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Bjerknes-Holmboe theory

As an introduction to the notion of mid-latitude developing baroclinic systems, we introduce a theory of
relating the horizontal distribution of divergence and convergence to a pattern of high and low pressure
systems. Highs will move towards regions of convergence (rising pressure), and lows towards regions of
divergence (falling pressure). This theory is commonly known as the Bjerknes-Holmboe theory. Here we
discuss it only from a qualitative point of view.

Since the divergence of the geostrophic wind (V}) is zero (for constant f), and the divergence of the gradient
wind (V) is not zero, we will examine the pattern of divergence of idealistic pressure fields for gradient flow.
Our weather pattern has

1. Sinusoidal 500hPa contours extending from west to east,

2. Circular concentric isobars at the surface.

The curvature effect

We have already shown that V; > V' for cyclonic flow, and V; < V' for anticyclonic flow. Therefore, owing
to this curvature effect, we expect a distribution of wind speeds as shown in this figure (the arrows represent
the geostrophic wind).

air is departing faster than entering

air is departing slower than entering



Such a pattern would lead to falling pressure east of the troughs and rising pressure east of the ridge. The
expectation is for the pressure system to move eastward because the lows (highs) move towards regions of
falling (rising) pressure. Moreover, for a given fixed amplitude of such systems, short wavelengths and high
wind speeds, the curvature effect results in an eastward moving wave.

The latitude effect

Assume that all other parameters are kept constant, then the geostrophic and gradient wind speeds decrease
with increasing (equatorward) latitude. To demonstrate this statement, consider the gradient wind equation

1 /00 V2
v=-3(m+%)
Apply scale analysis to R2 o~ (101?651;11)2 = 10"* ms~2, the centrifugal force.
Since a typical parameter value for o 1073 m s~2, the centrifugal force is about a tenth of the pressure
gradient force. This result implies that V' >~ —}gi = Vj, which further implies that both the gradient and

geostrophic wind increase or decrease similarly for a variable Coriolis parameter. Consider the following
table of approximate gradient wind speeds with increasing latitude in the Southern Hemisphere

Latitude | Approximate gradient wind speed (ms~1)
—30 13.7
—45 9.7
—60 7.9

From the gradient wind relationship and the table above, wind speed decreases with increasing latitude.

For low wind speeds and long wavelengths, the curvature term may be small, resulting in the wave moving
westward as determined by the latitude effect. This effect is enforced when the wave amplitude is large.

Next, consider the case of equally spaced, concentric, circular isobars of a surface low and high pressure sys-
tem in the Southern Hemisphere, which results in the curvature effect to be the same everywhere. However,
the latitude effect will produce higher winds on the equatorward side.



div conv conv div

The result of the latitude effect is convergence with rising pressure to the east (west) of the low (high) pres-
sure and divergence with falling pressure to the west (east). Such systems are expected to move westward.

The idealized model
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Level of non-divergence

For the usual short-wave systems in which the curvature effect dominates the latitude effect, divergence is
found east of the trough line and convergence ahead of the ridge line. East of the centre of the surface
low, low-level convergence is found with divergence aloft, resulting in ascending motion. The opposite is
found east of the ridge line where upper-level convergence is associated with low-level divergence east of
the surface high, resulting in descending motion.

Consider the level of non-divergence shown in the figure. This is a level of transition from the positive to



negative divergence, and vice versa. If this level is low in altitude, the high altitude pattern will predominate,
and the system will move eastward. If this level is high in altitude, the low altitude pattern will predominate,
and the system will move westward.

We have introduced here a classic theory qualitatively of the motion of pressure systems in mid-latitudes.
Although this theory may reveal considerable quantitative agreement with synoptic experience, also over the
Southern Hemisphere, we will develop and discuss quantitatively a set of equations that are less complicated
than the full set of primitive equations of motion in order to describe extra-tropical weather systems. This
set of equations represent the so-called quasi-geostrophic approximation. Why the theory is called quasi-
geostrophic? It is because if the winds in mid-latitude systems were perfectly geostrophic, such winds
never cross the isobars, and could thus not cause convergence into the low pressure system and therefore
no vertical velocity. Since we know from observations that vertical motion does exist and are important for
causing clouds and rain development in cyclones, the upward motion cannot be geostrophic. By including
this ageostrophic flow into the set of equations that are otherwise totally geostrophic, the equations are said
to be quasi-geostrophic, meaning partially geostrophic.



The quasi-geostrophic approximation

To show that for motions that are hydrostatic and nearly geostrophic, the 3-dimensional flow field is deter-
mined approximately by the isobaric distribution of geopotential [®(x, y, p, t)].

The use of the isobaric coordinate system simplifies the development of approximate prognostic and diag-
nostic equations.

Scale analysis in isobaric coordinates

DV _ _
Horizontal momentum equation ?‘t/ + fExV ==V (3.2) also (6.1)
i) T
Hydrostatic equation a— =—a= —R— (3.27) also (6.2)
op p
- . = —  Ow
Continuity equation V.-V 4+ 9 0 (3.5) also (6.3)
p
. . 0 - = J
Thermodynamic energy equation o +V-V )T - 5Sw=— (3.6) also (6.4)
Cp
Total derivative in (3.2):
D 0 — = 0 Dp
—=| = . — = — 6.5
Di <8t>p+(v V)P+wap [w t] (6.5)

Olnf
dp
The above set of equations still contain several terms that are of secondary significance for mid-latitude

synoptic-scale systems. They can be simplified further by

From (3.6): S, = T , static stability parameter [Sp ~5x107*KPa ! in mid—troposphere]

1) horizontal flow is nearly geostrophic
2) the magnitude of the ratio of vertical velocity to horizontal velocity is of the order 1073,

Separate the horizontal velocity into geostrophic and ageostrophic parts:

V:VQ+VG; Vg

1- _ _
%kaCD Vo=V -V, (6.7)



Regarding fj: It is assumed that the meridional length scale (L) is small compared to the radius of the Earth
so that the geostrophic wind (6.7) may be defined using a constant reference latitude value of the Coriolis
parameter.

