency equation, apply
∂

∂p

(
f0

2

σ

∂

∂p

)
to χ:

∴

[
∂

∂p

(
f0

2

σ

∂

∂p

)]
χ =

[
∂

∂p

(
f0

2

σ

∂

∂p

)](
cos

(
πp

p0

)
B
∂Q

∂t

)
= B

∂Q

∂t

[
∂

∂p

(
f0

2

σ

∂

∂p

)](
cos

(
πp

p0

))
= B

∂Q

∂t

[
∂

∂p

(
f0

2

σ

(
−π
p0

)
sin

(
πp

p0

))]

Assume that the standard atmosphere static stability parameter σ, varies only slowly with height
(

i.e.,
∂

∂p
(σ−1) ≈ 0

)
in the troposphere: [

∂

∂p

(
f0

2

σ

∂

∂p

)]
χ = −B∂Q

∂t

f0
2

σ

π

p0

∂

∂p

(
sin

(
πp

p0

))
∴

[
∂

∂p

(
f0

2

σ

∂

∂p

)]
χ = −B∂Q

∂t

f0
2

σ

π2

p20
cos

(
πp

p0

)
= − cos

(
πp

p0

)
B
∂Q

∂t

(
f0

2

σ

π2

p20

)
= −f0

2

σ

π2

p20
χ ∝ −χ

=⇒
[
∇2 +

∂

∂p

(
f0

2

σ

∂

∂p

)]
χ ∝ −χ

Term A is thus generally proportional to −χ
(

=
∂Φ

∂t

)
Next, consider Term B:

−f0V g · ∇
(

1

f0
∇2Φ + f

)
= −f0V g · ∇ (ζg + f)

[
(6.15) : ζg =

1

f0
∇2Φ

]
= −f0V g · ∇ζg − f0V g ·

(
∂f

∂x
i+

∂f

∂y
j

)
= −f0V g · ∇ζg − f0(ugi+ vgj) ·

∂f

∂y
j (f 6= f(x))

= −f0V g · ∇ζg − f0vg
∂f

∂y

= geostrophic advection of relative vorticity +

geostrophic advection of planetary vorticity

Consider the schematic below of a 500hPa geopotential field in the Southern Hemisphere:

27



Region I: Upstream of the 500hPa ridge, the geostrophic wind is directed from the relative vorticity mini-
mum at the trough towards the relative vorticity maximum at the ridge.

=⇒ Advection of relative vorticity is positive.

∴ V g · ∇ζg > 0

∴ f0V g · ∇ζg < 0 in the SH (f0 < 0)

∴ −f0V g · ∇ζg > 0 in the SH

At the same time vg < 0 because it is directed southwards, and
∂f

∂y
= β = 2Ω cosφ0/a > 0 (both

hemispheres).

∴ vg
∂f

∂y
< 0

∴ f0vg
∂f

∂y
> 0 in the SH (f0 < 0)

∴ −f0vg
∂f

∂y
< 0 in the SH

For advection of relative vorticity:[
∇2 +

∂

∂p

(
f0

2

σ

∂

∂p

)]
χ ∝− χ > 0

∴ χ < 0

∴
∂Φ

∂t
< 0

therefore the geopotential heights are falling between the trough and the ridge axis, downstream of the
trough axis.
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For advection of planetary vorticity:

− χ < 0

[
−f0vg

∂f

∂y
< 0

]
∴ χ > 0

∴
∂Φ

∂t
> 0

which implies that the advection of planetary vorticity results in increasing geopotential heights.

Similarly for Region II:

−f0V g · ∇ζg < 0 in the SH

∴ −χ < 0

∴ χ > 0

∴
∂Φ

∂t
> 0

and

−f0vg
∂f

∂y
> 0

∴ −χ > 0

∴ χ < 0

∴
∂Φ

∂t
< 0
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For a mid-latitude disturbance of given amplitude the absolute value of the relative vorticity increases for
decreasing wavelength.

Therefore for short wavelengths (≤ 3000km) the advection of relative vorticity tends to dominate, resulting
in the disturbance moving rapidly eastwards.

For long waves (≥ 10000km) the planetary vorticity advection tends to dominate, resulting in these long
planetary waves to be quasi-stationary.

Since∇ζg and vg are zero at both trough and ridge axes, the vorticity advection term is zero:

Term B:− f0V g · ∇ζg − f0vg
∂f

∂y

= −f0V g · 0− f0(0)
∂f

∂y

= 0

=⇒ Vorticity advection cannot change the strength of this type of disturbance at the levels where the
advection is occurring, but only acts to propagate the disturbance horizontally and (as shown in the next
section) to spread it vertically.

The mechanism for amplification or decay of mid-latitude synoptic systems is contained in Term C:

− ∂

∂p

[
−f0

2

σ
V g · ∇

(
−∂Φ

∂p

)]
=
f0

2

σ

∂

∂p

[
V g · ∇

(
−∂Φ

∂p

)]
This term is called the differential thickness advection and it tends to be a maximum at trough and ridge
lines in a developing baroclinic wave.

The term V g·∇
(
−∂Φ

∂p

)
is proportional to the hydrostatic temperature advection, and

∂

∂p

[
V g · ∇

(
−∂Φ

∂p

)]
is proportional to the rate of change of the temperature advection with height, or the differential temperature advection.

Consider below an idealized schematic representation of a developing baroclinic disturbance:

In order to determine the rate of change of the temperature advection with height (or pressure) at least two
levels in the vertical must be used. Here two layers are considered: 1000– 500hPa layer (lower troposphere),
and the 500– 300hPa layer (upper troposphere).
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The figure above demonstrates that a developing baroclinic disturbance is characterized by the westward tilt
with height of the pressure system (the thick solid contours are to the west of the thin contours).

1. The tilting results in strong cold advection behind the cold front and strong warm advection ahead of
the warm front.

2. In the upper troposphere, the tilt of the pressure system is small.

These statements are demonstrated in the figure below.

Figure 2: West-east cross section through a developing baroclinic wave. Solid lines are trough and ridge
axes; dashed lines are axes of temperature extrema; the chain of open circle denotes the tropopause.

In the upper troposphere the tilt of the pressure system with height in small. The result is that the thick-
ness pattern and the geopotential pattern become approximately parallel, which leads to thermal advection
becoming small there. Term C is thus concentrated in the lower troposphere.

For the case of the lower troposphere, we want to determine the sign and the magnitude of the Term C. The
horizontal thermal advection for this part of the troposphere (1000– 500hPa layer) is given by:

V g · ∇
(
−∂Φ

∂p

)
where V g is the geostrophic wind at the 1000hPa level, and ∇

(
−∂Φ

∂p

)
is a vector that is perpendicular to
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the 1000– 500hPa thickness lines. See diagram B on page 19. This vector points towards the warm sector
of the low pressure system, and is shown in B for two positions (the two arrows).

The sign of the scalar product of V g · ∇
(
−∂Φ

∂p

)
is given by:

∣∣V g

∣∣ ∣∣∣∣∇(−∂Φ

∂p

)∣∣∣∣ cos θ

cos θ > 0 if θ < 90°, behind cold front

cos θ < 0 if θ > 90°, ahead of warm front

Behind cold front (below 500hPa trough):

Thermal advection = V g · ∇
(
−∂Φ

∂p

)
> 0, cold advection

Ahead of warm front (below 500hPa ridge):

Thermal advection = V g · ∇
(
−∂Φ

∂p

)
< 0, warm advection

Recalling the discussion above that for a developing system the thermal advection is much smaller in the
upper troposphere than in the lower troposphere, thermal advection (both cold and warm) decreases with
height. So does tropospheric pressure.

∴
∂

∂p

(
V g · ∇

(
−∂Φ

∂p

))
> 0 below 500hPa trough

and
∂

∂p

(
V g · ∇

(
−∂Φ

∂p

))
< 0 below 500hPa ridge

Since
f0

2

σ
:

f0
2

σ

∂

∂p

[
V g · ∇

(
−∂Φ

∂p

)]{
< 0 at ridge
> 0 at trough
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At the ridge:
f0

2

σ

∂

∂p

[
V g · ∇

(
−∂Φ

∂p

)]
< 0 (warm advection)

∴ −χ < 0

∴ χ > 0

∴
∂Φ

∂t
> 0 (geopotential increases with time)

(*)



At the trough:
f0

2

σ

∂

∂p

[
V g · ∇

(
−∂Φ

∂p

)]
> 0 (cold advection)

∴ −χ > 0

∴ χ < 0

∴
∂Φ

∂t
< 0 (geopotential decreases with time)

(+)

(*) The effect of warm advection below the 500hPa ridge is to build the ridge.