For the systems of interest

N

a

|Vg‘ > ‘Va‘ or

~ O(Ro), thatis the same order of magnitude as the Rossby number

K

1

(Ro = LL ~ 0.1 from Page 41 of Holton 4>
0

Momentum can then be approximated to O(Ro) by its geostrophic value, and the rate of change of momen-
tum (or temperature) following the horizontal motion can be approximated to the same order by the rate of
change following the geostrophic wind.

In equation (6.5):
1) V can be replaced by Vg

2) the vertical advection which arises only from the ageostrophic flow can be neglected.

Div ~ ngg
Dt~ Dt
where D 5 9 5 5
g —
—=—+V, - V== — — 6.8
Dt — ot e Y T e Ty 8
Note: Newton’s second law; a form of the momentum equation:
DU = — 1= —
— =20xU—--Vp+g+F, (2.8)
Dt P

The dynamical effect of the variation of the Coriolis parameter with latitude needs to be retained in the
Coriolis force term in the momentum equation. This variation can be approximated using a Taylor series:

d
f=fo+ <d£> (y + yo) + higher order terms
ol

o= (5) w=oma
Y/ 60

This approximation is referred to as the: mid-latitude S—plane approximation

f=fo+ By (6.9)

fo is the Coriolis parameter computed at a characteristic latitude, ¢g; the variable y measures the meridional

distance from this latitude.
df
= (%)
Y7 4o

d .
=% (2Qsin @) ¢,




From the figure below:

oy = ado
L _1n
0y ado
a

1d )
S B= adfgb@ﬂ sin @) 4,
2 cos ¢g
N a
The ratio of the terms on the right of (6.9):
By BL  2Qcos ¢y I 1
fO fO a 202 sin b0
L —45°
= C?S %o ~ O(Ro) < 1 Note: M = —1 and L is small compared to the radius of the Earth, a
sin ¢pa sin(—45°)

.. fo > By, which justifies letting the Coriolis parameter be a constant f

in the geostrophic approximation and using (6.9)

% o
(6.1): Dr + fkExV +V® =0 (the acceleration following the motion, the Coriolis force and the pressure
gradient force are balanced)

Consider
fExV4+V® = (fo+By)kx (Vy+V,) +Ve
= fok X Vg + Byk x Vg + fok x Vo + Byk x Vo — fok x V4
= fok x Vo + Byk x V4 + Byk x V,

Neglect the ageostrophic wind compared to the geostrophic wind in the term proportional to Sy:

Atmospheric waves influenced by the beta (5) term are characterized as planetary waves (also called Rossby
waves). These waves experience the curvature of a revolving planet through meridional changes in the
Coriolis parameter. The so-called beta effect may be considered to be small when a synoptic-scale storm
moves across only a small range of latitudes during its lifetime.

S fkxV 4+ VO~ fok x Vo + Byk x V,, (6.10)



The horizontal momentum equation i.t.o. geostrophic flow then becomes:

D,V — —
ﬁ:—fokxva—ﬁykxvg

and each of these terms is O(Ro) compared to the pressure gradient force, and the neglected terms are
O(Ro?) or smaller.

f, » Py and |Fg| » |V, |

1 = G
« By Nﬁf;’ |VaINE|Vg|
L (6.7): fV, =k xV®
Dt =—fokxV,—BykxV, ) -
(11 .+~ 2 VO = —fkxV,
m—f;kx(ﬁvg)—ﬁﬁkx%

1 since };Xﬁf_ xVd)
= E(Lk ng)

Il

|
|
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Next, V- V=V-(Vy+V,)=V-Vy+V.-V,

_ 1- _ _
Since V, = f—k x V& is non-divergent, V-V, =0
0

- — Oug  Ovg
..V~V—V-Va—ax+ay
- — Ow ou, Ov, Ow
3. V. o - = 12
(63)VV+8p 0:>8x+8y+8p 0 (6.12)

(6.12) means that w is determined only by the ageostrophic part of the wind field.

0 - = J
The thermodynamic energy equation (6.4): ((% +V- V> T - Syw=—
“



However, the horizontal advection can be approximated by the geostrophic value

0 — - J
. E— . — _—
"<at Vo ;>1 S =

The vertical advection is not neglected and forms part of the adiabatic heating and cooling term. This term
must be retained because the static stability is usually large enough on the synoptic scale so that the adiabatic
heating/cooling due to vertical motion is of the same order as the horizontal temperature advection.

Simplifying the adiabatic heating and cooling term: Divide the total temperature field, 7}, into a basic state
(standard atmosphere) portion that depends only on pressure, Ty (p), plus a deviation from the basic state,

T(x,y,p,t).

Deviation from the basic state

———
Ttot(xayapat) = TO(p) + T(w,y,p,t)
~——
Basic state
Static stability parameter in the isobaric system
T 00
Sp=——— 3.7
Olnf Jlnd
S, =-T = -1
g Ip *op
dTi oT
because de’ > 879

0o is the potential temperature that corresponds to the basic state temperature 7, which is only a function
of p [Ty = To(p)].
. 81n90 o dlnHo

Op dp
dInéy dlnby /p R
R — — Z) (=
P O dp O dp <R> <p>
_ Tyt (p)
~ p dp \R
__ RTydlnbg
- p dp
op
LSy =
PR



0 RT p 0D
) = T=-2°22
(6.2): dp  p — R Op

(59 (3) (5) - (B

0 9L0)] R J i
(aﬁv V)(ap>“’” v b

(6.13b)

The quasi-geostrophic equations form a complete set in the dependent variables ®, V ,, V,, and w.

V,= %kaCP
D,V - — - —
i’)tg:—fokxva—ﬁykxvg
ou, Ov, Ow

8x+8y+87p

0 — = 0P kJ
(aﬁv 'V> (‘w)“’“"p

The quasi-geostrophic vorticity equation

v

1—
Vo=—kxV®
" fo
V z = _T 0P  0P-
fOVg:fo(ugZ+Ugj) :k;x (axz+ay]
_oes on,
81‘] ayl
0D oD
o =G0 fous = =0

6.7)

(6.11)

(6.12)

(6.13b)

6.7)

(6.14)
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Geostrophic vorticity

i j k
— = = —|l0 0
G=F Vngfk% ay 0
ug vy 0
A b ]
N ox oy
Jug _ Oug
oz dy

oD (LoBY_ 9 (1 ( 0%
YT gx \foox ) oy \fo \ By
1 (9% 9P\ 1,
?m@ﬂ*%ﬁ_v® e

This equation can be used to determine (4(x, y) from a known field ®(z, y).

It can also be solved by inverting the Laplacian operator to determine ® from a known distribution of (g,
provided that suitable conditions on ® are specified on the boundaries of the region in question.

Vorticity is a useful forecast diagnostic: if the evolution of the vorticity can be predicted, then inversion of
(6.15) yields the evolution of the geopotential field, from which it is possible to determine the geostrophic
wind and temperature distributions.

Note: The Laplacian of a function tends to be a maximum where the function itself is a minimum...

1
= —V?®
“ T

It will be shown later in the course that VZ® o —®.

In Northern Hemisphere:

1
—V2® xx —® since fy > 0
fo

SoGg o =P

—> positive vorticity implies low values of geopotential, and vice versa.
Atridge @ is a maximum, thus ¢, < 0

At trough @ is a minimum, thus ¢, > 0

In Southern Hemisphere:

1
f—V2<I> x ¢ since fo <0
0

Gy ox @
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= positive vorticity implies low values of geopotential, and vice versa.
Atridge @ is a maximum, thus ¢, > 0

At trough ® is a minimum, thus ¢, < 0

The quasi-geostrophic vorticity equation can be obtained from the quasi-geostrophic momentum equation

(6.11): B
D,V - = - =
#:—fokxva—ﬂykxvg

Ugi + vgj) = — fok X (uai + vaj) — Byk x (ugi + vy7)
= —fouaj — fo(—vai) — Byugj — By(—vyi)

Lg
Dt(

" Ft = fova + Byvg
D

& Fivg = — folq — ﬂyug
Dy

. Eug — fova — Byvg =0 (6.16)
D,

& Dtvg + fouq + Pyug =0 (6.17)

0 0
17) — —(6.16) :
55(617) = 5 (610)
0 (Oug aug Ouyg B
ay (815 Ty Ty fo”“_ﬁy%)_o
=0
82ug n L 82ug N %% N . @_ . 0v,
Oyot 9900y Qy Oy Oy “ Oy 0 oy
op oy Ovg
_ = —_ B == — By—2 = 1
8yyvg /8 ay Ug y 8y O ( )
-
=1
and o [0 0 0
e ] 9V Y _
0:v<8t+ 95 "'I'ga +foua+ﬁyug> 0
=0
(921;9 N . 021,'g N %% n n @ f ouy
Dot ‘9002 T Bz By Yaoe T,
s y Odug
padad s -7 = 2
—i—axyug—i—ﬂax ug—l—ﬂyax 0 2)
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0%v, B 0%uy o 0%v, . 0?uy 4y 0%v, 0%uy 9
oxot  Oyot 9 0x2 99z0y = 90xdy Vs Oy?
Oug Ovg  Oug Oug  Ovg Ovgy  Ovg Ouy
Ox Or  dy Ov %87 Oy dy

+ —yug +
Iy

fo + fo

vy
81’ yvg+ﬁvg+ﬁy7+ﬁ y_O

.9 (Ovg  Ouy 0 (Ovg  Ouy 0 (9vg _Oug . 5%
"8t<8x 8y)+u98x(8x ay ) Tay \ar ~ay ) T

L Oug (v Oug | Ovg (Ovy  Dug

Ox \ 0r Oy oy \ 0z Oy

+ “Bterms” = 0

'agg 8Cg 6Cg Oug %

ox y
ou ov
+ ¢y ( B  + ay")

+0+0+/Bv9+5y<x+y> =

V-Vy=0
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oz oy

Take note
D,f of  of _ of -
Dt_3t+ga +98 [f—f(y)]
70 70
=0+V, Vf=pu,
Cg Oug 87}@ 7o
ot +V VCg fo< 8y —V4-Vf
8ua 8va B Oow
From (6.12): ay (‘Tp
an = aw

5, 5 ()7, %
_Vg'v(<g+f)+fog;}

(9va
By

)

(6.18)

(6.19)

13



In words: The local rate of change of geostrophic vorticity is given by the sum of the advection of the
absolute vorticity by the geostrophic wind plus the concentration or dilution of vorticity by stretching or
shrinking of fluid columns (the divergence effect).

Vorticity tendency due to vorticity advection: — V- V(¢, + f)

= —Vg -VCQ — Bug

V4 -V, : geostrophic advection of relative vorticity

Bvy : geostrophic advection of planetary vorticity

For disturbances in the westerlies, these two effects tend to have opposite signs.

Consider the figure for an idealized 500hPa flow in the Northern Hemisphere.
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In region I, upstream of the 500hPa trough, the geostrophic wind is directed from the relative vorticity
minimum at the ridge towards the relative vorticity maximum at the trough.

Ve V>0 = —V,-V(, <0

At the same time v, < 0 in region I because it is directed southwards.

Take note that 5 = 22 cos ¢p/a > 0 in both hemispheres.