(+) The effect of cold advection below the 500hPa trough is to deepen the trough.

=⇒ The differential temperature or thickness advection intensifies the upper level troughs and ridges in a
developing baroclinic system.

The advection of cold air into the air column below the 500hPa trough will reduce the thickness of that
column, and hence will lower the height of the 500hPa surface unless there is a compensating rise in the
surface pressure. Warm advection into the air column below the 500hPa ridge will have the opposite effect.

The traditional omega equation

The vorticity equation (6.19):
∂ζg
∂t

= −V g · ∇(ζg + f) + f0
∂ω

∂p

ζg and V g are both defined in terms of Φ(x, y, p, t):

ζg =
1

f0
∇2Φ and V g =

1

f0
k ×∇Φ

Therefore the vorticity equation (6.19) can be used to diagnose ω (vertical velocity field) provided that the

fields of both Φ and
∂Φ

∂t
are known.

Φ : primary product of operational weather analysis

∂Φ

∂t
: can only be crudely approximated from observations by taking differences over 12 hours, since
upper level analyses are generally available only twice per day.

Despite this limitation, the vorticity equation method of estimating ω is usually more accurate than the
continuity equation method discussed in WKD352 (the kinematic method). However, neither of these two
methods of estimating ω uses the information available in the thermodynamic energy equation. Here we

33



will develop the so-called omega equation for estimating the vertical motion by utilizing both the vorticity
equation and the thermodynamic equation.

Thermodynamic energy equation (6.13b):(
∂

∂t
+ V g · ∇

)(
−∂Φ

∂p

)
− σω =

κJ

p

Apply the horizontal Laplacian:

∇2

(
∂

∂t
+ V g · ∇

)(
−∂Φ

∂p

)
−∇2(σω) = ∇2

(
κJ

p

)
∴∇2 ∂

∂t

(
−∂Φ

∂p

)
= ∇2

[
V g · ∇

(
∂Φ

∂p

)]
+ σ∇2ω +

κ

p
∇2J

∴∇2 ∂

∂p

(
∂Φ

∂t

)
= −∇2

[
V g · ∇

(
∂Φ

∂p

)]
− σ∇2ω − κ

p
∇2J

∴∇2∂χ

∂p
= −∇2

[
V g · ∇

(
∂Φ

∂p

)]
− σ∇2ω − κ

p
∇2J (6.32)

Rewriting the geostrophic vorticity equation:

1

f0
∇2χ = −V g · ∇

(
1

f0
∇2Φ + f

)
+ f0

∂ω

∂p
(6.21)

Differentiate (6.21) with respect to p:

∴
∂

∂p

(
1

f0
∇2χ

)
= − ∂

∂p

[
V g · ∇

(
1

f0
∇2Φ + f

)]
+ f0

∂2ω

∂p2

∴
∂

∂p

(
∇2χ

)
= −f0

∂

∂p

[
V g · ∇

(
1

f0
∇2Φ + f

)]
+ f0

2∂
2ω

∂p2
(6.33)

(6.33) – (6.32):(
f0

2 ∂
2

∂p2
+ σ∇2

)
ω − f0

∂

∂p

[
V g · ∇

(
1

f0
∇2Φ + f

)]
+∇2

[
V g · ∇

(
∂Φ

∂p

)]
+
κ

p
∇2J

=
∂

∂p

(
∇2χ

)
−∇2∂χ

∂p

Since the operators on the right hand side can be reversed:(
f0

2 ∂
2

∂p2
+ σ∇2

)
ω = f0

∂

∂p

[
V g · ∇

(
1

f0
∇2Φ + f

)]
−∇2

[
V g · ∇

(
∂Φ

∂p

)]
− κ

p
∇2J

∴

(
∇2 +

f0
2

σ

∂2

∂p2

)
ω =

f0
σ

∂

∂p

[
V g · ∇

(
1

f0
∇2Φ + f

)]
+

1

σ
∇2

[
V g · ∇

(
−∂Φ

∂p

)]
− κ

σp
∇2J (6.34)

Term A :
(
∇2 +

f0
2

σ

∂2

∂p2

)
ω

Term B :
f0
σ

∂

∂p

[
V g · ∇

(
1

f0
∇2Φ + f

)]
=
f0
σ

∂

∂p

[
V g · ∇ (ζg + f)

]
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Term C :
1

σ
∇2

[
V g · ∇

(
−∂Φ

∂p

)]
Term D : − κ

σp
∇2J , but as with the geopotential tendency equation we set J = 0; J is the diabatic heat rate.

The resulting omega equation:(
∇2 +

f0
2

σ

∂2

∂p2

)
ω =

f0
σ

∂

∂p

[
V g · ∇ (ζg + f)

]
+

1

σ
∇2

[
V g · ∇

(
−∂Φ

∂p

)]

The omega equation above involves only derivatives in space (not time). This equation is thus a diagnostic
equation for the field of omega (ω) in terms of the instantaneous geopotential (Φ) field.

Remember the operator in Term A of the tendency equation? It is
(
∇2 +

∂

∂p

(
f0

2

σ

∂

∂p

))
, and is very

similar to the operator of Term A of the omega equation.

The forcing in the omega equation tends to be a maximum in the mid-troposhpere (500hPa), and ω is
required to be zero at the surface and at the top of the troposphere. Therefore, for a qualitative discussion it
is permissible to assume that ω has sinusoidal behaviour in both the horizontal and vertical:

ω = W0 sin

(
πp

p0

)
sin(kx) sin(ly)

∴

(
∇2 +

f0
2

σ

∂2

∂p2

)
ω =

(
∂2

∂x2
+

∂2

∂y2
+
f0

2

σ

∂2

∂p2

)(
W0 sin

(
πp

p0

)
sin(kx) sin(ly)

)
=

∂2

∂x2
sin(kx)

[
W0 sin

(
πp

p0

)
sin(ly)

]
+

∂2

∂y2
sin(ly)

[
W0 sin

(
πp

p0

)
sin(kx)

]
+
f0

2

σ

∂2

∂p2
sin

(
πp

p0

)
[W0 sin(kx) sin(ly)]

= −k2 sin(kx)

[
W0 sin

(
πp

p0

)
sin(ly)

]
− l2 sin(ly)

[
W0 sin

(
πp

p0

)
sin(kx)

]
− f0

2

σ

(
π

p0

)2

sin

(
πp

p0

)
[W0 sin(kx) sin(ly)]

= W0 sin

(
πp

p0

)
sin(kx) sin(ly)

[
−k2 − l2 − 1

σ

(
πf0
p0

)2
]

= −

[
k2 + l2 +

1

σ

(
f0π

p0

)2
]
ω
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∴ Term A is proportional to −ω

For synoptic-scale motions ω = −ρgw
∴ ω ∝ −w
∴ ω < 0 implies upward vertical motion.

Since ω < 0 implies upward motion, and(
∇2 +

f0
2

σ

∂2

∂p2

)
ω ∝ −ω

∴

(
∇2 +

f0
2

σ

∂2

∂p2

)
ω ∝ w, the vertical velocity

=⇒ Upward motion is forced where the right-hand side of the omega equation is positive and downward
motion is forced where it is negative.

The omega equation with negligible diabatic heating:(
∇2 +

f0
2

σ

∂2

∂p2

)
ω =

f0
σ

∂

∂p

[
V g · ∇ (ζg + f)

]
+

1

σ
∇2

[
V g · ∇

(
−∂Φ

∂p

)]

Term B:
f0
σ

∂

∂p

[
V g · ∇ (ζg + f)

]
, the differential vorticity advection.

This term is proportional to the rate of increase with height, or with pressure, of the advection of absolute
vorticity. To discuss the role of this term we consider an idealized developing baroclinic system. Moreover,
we consider a short-wave system where relative vorticity advection is larger than the planetary vorticity
advection. The figure below shows schematically the geopotential contours at 500hPa and 1000hPa for
such a system.

At the centres of the surface high and surface low ∇ζg and V g must be very small: Previously it was
discussed that, since∇ζg and V g are zero at both trough and ridge axes, the vorticity advection term is zero
at the axes. However, since the H and L centres are not located exactly on the 500hPa trough/ridge axis,∇ζg
and V g are only very small (not zero) and so vorticity advection must be very small, that is V g · ∇ (ζg + f)
must be very small.
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H L H

V g · ∇η ∼ 0

A B

η = ζg + f

Southern Hemisphere
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500hPa

1000hPa

ζg > 0 ζg > 0
ζg < 0

V g · ∇η < 0

∂
∂p

(
V g · ∇η

)
> 0

f0
σ

∂
∂p

(
V g · ∇η

)
< 0

V g · ∇η > 0

∂
∂p

(
V g · ∇η

)
< 0

f0
σ

∂
∂p

(
V g · ∇η

)
> 0

At point A, V g · ∇η < 0 since the flow is going from a ridge where ζg > 0 towards a trough where ζg < 0.
From the 500hPa level towards the surface where the high is

(
V g · ∇η ∼ 0

)
, there is thus an increase in

V g · ∇η along the vertical pressure axis. Therefore

∂

∂p

(
V g · ∇η

)
> 0

∴
f0
σ

∂

∂p

(
V g · ∇η

)
< 0 above the surface high

At point B, V g · ∇η > 0 since the flow is going from a trough where ζg < 0 towards a ridge where ζg > 0.
From the 500hPa level towards the surface where the low is

(
V g · ∇η ∼ 0

)
, there is thus a decrease in

V g · ∇η along the vertical pressure axis. Therefore

∂

∂p

(
V g · ∇η

)
< 0

∴
f0
σ

∂

∂p

(
V g · ∇η

)
> 0 above the surface low

Considering that
(
∇2 +

f0
2

σ

∂2

∂p2

)
ω ∝ w, and that Term B > 0 above point L, w > 0, that means

ascending motion.
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Since Term B< 0 above point H,w < 0, that means subsiding motion. Now for Term C:
1

σ
∇2

[
V g · ∇

(
−∂Φ

∂p

)]
,

and remembering that

V g · ∇
(
−∂Φ

∂p

)
> 0 for cold advection

and

V g · ∇
(
−∂Φ

∂p

)
< 0 for warm advection

Consider the diagram at the top of Page 21: East of the surface low, in the warm front zone, the warm
advection tends to be a maximum and west of the surface low, behind the cold front, the cold advection
tends to be a maximum.

East of surface low: Warm advection, V g · ∇
(
−∂Φ

∂p

)
< 0

However, we have shown already (twice!) that∇2Y ∝ −Y

∴ East of surface low ∇2

[
V g · ∇

(
−∂Φ

∂p

)]
> 0

∴
1

σ
∇2

[
V g · ∇

(
−∂Φ

∂p

)]
> 0

w > 0 and maximum

West of surface low ∇2

[
V g · ∇

(
−∂Φ

∂p

)]
< 0

∴
1

σ
∇2

[
V g · ∇

(
−∂Φ

∂p

)]
< 0

w < 0 and minimum

Bonus homework: Write a short essay (not more than one page) on the so-called Dines compensation.
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The Sutcliffe form of the omega equation

A problem with the traditional omega equation is that there exists significant cancellation between the two
terms on the right hand side of this form of the equation. Here we are presenting an alternative approximate
form of the omega equation that can be applied in synoptic analysis in the Southern Hemisphere.

First, employ the chain rule of differentiation for the two terms on the right hand side of the traditional
omega equation.

The omega equation:(
∇2 +

f0
2

σ

∂2

∂p2

)
ω =

f0
σ

∂

∂p

[
V g · ∇ (ζg + f)

]
︸ ︷︷ ︸

B

+
1

σ
∇2

[
V g · ∇

(
−∂Φ

∂p

)]
︸ ︷︷ ︸

C

Apply the chain rule of differentiation on Term B:

f0
σ

[
∂V g

∂p
· ∇
(

1

f0
∇2Φ + f

)
+ V g ·

(
1

f0

∂∇2Φ

∂p
+
∂f

∂p

)]
=
f0
σ

[
∂V g

∂p
· ∇
(

1

f0
∇2Φ + f

)]
+

1

σ
V g · ∇

(
∂∇2Φ

∂p

)
(6.35a)

Also for Term C:

1

σ

(
∇2V g

)
·
(
−∂Φ

∂p

)
+

1

σ
V g · ∇2

(
∇
(
−∂Φ

∂p

))
= − 1

σ

((
∇2ug

)
i+
(
∇2vg

)
j
)
·
(
∂

∂x
i+

∂

∂y
j

)(
∂Φ

∂p

)
− 1

σ
V g · ∇

(
∂∇2Φ

∂p

)
= − 1

σ

[(
∇2ug

) ∂

∂x

(
∂Φ

∂p

)
+
(
∇2vg

) ∂
∂y

(
∂Φ

∂p

)]
− 1

σ
V g · ∇

(
∂∇2Φ

∂p

)
(6.35b)

NOTE: The last terms in (6.35a) and (6.35b) are equal and opposite, therefore they cancel.

∴

(
∇2 +

f0
2

σ

∂2

∂p2

)
ω = Term B + Term C

=
f0
σ

[
∂V g

∂p
· ∇
(

1

f0
∇2Φ + f

)]
(B1)

− 1

σ

[(
∇2ug

) ∂

∂x

(
∂Φ

∂p

)
+
(
∇2vg

) ∂
∂y

(
∂Φ

∂p

)]
(C1)

Scale analysis of these two expanded terms can help to compare the relative sizes of the two terms in order
to reduce them.
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Note: R = 287 J K−1 kg−1

1 Pa = 1 N m−2

1 J = 1 N m

Term B1:
f0
σ

[
∂V g

∂p
· ∇
(

1

f0
∇2Φ + f

)]
=
f0
σ

[
∂V g

∂p
· ∇ (ζg + f)

]

∂V g

∂p
∼ 10 m s−1

10× 102 Pa
=

1 m s−1

102 N m−2

= 10−2 N−1 m3 s−1

= 10−2 kg−1 m−1 s2 m3 s−1

= 10−2 kg−1 m2 s

∇ (ζg + f) ∼ 1

L

(
10−5 − 10−4

)
s−1

∼ 10−6 m−1
(
10−4

)
s−1

= 10−10 m−1 s−1

∴ B1 ∼ 10−4 s−1

σ

[
10−2 kg−1 m2 s

] [
10−10 m−1 s−1

]
=

1

σ
10−16 kg−1 m s−1

Term C1: − 1

σ

[(
∇2ug

) ∂

∂x

(
∂Φ

∂p

)
+
(
∇2vg

) ∂
∂y

(
∂Φ

∂p

)]

∂Φ

∂p
= −RT

p
∼

102 J K−1 kg−1
(
102 K

)
1000× 102 Pa

=
104 N m kg−1

105 N m−2
= 10−1 m3 kg−1

∴ C1 ∼ 1

σ

(
1

L2
U

1

L

(
10−1 m3 kg−1

))
∼ 1

σ

(
106 m

)−3
10 m s−1 10−1 m3 kg−1

=
1

σ
10−18 kg−1 m s−1
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∴ B1 ∼ 100× C1

=⇒
(
∇2 +

f0
2

σ

∂2

∂p2

)
ω ≈ f0

σ

[
∂V g

∂p
· ∇ (ζg + f)

]

The remaining term on the right of this equation represents the advection of absolute vorticity by the thermal

wind. The left hand side,
(
∇2 +

f0
2

σ

∂2

∂p2

)
ω, is proportional to −ω. When ω < 0 upward vertical motion

is implied, and the left hand side is proportional to the vertical velocity. Therefore, upward motion is forced

where
f0
σ

[
∂V g

∂p
· ∇ (ζg + f)

]
> 0, and downward motion is forced where

f0
σ

[
∂V g

∂p
· ∇ (ζg + f)

]
< 0.