S Bug <0 = —Pug >0

We now have in region I that the:

1) advection of relative vorticity tends to decrease the local vorticity

2) advection of planetary vorticity tends to increase the local vorticity.

14



The same arguments can be applied for region II.

Therefore, advection of relative vorticity tends to move the vorticity pattern and hence the troughs and
ridges eastward (downstream). However, advection of planetary vorticity tends to move the troughs and
ridges westward against the advecting wind field.

The net effect of advection on the evolution of the vorticity pattern depends on which type of vorticity
advection dominates.
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Consider the schematic of the 500hPa geopotential field in the Southern Hemisphere above.

The advection of the absolute vorticity by the geostrophic wind:
*Vg ﬁ(Cg +f)= *Vg ﬁCg — Pug

Region I: Advection of relative vorticity is positive because we are going from ¢, < 0 at the trough to ¢, >
at the ridge. o L
Ve V(>0 = -V,-V({ <0

We have shown that 3 > 0. However, in the region v, points southwards. Therefore, v4 < 0.

S Brg <0 = =By, >0

Region II: —Vg ~ng > 0, because advection of relative vorticity is negative and — v, < 0 because v, > 0.

Consider an idealised geopotential distribution on a mid-latitude S-plane of the form
O(x,y) = Po — foUy + foAsinkx cosly

®, a constant zonal speed U, and amplitude A depend only on pressure. Wave numbers k and [ are defined
as k = 2w/Ly and | = 2n/L,. L, and L, are respectively the wavelengths in the x and y directions. y
in the geopotential distribution equation is given by a(¢ — ¢g), with a the radius of the Earth and ¢ the
latitude at which fy is evaluated.

For ¢ — ¢p = 6°, y = 6.67 x 10° m
=3° y=3.34%x10°m
=1° y=111x10°m
=10° y=1.11 x 10°m

15



Therefore, for 10° displacement in y, y is approximately equal to the length scale, L, of 10° m.

1
Ug = _foaay (®o — foUy + foAsin kzx cosly)
=U — Asinkxz(—lsinly) = U + [Asin kx sin ly
v —iﬁfb—i(f kA cos kx cosly) = kA cos kx cosl
Y A I i

1 /0% 02
= ()@
S fo (8x2 + 8y2>
6% (fokA cos kx cosly) = — fok? Asin kz cos ly

0
ay (—foU — fol Asin kxsinly) = — fol? Asin kx cos ly
_ L

Jo
= —(k* 4+ 1?) Asin kx cos ly

.Gy (—f0k2 — folz) Asin kx cos ly

Advection of relative vorticity:

- = 0- 0=
V-V = — (ugi + vgj) - (83:1 + 8y‘7) ¢
¢y ¢y

—Uyg O Ugaiy

= —uy(—(k* + 1*) Ak cos kz cos ly) — vy(—(k* + 1*) Al sin ka(— sin ly))
= —ug(—(k* + I*)vg) — vg((k* +1%)(ug — U))

= ugvg(k* +1%) — ugvg (k* + 12) + v, U (K* + 1?)

= v,U(k* +1%) = Ak cos kx cos lyU (k* + 1?)

= kU (k* + 1) A cos ka cos ly

Advection of planetary vorticity:

df

—Ug@ = —vyff = —BAkcoskxcosly [B = 2Qcospo/al

Advection of absolute vorticity:
V4 V(+f)= kU (k? + 1?) A cos kz cos ly — BAk cos kzx cos ly
= kAcos kx cosly(U(k* +1%) — B)

2 2
k= Ll’ l= L—W with L, and L, the wavelengths in the = and y directions, respectively.
z y
Consider | = g x 10~ " m™! for fixed L, wavelengths. However, we want to determine the effect of L, on

the advection of both relative and planetary vorticity, and so wavenumber & varies with a range of L, (i.e.,
1000 km to 12000 km). We therefore need to evaluate U (k? + [?) against 3 as shown in the figure below.

16



Relative vs Planetery Vorticity Advection

Uk? + 1?) x 107"

X10 1
beta = df/dy at 45 degrees Y 0.4195 ||

2 4 6 8 10 12
L in 1000 km

Take note that the term representing the advection of relative vorticity (U (k? + [2)) at L, = 3000 km is
about ten times larger than the value at L, = 10000 km. This result implies that relative vorticity advection
is multiple times larger than planetary vorticity advection at 3000 km where there is a clear exponential
inflection on the figure.

By considering a simplified version of an idealised geopotential distribution, a similar result is obtained.

O(z,y,p) = Po(p) — foUpysin (Zp) + foAsinkx
0

19 1 . (7P . Wp>
-~ Y% —_ " (_rU ™\ v
“o fo Oy fo( folosin (m)) oS <po

Vg = 19 _ 1 (foAk cos kx) = Ak cos kx

1 /0 0 . (7D
(g = % (81@ (foAk cos kx) + o <—f0U0 sin <po>>>

1
= I (—foAk'2 sin k:ac) = —k?Asin kx
0
—Vy-V¢, = KUy sin <7];p> Ak cos kx
0

17



L=V V(G + )= (kz2Uo sin (w) — 5> Ak coskx

Po
= (k*Uy — B) Ak cos kx

when pg = 1000hPa and p = 500hPa.

Here we also show the results of having different values of Uy, the constant zonal speed. Clearly, the strength
of a constant zonal wind will affect the wave lengths of short-wave systems, but will have a minimal affect
on the wavelengths of Rossby waves

Relative vs Planetery Vorticity Advection

40 !
UQ =5m/s
35 U, =10m/s |
U0 =20 m/s
30 .
_beta
~ 25 n
o
— 20 T
X
N 15 1
(=)
—)
10 .
5 -
beta = df/dy at 45 degrees
0
2 4 6 8 10 12
LX in 1000 km

Exercise 1: Suppose that on the 500hPa surface of the schematic above, the relative vorticity at a certain
location at 45°S latitude is increasing at a rate of 3 x 1075 s~! per 3 hours. The wind is from the northwest at
20 m s~ and the relative vorticity increases towards the southeast at a rate of 4 x 107%s~! per 100 km. Use
the quasi-geostrophic vorticity equation to estimate the horizontal divergence at this location on a S-plane.