Consider an idealized schematic for a developing synoptic-scale system in the Southern Hemisphere mid-
latitudes.

VT

VT

VT

VT

VT
Iso

th
erm

50
0h
P
a

10
00
hP
a

I
ω < 0
Upward

L H
Vg

Vg

VgL L

H

ζg < 0 ζg < 0ζg > 0
V g · ∇ζg > 0

Isotherm: level of constant thickness

VT : thermal wind, directed along the
isotherms with cold air to the right

V
g
·
∇
( −∂Φ ∂p

) >0
V
g
·
∇
( −∂Φ ∂p

) <0

V g · ∇ζg < 0

ω > 0
Downward

Take note that the 500 hPa contours lead the 1000 hPa contours due to the westward tilt of the system. The
result is that the 500 hPa geopotential field lead the isotherm pattern on the figure. The thermal wind, VT , is
parallel to the isotherms, and so the term on the right that represents the advection of absolute vorticity by
the thermal wind can be estimated from the change of absolute vorticity along the isotherms.

Keep in mind that we are working here with short-wavelength synoptic-scale systems where relative vor-
ticity advection dominates planetary vorticity advection. Consider the region marked I on the figure of the
idealized system. In that region a surface low pressure system is located, and above this surface low at the
500 hPa level the relative vorticity advection is a positive maximum since

(
V g · ∇ζg

)
500 hPa

> 0. This
positive advection term is over the surface low pressure center and subsequently contributes to spin-up of
the cyclone because the wind is blowing higher positive vorticity into the area of the surface low. However,
on the vertical axis of this surface low pressure

(
V g · ∇ζg

)
1000 hPa

≈ 0 because
(
∇ζg

)
1000 hPa

≈ 0.
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Apply the operator
∂

∂p
to the absolute vorticity advection term. We get

∂

∂p

(
V g · ∇ (ζg + f)

)
≈ ∂

∂p

(
V g · ∇ζg

)
for the short-wavelength system considered here.

∂

∂p

(
V g · ∇ζg

)
=
∂V g

∂p
· ∇ζg + V g ·

∂

∂p

(
∇ζg

)
=
∂V g

∂p
· ∇ζg since ζg = ζg(x, y)

We can write

δV g

δp
· ∇ζg =

δ(V g · ∇ζg)
δp

=
(V g · ∇ζg)1000 hPa − (V g · ∇ζg)500 hPa

1000 hPa−500 hPa

≈ 0− positive value
positive value

< 0

=⇒ ∂V g

∂p
· ∇ζg < 0

For short-wave systems:

∂V g

∂p
· ∇ (ζg + f) < 0

∴
f0
σ

[
∂V g

∂p
· ∇ (ζg + f)

]
> 0

In region I where
f0
σ

[
∂V g

∂p
· ∇ (ζg + f)

]
has now been demonstrated to be a positive value, upward motion

is forced. Using similar arguments for the region over the surface high pressure system, downward motion is
forced. Therefore, upward (downward) motion is forced east (west) of the 500 hPa trough above the surface
low (high) pressure system.

Revisiting the idealized schematic for a developing system, upward motion occurs where relative vorticity
increases moving left to right along an isotherm, and downward motion occurs where relative vorticity
decreases moving left to right along an isotherm. Notwithstanding the increase in relative vorticity when
moving along the isotherm, in the Southern Hemisphere cyclonic storms are associated with negative relative
vorticity. Moreover, since ζg ∝ Φ in the Southern Hemisphere the negative vorticity is associated with
negative geopotential deviations in region I, which results in the 1000− 500 hPa thickness decreasing there
leading to a developing trough.

Cold advection occurs behind the cold front, i.e. V g · ∇
(
−∂Φ

∂p

)
> 0, and warm advection ahead of the

warm front, i.e. V g · ∇
(
−∂Φ

∂p

)
< 0. As a result, the horizontal temperature advection is small above

42



the centre of the surface low in region I. Therefore, in order to cool the atmosphere—as required by the
thickness tendency—is by adiabatic (no heat or mass exchange with the environment) cooling through the
vertical motion field. As a result, in the presence of differential vorticity advection, the vertical motion
maintains a field in which temperature and thickness are proportional (remember that from the thermal wind

equation we have seen that Φ1−Φ0 = R 〈T 〉 ln
(
p0
p1

)
). Because of this proportionality, the vertical motion

maintains the temperature field, which is determined by the geopotential field.

The Q-vector

Objective: To better appreciate the essential role of the divergent ageostrophic motion in quasi-geostrophic
flow.

Here we examine separately the rates of change, following the geostrophic wind, of the vertical shear of the
geostrophic wind and of the horizontal temperature gradient.

The approximate horizontal momentum equation:

DgV g

Dt
= −f0k × V a − βyk × V g (6.11)

Quasi-geostrophic momentum equations:

(6.16) :
Dgug
Dt

− f0va − βyvg = 0 (6.38)

(6.17) :
Dgvg
Dt

+ f0ua + βyug = 0 (6.39)

Quasi-geostrophic thermodynamic energy equation(
∂

∂t
+ V g · ∇

)
T −

(σp
R

)
ω =

J

cp
(6.13a)

Dg

Dt
≡ ∂

∂t
+ V g · ∇

∴
DgT

Dt
−
(σp
R

)
ω =

J

cp
(6.40)

p
∂vg
∂p

= −R
f

(
∂T

∂x

)
p

(3.28)

and p
∂ug
∂p

=
R

f

(
∂T

∂y

)
p

(3.29)

On mid-latitude β-plane:

f0
∂ug
∂p

=
R

p

∂T

∂y
and f0

∂vg
∂p

= −R
p

∂T

∂x

Vector form:

f0k ×
∂V g

∂p
=
R

p
∇T (Bonus homework)
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Obtaining equation for the evolution of the thermal wind components:

f0
∂

∂p
((6.38)) = f0

∂

∂p

(
Dgug
Dt

− f0va − βyvg
)

= 0

∴f0
∂

∂p

[(
∂

∂t
+ ug

∂

∂x
+ vg

∂

∂y

)
ug

]
− f02

∂va
∂p
− f0βy

∂vg
∂p

= 0

∴f0

[
∂

∂p

(
∂ug
∂t

)
+

∂

∂p

(
ug
∂ug
∂x

)
+

∂

∂p

(
vg
∂ug
∂y

)]
− f02

∂va
∂p
− f0βy

∂vg
∂p

= 0

∴f0
∂2ug
∂p∂t

+ f0
∂ug
∂p

∂ug
∂x

+ f0ug
∂2ug
∂p∂x

+ f0
∂vg
∂p

∂ug
∂y

+ f0vg
∂2ug
∂p∂y

− f02
∂va
∂p
− f0βy

∂vg
∂p

= 0

∴f0
∂2ug
∂p∂t

+ f0ug
∂2ug
∂p∂x

+ f0vg
∂2ug
∂p∂y

+ f0
∂ug
∂p

∂ug
∂x

+ f0
∂vg
∂p

∂ug
∂y
− f02

∂va
∂p
− f0βy

∂vg
∂p

= 0

∴f0

[
∂

∂t
+ ug

∂

∂x
+ vg

∂

∂y

]
∂ug
∂p

+ f0

[
∂ug
∂p

∂ug
∂x

+
∂vg
∂p

∂ug
∂y

]
− f02

∂va
∂p
− f0βy

∂vg
∂p

= 0

=⇒ Dg

Dt

(
f0
∂ug
∂p

)
= −f0

[
∂ug
∂p

∂ug
∂x

+
∂vg
∂p

∂ug
∂y

]
+ f0

2∂va
∂p

+ f0βy
∂vg
∂p

(6.43a)

Similarly:
Dg

Dt

(
f0
∂vg
∂p

)
= −f0

[
∂ug
∂p

∂vg
∂x

+
∂vg
∂p

∂vg
∂y

]
− f02

∂ua
∂p
− f0βy

∂ug
∂p

(6.43b)

Bonus homework: Derive (6.43b)

Reminder:

(3.29) : f0
∂ug
∂p

=
R

p

∂T

∂y
=⇒ −f0

[
∂ug
∂p

∂ug
∂x

+
∂vg
∂p

∂ug
∂y

]
= −R

p

[
∂T

∂y

∂ug
∂x
− ∂T

∂x

∂ug
∂y

]

(3.28) : f0
∂vg
∂p

= −R
p

∂T

∂x
=⇒ −f0

[
∂ug
∂p

∂vg
∂x

+
∂vg
∂p

∂vg
∂y

]
= −R

p

[
∂T

∂y

∂vg
∂x
− ∂T

∂x

∂vg
∂y

]
However, the divergence of the geostrophic wind vanishes: ∇ · V g = 0

∴
∂ug
∂x

+
∂vg
∂y

= 0 =⇒ ∂ug
∂x

= −∂vg
∂y

∴ −R
p

[
∂T

∂y

∂ug
∂x
− ∂T

∂x

∂ug
∂y

]
= −R

p

[
∂T

∂y

(
−∂vg
∂y

)
− ∂T

∂x

∂ug
∂y

]
=
R

p

[
∂T

∂y

∂vg
∂y

+
∂T

∂x

∂ug
∂y

]
= −Q2
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Q2 ≡ −
R

p

[
∂ug
∂y

∂T

∂x
+
∂vg
∂y

∂T

∂y

]
= −R

p

(
∂ug
∂y

i+
∂vg
∂y

j

)
·
(
∂T

∂x
i+

∂T

∂y
j

)
= −R

p

∂

∂y

(
ugi+ vgj

)
·
(
∂

∂x
i+

∂

∂y
j

)
T

= −R
p

∂

∂y
V g · ∇T (6.45a)

For

∴ −R
p

[
∂T

∂y

∂vg
∂x
− ∂T

∂x

∂vg
∂y

]
= −R

p

[
∂T

∂y

∂vg
∂x

+
∂T

∂x

(
∂ug
∂x

)]
= −R

p

[
∂ug
∂x

∂T

∂x
+
∂vg
∂x

∂T

∂y

]
= Q1

Q1 ≡ −
R

p

[
∂ug
∂x

∂T

∂x
+
∂vg
∂x

∂T

∂y

]
= −R

p

∂

∂x

(
ugi+ vgj

)
·
(
∂

∂x
i+

∂

∂y
j

)
T

= −R
p

∂

∂x
V g · ∇T (6.45b)

Consider the thermodynamic energy equation

DgT

Dt
− σp

R
ω =

J

cp
(6.40)

∂

∂x
((6.40)) :

∂

∂x

[
∂

∂t
+ ug

∂

∂x
+ vg

∂

∂y

]
T =

σp

R

∂ω

∂x
+

1

cp

∂J

∂x

∴
∂2T

∂x∂t
+
∂ug
∂x

∂T

∂x
+ ug

∂2T

∂x2
+
∂vg
∂x

∂T

∂y
+ vg

∂2T

∂x∂y
=
σp

R

∂ω

∂x
+

1

cp

∂J

∂x

∴
∂2T

∂x∂t
+ ug

∂2T

∂x2
+ +vg

∂2T

∂x∂y
= −

(
∂ug
∂x

∂T

∂x
+
∂vg
∂x

∂T

∂y

)
+
σp

R

∂ω

∂x
+

1

cp

∂J

∂x

∴

(
∂

∂t
+ ug

∂

∂x
+ vg

∂

∂y

)
∂T

∂x
= −

(
∂ug
∂x

∂T

∂x
+
∂vg
∂x

∂T

∂y

)
+
σp

R

∂ω

∂x
+

1

cp

∂J

∂x

Multiply throughout by
R

p
:

∴
Dg

Dt

(
R

p

∂T

∂x

)
= −R

p

(
∂ug
∂x

∂T

∂x
+
∂vg
∂x

∂T

∂y

)
+ σ

∂ω

∂x
+

R

pcp

∂J

∂x

= −R
p

(
∂ug
∂x

∂T

∂x
+
∂vg
∂x

∂T

∂y

)
+ σ

∂ω

∂x
+
κ

p

∂J

∂x

[
κ ≡ R

cp

]
(6.46a)

Dg

Dt

(
R

p

∂T

∂y

)
= −R

p

(
∂ug
∂y

∂T

∂x
+
∂vg
∂y

∂T

∂y

)
+ σ

∂ω

∂y
+
κ

p

∂J

∂y
(6.46b)
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Bonus homework: Derive (6.46b). Hint: Start by
∂

∂y
((6.40))

Revisiting (6.43a), and remembering

∂ug
∂x

= −∂vg
∂y

, f0
∂ug
∂p

=
R

p

∂T

∂y
and f0

∂vg
∂p

= −R
p

∂T

∂x

Dg

Dt

(
f0
∂ug
∂p

)
= −f0

[
∂ug
∂p

∂ug
∂x

+
∂vg
∂p

∂ug
∂y

]
+ f0

2∂va
∂p

+ f0βy
∂vg
∂p

= −R
p

[
∂T

∂y

∂ug
∂x
− ∂T

∂x

∂ug
∂y

]
+ f0

2∂va
∂p

+ f0βy
∂vg
∂p

= −R
p

[
∂T

∂y

(
−∂vg
∂y

)
− ∂T

∂x

∂ug
∂y

]
+ f0

2∂va
∂p

+ f0βy
∂vg
∂p

=
R

p

[
∂T

∂y

∂vg
∂y

+
∂T

∂x

∂ug
∂y

]
+ f0

2∂va
∂p

+ f0βy
∂vg
∂p

= −Q2 + f0
2∂va
∂p

+ f0βy
∂vg
∂p

(6.47)

and for (6.46b):

Dg

Dt

(
R

p

∂T

∂y

)
= −R

p

(
∂ug
∂y

∂T

∂x
+
∂vg
∂y

∂T

∂y

)
+ σ

∂ω

∂y
+
κ

p

∂J

∂y
= Q2 + σ

∂ω

∂y
+
κ

p

∂J

∂y
(6.48)

Dg

Dt

(
f0
∂vg
∂p

)
= −f0

[
∂ug
∂p

∂vg
∂x

+
∂vg
∂p

∂vg
∂y

]
− f02

∂ua
∂p
− f0βy

∂ug
∂p

(6.43b)

= −R
p

[
∂T

∂y

∂vg
∂x
− ∂T

∂x

∂vg
∂y

]
− f02

∂ua
∂p
− f0βy

∂ug
∂p

= −R
p

[
∂ug
∂x

∂T

∂x
+
∂vg
∂x

∂T

∂y

]
− f02

∂ua
∂p
− f0βy

∂ug
∂p

= Q1 − f02
∂ua
∂p
− f0βy

∂ug
∂p

(6.49)

and for (6.46a)

Dg

Dt

(
R

p

∂T

∂x

)
= −R

p

(
∂ug
∂x

∂T

∂x
+
∂vg
∂x

∂T

∂y

)
+ σ

∂ω

∂x
+
κ

p

∂J

∂x
= Q1 + σ

∂ω

∂x
+
κ

p

∂J

∂x
(6.50)

We set out to examine separately the rates of change
(
Dg

Dt

)
of the vertical shear

(
∂

∂p
V g

)
of the geostrophic

wind and of the horizontal temperature gradient (∇T ). We subsequently derived two sets of equations de-
scribing these relationships. The first set of equations, in Q2, is:

(6.47) :
Dg

Dt

(
f0
∂ug
∂p

)
= −Q2 + f0

2∂va
∂p

+ f0βy
∂vg
∂p

(shear)

(6.48) :
Dg

Dt

(
R

p

∂T

∂y

)
= Q2 + σ

∂ω

∂y
+
κ

p

∂J

∂y
(temperature gradient)
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(6.48)− (6.47):

Dg

Dt

(
R

p

∂T

∂y

)
−Q2 − σ

∂ω

∂y
− κ

p

∂J

∂y
−
[
Dg

Dt

(
f0
∂ug
∂p

)
+Q2 − f02

∂va
∂p
− f0βy

∂vg
∂p

]
= 0

∴
Dg

Dt

(
R

p

∂T

∂y
− f0

∂ug
∂p

)
− 2Q2 − σ

∂ω

∂y
− κ

p

∂J

∂y
+ f0

2∂va
∂p

+ f0βy
∂vg
∂p

= 0

Take note that
f0
∂ug
∂p

=
R

p

∂T

∂y
(6.41a)