Make use of the following assumptions:
1. The constant Coriolis parameter is equal to —10~*s~! in the Southern Hemisphere

2. (3 is approximated by 10~ m~! 57!

- = 0
3. The following relationship is valid for natural coordinates: V- V(, ~ v%, where s is the distance
s
along the curve (500hPa contour)

18



Solution:

s =V, TG+ D)+ STV
S 0 - = 0
foV V:—g— g Vg vgai
¢ ¢
=% Vo

A 3x107%s7!
ot (3 x3600)s

¢y 4x1076g71
29— (9 -1 — 1 —10 .—2
vy — (20ms )< 100000m )~ o107

=2.778 x 10710572

(20ms™)? = u,? +v,%,  uy = v, (Pythagoras)

1
202\ 2
.'.vg:i<g>

vy =—14.14ms~"  (since v, < 0)
cvgf = —14.14ms (10" M m s
= —1.414 x 10710572

ot 0s
= —(-107"s )T (2778 x 10710 + 8 x 10710 — 1.414 x 1071%) s

=9.364 x 107 %571, divergence

V- V=—f! <8C9 + U% + Ugﬁ)

Exercise 2: Consider the following expression for the geopotential field:

® = By(p) + cfo {—y {cos (Z}f) + 1} + &k Vsink(z — ct)}

is a function of p alone, c is a constant speed, k£ a zonal wave number, and pyg = 1000hPa.

Consider the following two assumptions:

1. Only consider the dominating vorticity advection (either planetary or relative) term applicable to short-
wave systems

2. Geostrophic relative vorticity only varies between trough and ridge axes in the z-direction

Use the quasi-geostrophic vorticity equation to show that the horizontal divergence field consistent with this
geopotential field can be expressed as:

bo

(fo) "} (ck)? cos <7Tp> cos k(z — ct)
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Solution: From Exercise 1: V-V = —f;~ (gt +V, V) (Cg+ f)

_ 102
o = fo Oy
_ 102
”g‘foax
=5V

VT = (gwg.v) GrhH=249 v, 5,17, v

ot
Cg - — . ET 77. - - . QT 27.
= ot + (ugi + vgJ) <a L+ ] g+ (ugi +vg]) 83:Z+ 83/‘7 /
8Cg 0Cy 0y af
~ ot T Ty Tgy

We are considering short-wave systems, which means planetary vorticity advection is dominated by relative
vorticity advection, thus vg/3 ~ 0.

Also according to idealized 500hPa geopotential field, (, only varies between trough and ridge axes in the

. 0
z-direction, therefore fuga—g =0.
Y

— foly = (;; +§:2> (cfo{— [cos (7;0> +1] +11sink(:c—ct)})
a ( 0 <cf0{ [cos (;’f) T 1] T ;sink(m—ct)}>>

= % (Cfokk cosk(x — ct)>

= —cfoksink(z — ct)

O R )
(o

() -1)

OQ?‘Q’)
=
|
@)
o)
)]

20



foCg = —cfoksink(x — ct)
oGy = —cksink(z — ct)

= —foug = (;93/ <cf0 {—y [cos <Z§> + 1} + %sink(m — ct)})

0 :
an = a(—ck‘ sink(x — ct))
= —ck(—ck cos k(x — ct))
= k% cos k(z — ct)
d 0 .
%Cg = %(—ck sink(z — ct))
= —ck(kcosk(x — ct))

= —ck? cos k(x — ct)

. V.-V= —;0 <62k2 cosk(x — ct) + <c (cos <7;i”> + 1)) x (—ck? cos k(x — ct))>
_ L <02k2 cos k(z — ef) + <ccos (”’) + c) % (—ck? cos k(z — ct))>

Jo Po
1
= % <02k2 cosk(x — ct) — 2k cos (Zp) cosk(z — ct) — 2k* cos k(x — ct))
0 0
k2 <7rp>
= ——cos| — |cosk(x —ct
fo Po ( )

Exercise 3: Suppose that on the 500hPa surface the relative vorticity at a location just left of the ridge line
in the figure used in Exercise 1, at the 45°S latitude (where the Coriolis parameter can be considered to be a
constant value of —10~%s~! in the Southern Hemisphere) is increasing at a rate of 3.6 x 10~%s~! per hour.
The wind is, for all practical purposes, blowing directly from the west above the location (negligible north-
south component) at 20 m s~! and the relative vorticity increases toward the east at a rate of 4 x 1076571 per
100 km. Use the quasi-geostrophic vorticity equation to estimate the horizontal divergence at this location
on a [-plane. This is a short-wave system.

Solution:

9

- = ow
ot :_Vg’v(gg+f)+f06*p

— (i + ) (504 57) G+ D)+ Iy
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Since we can ignore advection of planetary vorticity,

8Cg 8Cg OCg Ow
oy T Y Ug + foo-
ot ox oy dp
Since the wind at the location is blowing from the west, v, = 0
¢y 8Cg
ot~ “or T m “Bp
8w 1 (9 an
=Jo < ot "o
gtg > 0 (increasing at a rate of 3.6 x 1076 1)
ug > 0 (wind from the west)
;g > () (vorticity increases per distance, and location is in Region I)
ow 4 1y-1(3.6x1070s71 14 x1070s71
22— (=10 —_—— +20 —
op = ) (1><60><6OS+ e 10°m
36 x 1077
— _10% g2 10~10 42
0%s ( 36 102 +8 x 10