∴
R

p

∂T

∂y
− f0

∂ug
∂p

= 0

∴ −2Q2 − σ
∂ω

∂y
− κ

p

∂J

∂y
+ f0

2∂va
∂p

+ f0βy
∂vg
∂p

= 0

σ
∂ω

∂y
− f02

∂va
∂p
− f0βy

∂vg
∂p

= −2Q2 −
κ

p

∂J

∂y
(6.51)

(6.50) + (6.49):

∴
Dg

Dt

(
f0
∂vg
∂p

+
R

p

∂T

∂x

)
−Q1 + f0

2∂ua
∂p

+ f0βy
∂ug
∂p
−Q1 − σ

∂ω

∂x
− κ

p

∂J

∂x
= 0

Take note that
f0
∂vg
∂p

= −R
p

∂T

∂x
(6.41b)

∴ f0
∂vg
∂p

+
R

p

∂T

∂x
= 0

∴ −2Q1 −
κ

p

∂J

∂x
= −f02

∂ua
∂p
− f0βy

∂ug
∂p

+ σ
∂ω

∂x

σ
∂ω

∂x
− f02

∂ua
∂p
− f0βy

∂ug
∂p

= −2Q1 −
κ

p

∂J

∂x
(6.52)

∂

∂x
((6.52)):

σ
∂2ω

∂x2
− f02

∂

∂x

(
∂ua
∂p

)
− f0βy

∂

∂x

(
∂ug
∂p

)
= −2

∂Q1

∂x
− κ

p

∂2J

∂x2
(A)

∂

∂y
((6.51)):

σ
∂2ω

∂y2
− f02

∂

∂y

(
∂va
∂p

)
− f0βy

∂

∂y

(
∂vg
∂p

)
− f0β

∂vg
∂p

= −2
∂Q2

∂y
− κ

p

∂2J

∂y2
(B)
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(A)+(B):

σ
∂2ω

∂x2
+ σ

∂2ω

∂y2
− f02

∂

∂x

(
∂ua
∂p

)
− f02

∂

∂y

(
∂va
∂p

)
− f0βy

∂

∂x

(
∂ug
∂p

)
− f0βy

∂

∂y

(
∂vg
∂p

)
− f0β

∂vg
∂p

= −2
∂Q1

∂x
− 2

∂Q2

∂y
− κ

p

∂2J

∂x2
− κ

p

∂2J

∂y2

∴σ∇2ω − f02
∂

∂x

(
∂ua
∂p

)
− f02

∂

∂y

(
∂va
∂p

)
− f0βy

∂

∂x

(
∂ug
∂p

)
− f0βy

∂

∂y

(
∂vg
∂p

)
− f0β

∂vg
∂p

= −2∇ ·Q− κ

p
∇2J

We have:

1) The divergence of the geostrophic wind vanishes:

∇ · V g = 0

∴
∂ug
∂x

+
∂vg
∂y

= 0

∴
∂ug
∂x

= −∂vg
∂y

2) (6.12):
∂ua
∂x

+
∂va
∂y

= −∂ω
∂p

σ∇2ω − f02
∂

∂p

(
∂ua
∂x

+
∂va
∂y

)
−f0βy

∂

∂p

(
∂ug
∂x

+
∂vg
∂y

)
− f0β

∂vg
∂p

= −2∇ ·Q− κ

p
∇2J

∴ σ∇2ω − f02
∂

∂p

(
−∂ω
∂p

)
= −2∇ ·Q+ f0β

∂vg
∂p
− κ

p
∇2J

∴ σ∇2ω + f0
2∂

2ω

∂p2
= −2∇ ·Q+ f0β

∂vg
∂p
− κ

p
∇2J (6.53)

=⇒ the Q-vector form of the omega equation.

From (6.45a,b):

Q = (Q1, Q2)

=

(
−R
p

∂

∂x
V g · ∇T,−

R

p

∂

∂y
V g · ∇T

)
(6.54)

Outside regions of active precipitation, diabatic heating is due primarily to net radiative heating, which is
weak in the troposphere. Therefore, the Laplacian of the diabatic heating can be neglected. Also, the term
related to the beta (β) effect is generally small for synoptic scale motion, and is subsequently also neglected.
The resulting Q vector form of the omega equation is

σ∇2ω + f0
2∂

2ω

∂p2
= −2∇ ·Q
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Next we will discuss Q as a forcing function of the omega equation.

Previously it was demonstrated that
(
∇2 +

f0
2

σ

∂2

∂p2

)
ω ∝ −ω

Multiplying throughout with σ (σ > 0):
(
σ∇2 + f0

2 ∂
2

∂p2

)
ω ∝ −ω

So when
(
f0

2 ∂
2

∂p2
+ σ∇2

)
ω > 0, we have ascending (upward) motion (ω < 0)

∴ −2∇ ·Q > 0

∴ ∇ ·Q < 0

∴ Negative divergence of Q, i.e. convergence of Q, leads to ascending motion.

Similarly, when
(
f0

2 ∂
2

∂p2
+ σ∇2

)
ω < 0, we have descending (downward) motion (ω > 0)

∴ −2∇ ·Q < 0

∴ ∇ ·Q > 0

∴ Divergence of Q leads to descending motion.

L
L

HA
By

x
y

x

V g start

V g start

V g start

V g start

V g end

V g end

V g
V g

end
end

Q Q

500hPa
contour

Isotherm

Warm

Cold

Consider an idealized developing synoptic-scale system in the Southern Hemisphere mid-latitudes at the
500hPa level. The Q-vector direction and magnitude can be estimated by referring the motion to a Cartesian
coordinate system. In this coordinate system, the x-axis is parallel to the local isotherm and the y-axis is
perpendicular to the isotherm. Since warm air is to the left of an observer moving along an isotherm,
temperature increases in the positive y-direction in the Southern Hemisphere. In this configuration, the
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Q-vector may be simplified:

Q1 = −R
p

[
∂ug
∂x

∂T

∂x
+
∂vg
∂x

∂T

∂y

]
= −R

p

∂vg
∂x

∂T

∂y
since

∂T

∂x
= 0 (x-axis parallel to isotherm)

Q2 = −R
p

[
∂ug
∂y

∂T

∂x
+
∂vg
∂y

∂T

∂y

]
= −R

p

∂vg
∂y

∂T

∂y

=
R

p

∂ug
∂x

∂T

∂y
since

∂ug
∂x

+
∂vg
∂y

= 0

=⇒ Q = −R
p

∂T

∂y

(
∂vg
∂x

i− ∂ug
∂x

j

)
consider − k ×

(
∂ug
∂x

i+
∂vg
∂x

j

)
= −k × ∂V g

∂x

= −∂ug
∂x

j +
∂vg
∂x

i

∴ Q = −R
p

∂T

∂y

(
−k × ∂V g

∂x

)
=
R

p

∂T

∂y

(
k × ∂V g

∂x

)

The Q-vector can be obtained by considering the vectorial change of V g along the isotherm. Consider
two cases, A and B, of an observer moving along an isotherm. For each case, draw an arrow describing
the geostrophic wind vector observed at the start of each movement. Draw a second arrow showing the
geostrophic wind vector at the end of each movement. Next, draw the vector difference from the head of the
start vector to the head of the end vector. The Q-vector direction points 90° to the left (anti-clockwise) from
the geostrophic difference vector in the Southern Hemisphere as dictated by the reduced Q-vector equation
above. The resulting vector, multiplied by ∂T/∂y, provides its magnitude.

Near the 500hPa low, the geostrophic wind change vector produces a Q-vector parallel to the thermal wind,
while near the high the Q-vector is anti-parallel to the thermal wind. The two Q-vectors thus converge in
the area between the trough and ridge lines where we have already shown upward motion to occur.

Ageostrophic flow

The characteristic horizontal scale of the geostrophic wind in the mid-latitude troposphere is about 10 to
20 m s−1, while the scale of the ageostrophic wind is an order of magnitude smaller, often only 1− 2 m s−1.
Although the ageostrophic flow is only a small component of the wind field, the upward motion, omega
(ω), is determined only by its ageostrophic part. Here we will further demonstrate the significance of the
ageostrophic wind components.
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Consider the following thermal wind relationship

f0
∂ug
∂p

=
R

p

∂T

∂y

Then the evolution of the thermal wind components leads to

Dg

Dt

(
f0
∂ug
∂p

)
= −Q2 + f0

2∂va
∂p

+ f0βy
∂vg
∂p

(1)

Dg

Dt

(
R

p

∂T

∂y

)
= Q2 + σ

∂ω

∂y
+
κ

p

∂J

∂y
(2)

Assume that diabatic heating is small enough to disregard and consider the flow to be purely geostrophic,
i.e. V a = 0, and ω = 0 because ω is determined only by the ageostrophic part of the wind field:

−∂ω
∂p

=
∂ua
∂x

+
∂va
∂y

Equations (1) and (2) are reduced to

Dg

Dt

(
f0
∂ug
∂p

)
= −Q2 + f0βy

∂vg
∂p

(3)

Dg

Dt

(
R

p

∂T

∂y

)
= Q2 (4)

Scale analysis is subsequently performed in order to estimate the magnitudes of the various terms of equation
(3). First, consider the left-hand side of equation (3)

Dg

Dt

(
f0
∂ug
∂p

)
=

∂

∂t

(
f0
∂ug
∂p

)
+ ug

∂

∂x

(
f0
∂ug
∂p

)
+ vg

∂

∂y

(
f0
∂ug
∂p

)
∂

∂t

(
f0
∂ug
∂p

)
∼ 1

L/U
f0
U

δp
=
f0U

2

Lδp

ug
∂

∂x

(
f0
∂ug
∂p

)
and vg

∂

∂y

(
f0
∂ug
∂p

)
∼ U 1

L
f0
U

δp
=
f0U

2

Lδp

Consider the right-hand side of equation (3)

Q2 = −R
p

[
∂ug
∂y

∂T

∂x
+
∂vg
∂y

∂T

∂y

]
, but consider (3.28) and (3.29)

p
∂vg
∂p

= −R
f

∂T

∂x
=⇒ ∂T

∂x
= −fp

R

∂vg
∂p

,

p
∂ug
∂p

=
R

f

∂T

∂y
=⇒ ∂T

∂y
=
fp

R

∂ug
∂p
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∴ Q2 = −R
p

fp

R

[
−∂ug
∂y

∂vg
∂p

+
∂vg
∂y

∂ug
∂p

]
= f

[
∂ug
∂y

∂vg
∂p
− ∂vg

∂y

∂ug
∂p

]
= (f0 + βy)

[
∂ug
∂y

∂vg
∂p
− ∂vg

∂y

∂ug
∂p

]
Assuming that the meridional displacement, y, is at most equal to the length scale of 106 m, then

βy ∼ 10−11 m−1 s−1×(106 m)

= 10−5 s−1 � f0

∴ Q2 = f0

[
∂ug
∂y

∂vg
∂p
− ∂vg

∂y

∂ug
∂p

]
∼ f0U

2

Lδp

Scale analysis has therefore shown that the order of magnitude of the left-hand side of the equation and Q2

is the same, which is

f0U
2

Lδp
∼ 10−4 s−1×(10 m s−1)2

(106 m)× 1000 kg m−1 s−2

= 10−11 kg−1 m2 s−1

Figure 3: Meridional displacement in absolute terms in the Southern Hemisphere.
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Since the meridional displacement y = β−1(f − f0), the figure above shows that meridional displacements
between about 41°S and 49°S, y can be approximated by 105 m. As a result, scale analysis of the β term of
equation (3) results in

f0βy
∂vg
∂p
∼ 10−4 s−1×10−11 m−1 s−1×105 m×10 m s−1

1000 kg m−1 s−2

= 10−12 kg−1 m2 s−1

The β term is therefore an order of magnitude smaller than the rest of the terms and is subsequently disre-
garded. This result leads to

Dg

Dt

(
f0
∂ug
∂p

)
= −Q2

∴ Q2 = −Dg

Dt

(
f0
∂ug
∂p

)
= −Dg

Dt

(
R

p

∂T

∂y

)
, because of the the thermal wind relationship.

However, the reduced form of equation (4) is

Q2 =
Dg

Dt

(
R

p

∂T

∂y

)
,

which contradicts the scaled result forQ2. The implication is that in order to address this contradiction is for

either the vertical shear
(
∂ug
∂p

)
or the temperature gradient

(
∂T

∂y

)
to vanish. We can therefore not ignore

the ageostrophic wind terms, and so the ageostrophic circulation is required to keep the flow in approximate
thermal wind balance.

The role of ageostrophic circulation in vertical motion is implied through the determination of the omega
(ω) motion field, since ω is determined only by the ageostrophic part of the wind field

∂ua
∂x

+
∂va
∂y

= −∂ω
∂p

∇ · V a = −∂ω
∂p

However, the total ageostrophic flow field cannot be determined by the divergence alone, because

DgV g

Dt
= −f0k × V a − βyk × V g

By again neglecting the β effect for simplicity

DgV g

Dt
= −f0k × V a

k × k × V a = − 1

f0
k × DgV g

Dt
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The left-hand side is

k × k × V a = k × k × (Va1i+ Va2j)

= k ×

∣∣∣∣∣∣
i j k
0 0 1
Va1 Va2 0

∣∣∣∣∣∣
= k × (i(−Va2)− j(−Va1))
= −Va2j − (−i)(−Va1)
= −(Va1i+ Va2j)

= −V a

∴ −V a = − 1

f0
k × DgV g

Dt

∴ V a =
1

f0
k ×

(
∂V g

∂t
+ V g · ∇V g

)
=

1

f0
k × ∂V g

∂t
+

1

f0
k × V g · ∇V g

The ageostrophic wind forcing therefore consists of two parts. The first term on the right represents the
isallobaric1 wind, and the second term is called the advective part of the ageostrophic wind.

Consider the isallobaric term

1

f0
k × ∂

∂t
V g =

1

f0
k × ∂

∂t

(
1

f0
k ×∇Φ

)
=

1

f0
2k × k ×∇

(
∂Φ

∂t

)
=

1

f0
2k × k ×∇χ

=
1

f0
2k × k ×

(
∂χ

∂x
i+

∂χ

∂y
j

)
=

1

f0
2k ×

(
∂χ

∂x
j − ∂χ

∂y
i

)
=

1

f0
2

(
−∂χ
∂x
i− ∂χ

∂y
j

)
= − 1

f0
2∇χ

Therefore, the isallobaric wind is proportional to the gradient of the geostrophic tendency. Since f02 is
involved, there is no change of sign in crossing the equator. This isallobaric wind blows towards falling
geopotential in both hemispheres.

Next consider the term that is the advective part of the ageostrophic wind. At the synoptic scale, baro-
clinic waves grow in the mid-latitudes due to baroclinic instability (arising from vertical shear of the mean

1of equal or constant pressure change.
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flow and thermal wind). When such waves are part of the jet stream, the advective term is dominated by
zonal advection, since jet streams are quasi-horizontal with maximum winds embedded in the mid-latitudes
westerlies. Let u denote the mean zonal flow, then

V g · ∇V g ' (ui+ 0j) ·
(
∂

∂x
i+

∂

∂y
j

)
V g

= u
∂

∂x
V g

∴
1

f0
k ×

(
u
∂

∂x
V g

)
=

1

f0
u
∂

∂x
(k × V g)

=
1

f0
u
∂

∂x

(
k ×

(
1

f0
k ×∇Φ

))
=

1

f0
2u

∂

∂x

(
k ×

(
k ×

(
∂Φ

∂x
i+

∂Φ

∂y
j

)))
=

1

f0
2u

∂

∂x

(
−∂Φ

∂x
i− ∂Φ

∂y
j

)
= − 1

f0
2u

∂

∂x
(∇Φ)

=⇒ The ageostrophic wind

V a = − 1

f0
2

[
∇χ+ u

∂

∂x
(∇Φ)

]
Next, we will perform a scale analysis on this ageostrophic wind equation. First, do the scale analysis of the
isallobaric wind

V isall = − 1

f0
2∇
(
∂Φ

∂t

)
∼ − 1

f2
1

L

(
L

U

)−1

δΦ

= − 1

f2
U

L2

(
−1

ρ
δp

)
=

Uδp

f2L2ρ

∼
10 m s−1×

(
10× 102 kg m s−2 m−2

)
10−8 s−2× (106 m)2 × 1 kg m−3

=
104

104
s−3

s−2 m−1
= 1 m s−1
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Next, scale the term that is the advective part of the ageostrophic wind

− 1

f0
2u

∂

∂x
∇Φ

∼ − 1

f2
U

1

L

1

L
δΦ

= − 1

f2
U

L2

(
−1

ρ
δp

)
=

Uδp

f2L2ρ
, which is the same as was found for the isallobaric wind.