=—10" x (107757148 x 1071%s71)
=—10" x (10 x 107" +8 x 1071%) s~

o o
=-18x107° s_l, divergence since —8—w =V
4

Quasi-geostrophic prediction

The geostrophic vorticity equation

G — = Ow
ot —_Vg'v(<g+f)+f08*p (6.19)
L oo
Cg= VP (6.15)
Jo
a (1 — 1 Ow
= V2<I>> =-V,-V <v2q>+ ) + fo=
ot <f0 ! fo T)*i dp
L5292 _ gLy 0w
Y ot Vy V<fOV<I>+f>+f08
0P
Defining the geopotential tendency y = B
— =/1
B V4V (V2<I> + f) 2 (6.21)
Jo Jo op
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_ 1-
Since V', = —k x V@, the right-hand side of (6.21) depends only on the dependent variables ® and w.
I 0

Next, we will obtain an analogous equation also dependent on these two variables (® and w)

Consider the thermodynamic energy equation:

(gt e v> <—g‘i> R "”;;] (6.13b)
30 e )

Multiply b A pts Q)
ultiply by fo/o - Op >

= = (00
foox _ fOVg-V<a >_f0w_fof<~'=7
op
Differentiate with respect to p:
0 ( foOx 0 | fo—= = /[0® Ow 0 (kJ RTydInd
== === =V, — | = fo=—fo=— | — = 6.22
”8p<0 319) op Lo 0V \ap %5 ~8p \op 7 p dp | ¢

The ageostrophic vertical motion, w, has equal and opposite effects on the left-hand sides in (6.21 fo 1V2x)

.9 (fodx
and (6.22. ap <0 8p)>

Vertical stretching 8—w > () ] forces a positive tendency in the geostrophic vorticity (6.21) and a negative

tendency of equal magnitude in the term on the left side in (6.22).

The left side of (6.22) can be interpreted as the local rate of change of a normalized static stability anomaly
(i.e., a measure of the departure of static stability from .S, its standard atmosphere value).

To demonstrate this statement:

9 (foOx\_ 90
op\odp) Op
9

o [ ROT po
:‘Oap<gpat) {s="%1
L d (19T

-~z ()
B & (1\or 1 00T
—fo [ap (s) ar S@p@t}
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0

Assume that S}, varies only slowly with height in the troposphere, thus S}, is nearly constant and ™ ( S];l) ~
P

0

~ =

0 (fodx\ . fooOT _ fo00T _ 9 (fooT
S, dp Ot S,0top ot

" op \o dp S0t 9p Sp Op
From page 5 of the notes:

Tioe=To+T {7} : basic state (standard atmosphere)}
ST =Thor — To

oT
Therefore — ~ local static stability anomaly

op

10T
oy " Local static stability anomaly divided by the standard atmosphere static stability
p OP

fo OT

Take note: - —— has the same units as vorticity, and is also a normalized static stability value.
p OP

When the tendency of the normalized static stability anomaly > 0:

0
ot \ 'S, Op

0 0
e @7?( < 0, the left side of (6.22)

Op \ o Op
An air column that moves adiabatically from a region of high static stability to a region of low static stability,
Ow/dp > 0.

1
Since (6.21) and (6.22) are analogous equations, the relative vorticity in (6.21), —V?y and the normalized

0
static stability anomaly in (6.22) are changed by equal and opposite amounts. The normalized static stability
anomaly is therefore referred to as the stretching vorticity.

Purely geostrophic motion (w = 0) is a solution to (6.21) and (6.22) only in a very special situations such as
barotropic flow (no pressure dependence) or zonally symmetric flow. More general purely geostrophic flows
cannot satisfy both these equations simultaneously as there are then two independent equations, and a single
unknown (®) so that the system is overdetermined. Thus, the role of the vertical motion distribution must
be to maintain consistency between the geopotential tendencies required by vorticity advection in (6.21) and
thermal advection in (6.22).
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Geopotential tendency
(6.21):
1

~.v2_—v-v<
T\

V2¢>+f> +fog—“ (1)
P

Assuming that the diabatic heating rate J = 0, (6.22) becomes:

0 (foox\ _ _0 [foyy < (2®\]_, 0w
55 (5a) = 570" (5)] @

(6.23) is often referred to as the geopotential tendency equation.

A. The local geopotential tendency
B. The distribution of vorticity advection
C. The thickness advection

If the distribution of ® is known at a given time, B and C may be regarded as known forcing functions and
(6.23) is a linear partial differential equation in the unknown Y.

Take note that the term A involves second derivatives in space (x,y) of the field y, and thus generally
proportional to —.

0P . L .
X = o and we assume that the horizontal structure of ® (geopotential) in the extra-tropics can be repre-

sented by a sinusoidal function:

& = d(z,y,p,t) = A(p,t)B(x,y)

2 2
with B(z,y) = sin(kz) cos(ly); k = —W; 1=
L, L,

X = o (Alp. 1) sin(ka) cos(iy))

2
Term A: [VQ + 92 (f()ﬂ applied to x:
g
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0? 9%\ [0A
2 .
Vix = (8:62 + 8y2> [875 sin(kx) cos(ly)]
2

2
— % ((fﬂ(sin(kx) cos(ly)) + aayQ(sin(k:m) COS(lZ/))>

5 2
_ %;1 <cos(ly)8(12(sin(kx)) + sin(kx);yg(cos(ly»)

. 0 |

022 (sin(kz)) = %(k cos(kz)) = —k?sin(kz)
2

883/2(005(@)) = (%(_lsin(ly)) = —1 cos(ly)

= a—? (cos(ly)(—k2 sin(kx)) + sin(kz)(—1? cos(ly)))

= 9% sin(k)) cos(ly) (~K2 — 1)

= —(k* + 12)%? sin(kx)) cos(ly)

= —(k*+I*)x x —x

V2x

Since geopotential fields tend to lean westward with height in the mid-latitudes an upper troposphere ridge

often lies over or near the surface trough:

200hPa

po = 1000hPa
p = 200hPa

1000hPa

Figure 1: A full phase shift with height.