Figure 4: Mean zonal flow distribution at the two pressure levels indicated.

The scale analysis done here shows that both the isallobaric wind and the advective part are about 1 m s−1,
given both the typical horizontal wind speed and the mean zonal flow to be 10 m s−1. However, profiles of
the time-mean zonal geostrophic wind, averaged over longitudes, show that for two isobaric levels, one at
850 hPa and the other at 300 hPa, that there is a strong jetstream at 300 hPa in the mid-latitudes.

Zonal mean winds of the 300 hPa jetstream are typically of the order of 30 to 40 m s−1 in the mid-latitudes,
while at 850 hPa the zonal maximum wind is closer to the 10 m s−1 value used in the scale analysis. There-
fore, at the 300 hPa jetstream the advective contribution to the ageostrophic wind dominates over the isal-
lobaric contribution. At both high and low latitudes, that is on the edges or flanks of mid-latitude baroclinic
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systems, zonal wind at the 300 hPa level are of similar strength and weak. Thus, at the flanks the two con-
tributions to the ageostrophic flow are similarly small so that the resulting ageostrophic wind is small. The
net effect is that at 300 hPa the ageostrophic motion is primarily zonal.

At the 850 hPa level, owing to the relatively weak zonal wind in the mid-latitudes, the advective part does
not dominate as it does at the 300 hPa level. Moreover, owing to the weak wind at 850 hPa at the flanks, the
advective contribution is nearly zero there. On the other hand, since the isallobaric wind is always directed
down the gradient of pressure tendency, it will cause a meridional component in both the northern and
southern flanks of the baroclinic wave, and a zonal component along the central axis of the wave. However,
along the zonal axis the isallobaric contribution may balance that of the advective contribution, with the
net result that the ageostrophic motion will only have a meridional component in the northern and southern
flanks at 850 hPa.

Vertical and horizontal motions in a developing short-wave baroclinic system
in the Southern Hemisphere – a summary

This chapter on the quasi-geostrophic theory started off by presenting a classic theory on the motion of mid-
latitude developing baroclinic systems in the Southern Hemisphere. In this theory the atmospheric level of
non-divergence (transition from positive to negative divergence, and vice versa) was introduced and it was
concluded that if this level is low enough in altitude that the system will move eastward. The eastward
movement of these systems fits into the theory of short-wave developing baroclinic systems discussed in
this chapter. The 500 hPa level is often assumed to be the level of non-divergence, and is about halfway
through the vertical depth of the mass of the atmosphere. Next, through the use of highly idealistic circula-
tion fields at the 500 hPa level the relative importance of the advections of relative and planetary vorticity
was investigated – relative vorticity advection dominates planetary vorticity advection for short-wave sys-
tems. Moreover, for fast-moving extratropical short-wave weather systems that are not rapidly amplifying or
decaying the local rate of change of geostrophic vorticity is represented only by the advection of geostrophic
vorticity. However, in the presence of developing systems this rate is also a function of the divergence effect,
which forms part of the ageostrophic flow.

Consider Figure X1 that shows a mean sea-level (i.e., 1000 hPa) pressure pattern represented by fine lines
and 500 hPa pattern by thick lines for the Southern Hemisphere. First we will consider vorticity advection
for short-wave systems at both the 1000 hPa and 500 hPa levels, by neglecting the effect of planetary
vorticity advection. The vertical lines on the figure respectively represent trough and ridge axes at 500 hPa
as well as at the surface. At the surface by the centres of both the low and the high pressure systems, the
geostrophic vorticity advection is close to zero. However, at the 500 hPa level above the surface low (high)
pressure system the advection of geostrophic vorticity is higher (lower) and positive (negative). Vorticity
advection is usually higher in absolute terms at 500 hPa than at the surface because the wind speeds tend
to increase with height, therefore 500 hPa winds near a trough will often be stronger than low-level winds.
Accordingly, there is a positive change in the vertical of the geostrophic vorticity advection, referred to
as differential vorticity advection, which is a negative value above the surface low owing to the decrease
in pressure with increasing height above the surface. However, in the Southern Hemisphere where the
Coriolis parameter is negative, multiplying the differential vorticity advection term with f0 leads to a positive
differential vorticity advection term. Take note that rising air is implied by an increase with height of
cyclonic relative vorticity advection, which is the case above the surface low.
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The positive advection of relative vorticity at the 500 hPa level above the surface low pressure system has
implications for the horizontal displacement of mid-latitude disturbances. Consider Figure X2 as well as
the geopotential tendency equation. This equation consists of two terms on the right respectively represent-
ing vorticity advection (the dominant forcing term in the upper troposphere) and thickness or temperature
advection (largest in magnitude in the lower troposphere). Due to the advection of relative vorticity at
500 hPa above the surface low, geopotential heights are decreasing, while geopotential heights are increas-
ing at 500 hPa above the surface low. Vorticity advection at the 500 hPa level thus acts to propagate the
disturbance horizontally to spread it vertically. Regarding the temperature advection term of the tendency
equation, below the 500 hPa trough cold advection in association with the cold front occurs, while warm
advection in association with the warm front occurs below the 500 hPa ridge. The effect of cold advection
below the 500 hPa trough is to deepen the trough in the upper troposphere, while the effect of the warm
advection below the 500 hPa ridge is to build the ridge in the upper troposphere. What is the source of
this advection? Recalling the figure of a developing synoptic-scale system in the section that discussed the
Sutcliffe form of the omega equation, the 500 hPa contours lead the 1000 hPa contours due to the west-
ward tilt of the developing system. During this development the result is that the 500 hPa geopotential
field leads the isotherm pattern. While the angle between the geopotential height contours and the thickness
contours increases, an increase in the horizontal temperature advection is the result. However, as the system
is allowed to further develop, the surface low pressure contours, the 500 hPa contours and the thickness
contours come into alignment with each other. This later stage of development results in the weakening of
the horizontal temperature advection and marks the end of the intensification phase in the lifecycle of the
short-wave baroclinic system.
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The omega equation was used to determine where upward and downward motion in a developing system
may occur. Figure X3 shows the results from analyzing three versions of this equation, namely its traditional
form that consists of two terms on the right respectively representing differential vorticity advection and
thickness (temperature) advection, the reduced Sutcliffe form that only has one term on the right representing
the advection of vorticity by the thermal wind, and the Q-vector form. The differential vorticity advection
terms have shown that upward (downward) motion in the developing system occurs over the surface low
(high) pressure systems, and that the thickness advection forces upward (downward) motion at the 500 hPa
ridge (trough) axis ahead (behind) the warm (cold) front. Although the interpretations of these two physical
processes have apparent advantages as demonstrated here, in practice there is often a significant amount of
cancellation between them. For this reason an alternative, albeit an approximate form of the omega equation,
is often applied in synoptic analyses – hence the Sutcliffe version of the equation. This version showed that
upward (downward) motion is forced east (west) of the 500 hPa trough above the surface low (high) pressure
system. This finding is in agreement with the interpretation of the Q-vector form of the omega equation as
shown above.

To summarize, temperature advection forces the strengthening of mid-tropospheric troughs and ridges, the
advection of relative vorticity acts to propagate the developing system horizontally, while differential rel-
ative vorticity advection forces rising (sinking) motion over surface low (high) pressure systems, as is the
advection of vorticity by the thermal wind.
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