¢ = A(p,t)B(x,y); we dealt with the B(z, y) part on the previous page, and so we now consider

™

Alpt) = Qo) cos (2

Pbo
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0 20
Regarding term A of the geopotential tendency equation, apply e <fo 8) to x:
P\ 0 Op

Lo )= 5 3)) (= () #5)
=050 [ (23] (== (30)
-5t 5 ()= ()

0
Assume that the standard atmosphere static stability parameter o, varies only slowly with height (i.e., —(e D = 0)

in the troposphere:

0 (fo* 0 0Q fol m 0 ™
— | —=— || x=-B—=-~———|[sin
Op \ o Op ot o podp Po
O (fEON], L gl
“"1Op \ o Op X= ot o pi Do
s [™) pOQ (S
= —cos . ot \o 9
fo? 2
= -5 X X —X
o p3

0P
Term A is thus generally proportional to —x <: >

Next, consider Term B:
SV ) =iV TG [019): 6= 5 v

=—foVg-Vig— foVy- (83{2 * 85])

oV, VG — folugi o) - T (f 4 f@))

dy
_ of
=—foVg- V(g — fovgfay

= geostrophic advection of relative vorticity +

geostrophic advection of planetary vorticity

Consider the schematic below of a 500hPa geopotential field in the Southern Hemisphere:
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Region I: Upstream of the 500hPa ridge, the geostrophic wind is directed from the relative vorticity mini-
mum at the trough towards the relative vorticity maximum at the ridge.

= Advection of relative vorticity is positive.
VgV >0
S foVy V¢, <0  inthe SH (fo <0)
c—foVy-V{, >0  inthe SH

of

At the same time v, < 0 because it is directed southwards, and 90 = B = 2Qcos¢g/a > 0 (both
Y
hemispheres).
of
S <0
Vg 3y
of .
fgfuga— >0 in the SH (fo < 0)
Yy
0
. —fovgajyc <0 in the SH

For advection of relative vorticity:

0 29
v () e

Sox <0
00

"§<O

therefore the geopotential heights are falling between the trough and the ridge axis, downstream of the
trough axis.
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For advection of planetary vorticity:

of
Jy

[_vag

—x <0

Sox >0
0P

>0

T ot
which implies that the advection of planetary vorticity results in increasing geopotential heights.

Similarly for Region II:

in the SH

—foVy -V <0

—=x <0
x>0

0o

>0

T ot

and

oy

_fO'Ug

— \\

- %h EM]SaM SSA0LU SABM

3
‘0 >— ‘sajeulwop AJ121J0A
ejauejda JO uondaApY

‘PIEMISED SIAOL IAEM
‘0< m ‘sajeuiwop Aydi3Ion
SAIIE[3] JO UONIBAPY

—

—

Advection of relative

e g L]
vorticity dominates, ﬂn 0, -
wave moves eastward.

-

Advection of planeta n
vorticity dominates, Hv 0 -

t
wave moves eﬁmmﬁfdmn%
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For a mid-latitude disturbance of given amplitude the absolute value of the relative vorticity increases for
decreasing wavelength.

Therefore for short wavelengths (< 3000km) the advection of relative vorticity tends to dominate, resulting
in the disturbance moving rapidly eastwards.

For long waves (> 10000km) the planetary vorticity advection tends to dominate, resulting in these long
planetary waves to be quasi-stationary.

Since ﬁcg and v, are zero at both trough and ridge axes, the vorticity advection term is zero:
of
Ay
of
Ay

Term B: — foV, - V¢, — fov,

= —foVq -0~ fo(0)
=0

= Vorticity advection cannot change the strength of this type of disturbance at the levels where the
advection is occurring, but only acts to propagate the disturbance horizontally and (as shown in the next
section) to spread it vertically.

The mechanism for amplification or decay of mid-latitude synoptic systems is contained in Term C:

o) = 0% 20 [ = 09
_Z _vag.v _O®N| _fm O Vy V(—=
Op o Op o Jp Op
This term is called the differential thickness advection and it tends to be a maximum at trough and ridge
lines in a developing baroclinic wave.
0P

— —=( 09 0 |-+ =
Theterm V-V <— 8) is proportional to the hydrostatic temperature advection, and . [Vg -V (— 8) }
p p p

is proportional to the rate of change of the temperature advection with height, or the differential temperature advection.

Consider below an idealized schematic representation of a developing baroclinic disturbance:

.
£ w
= = =
2 2 7
€ g B e
38 H 85.
c o v B i -
o 0 EQ, w
oE 58 =]
S o =23 2
1 =] =4
; =1 P
[*] £ -
= = ~
- = e
.
5
)
v
Wi
=
m
i

In order to determine the rate of change of the temperature advection with height (or pressure) at least two
levels in the vertical must be used. Here two layers are considered: 1000— 500hPa layer (lower troposphere),
and the 500— 300hPa layer (upper troposphere).

30



The figure above demonstrates that a developing baroclinic disturbance is characterized by the westward tilt
with height of the pressure system (the thick solid contours are to the west of the thin contours).

1. The tilting results in strong cold advection behind the cold front and strong warm advection ahead of
the warm front.

2. In the upper troposphere, the tilt of the pressure system is small.

These statements are demonstrated in the figure below.

D_
° (-]
250
[}
o
=
o
2 500
w
8
o
750
1000
W Eo—

Figure 2: West-east cross section through a developing baroclinic wave. Solid lines are trough and ridge
axes; dashed lines are axes of temperature extrema; the chain of open circle denotes the tropopause.

In the upper troposphere the tilt of the pressure system with height in small. The result is that the thick-
ness pattern and the geopotential pattern become approximately parallel, which leads to thermal advection
becoming small there. Term C is thus concentrated in the lower troposphere.

For the case of the lower troposphere, we want to determine the sign and the magnitude of the Term C. The
horizontal thermal advection for this part of the troposphere (1000—-500hPa layer) is given by:

— =/ 09
where V, is the geostrophic wind at the 1000hPa level, and V <_8) is a vector that is perpendicular to
p
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the 1000—500hPa thickness lines. See diagram B on page 19. This vector points towards the warm sector
of the low pressure system, and is shown in B for two positions (the two arrows).

This angle > 90°, area of

This angle < 90°, strong warm advection

area of strong cold advection

- =/( 00
The sign of the scalar product of V, - V <— 5 ) is given by:
p

7(-5)

cos @ > 01if 0 < 90°, behind cold front
cosf < 0if 8 > 90°, ahead of warm front

‘Vg‘ cos

Behind cold front (below 500hPa trough):

Thermal advection = Vg -V <—> > 0, cold advection

Ahead of warm front (below 500hPa ridge):

—( 00
Thermal advection =V, - V (—) < 0, warm advection

Recalling the discussion above that for a developing system the thermal advection is much smaller in the

upper troposphere than in the lower troposphere, thermal advection (both cold and warm) decreases with
height. So does tropospheric pressure.

- = P
0 (Vg -V <—8>> >0 below 500hPa trough

and 9 Vy-V _o® <0 below 500hPa ridge
Op Jdp
2
Since fi:
o

fL? 0 [Vg'v<_8<1>>} <0 atridge
o Op Op > (0 attrough
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2
At the ridge: fo" 9 [Vg -V ( éM))] < 0 (warm advection)

o Op _871)
X <0 *)
SoX >0
od L o
\ ¥ > (0 (geopotential increases with time)
20 [ o[ 0%
At the trough: fo — Vg - V|—%= > 0 (cold advection)
o Op dp
=X >0 +)
X <0
0P . or
. o < 0 (geopotential decreases with time)

(*) The effect of warm advection below the 500hPa ridge is to build the ridge.
(+) The effect of cold advection below the 500hPa trough is to deepen the trough.

—> The differential temperature or thickness advection intensifies the upper level troughs and ridges in a
developing baroclinic system.

The advection of cold air into the air column below the 500hPa trough will reduce the thickness of that
column, and hence will lower the height of the 500hPa surface unless there is a compensating rise in the
surface pressure. Warm advection into the air column below the 500hPa ridge will have the opposite effect.

The traditional omega equation

The vorticity equation (6.19):
9%
ot

(4 and V; are both defined in terms of ®(x, y, p, t):

:_VQ‘V(CQ"‘f)‘FfOZZ

1 — 1- —
(g=—-V?® and V,=_—kxV®
0 0

Therefore the vorticity equation (6.19) can be used to diagnose w (vertical velocity field) provided that the
¢
fields of both ¢ and N are known.

® : primary product of operational weather analysis

—— : can only be crudely approximated from observations by taking differences over 12 hours, since

ot

upper level analyses are generally available only twice per day.

Despite this limitation, the vorticity equation method of estimating w is usually more accurate than the
continuity equation method discussed in WKD352 (the kinematic method). However, neither of these two
methods of estimating w uses the information available in the thermodynamic energy equation. Here we
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will develop the so-called omega equation for estimating the vertical motion by utilizing both the vorticity
equation and the thermodynamic equation.

Thermodynamic energy equation (6.13b):

Apply the horizontal Laplacian:

0 — = 0P KkJ
2 _ 0PN 9 _v2 (K
\Y <6t+Vg V>< 8p> V(ow) =V <p>
0 0P — = (0P K
o2 B _ o2 ) 2 Koo
AV En ( 8p> \Y [Vg \Y <6p>} +oViw+ pV J

22 <aq>) = V2 [Vg v (aq»)] — V2w — —V2J

Op \ Ot Op D
— [0
X [Vg v (2 } — oV — SV (6.32)
Op p p

Rewriting the geostrophic vorticity equation:

iVQX =-V, VvV < ! V20 + f> + fo Ow (6.21)
fo 0 dp
Differentiate (6.21) with respect to p
0 (1 0 =/1 0w
— v2>_—[v v<v2c1>+ >}+ —
5 (57%) =35 Vo ¥ (570 1)+ 105
o (V*x) = —fo o [Vg v < fov P+ fﬂ + fo o (6.33)

(6.33) — (6.32):

(f 2 & +av2>w—f088p [Vg -V<1V2<I>+f>] +V? [Vg _v(e)@)] +gv2j

fo
_ 9 (v2) -2 X
= VYV,

Since the operators on the right hand side can be reversed:

(5 s o] o) e
fo Ip p
2, SO fo = 1 2|V,. v _ 02 K o2

Term A <V2+fo>w
o Op?

. _ /1 0 =
Term B : j;)é?p [V 'V<V2‘1>+f>]=]§)p Vg'v(Cg+f)]
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Term C : —VQ [V V( 8@”
dp

K . . . . .
Term D : ——V2J, but as with the geopotential tendency equation we set .J = 0; .J is the diabatic heat rate.
o

The resulting omega equation:

<V2 foa?) ‘fap[g-V(cﬁf)H VQ[V v( gi))]

The omega equation above involves only derivatives in space (not time). This equation is thus a diagnostic
equation for the field of omega (w) in terms of the instantaneous geopotential (P) field.

Remember the operator in Term A of the tendency equation? It is (V2 + e <foa> > , and is very
D\ o
similar to the operator of Term A of the omega equation.

The forcing in the omega equation tends to be a maximum in the mid-troposhpere (500hPa), and w is
required to be zero at the surface and at the top of the troposphere. Therefore, for a qualitative discussion it
is permissible to assume that w has sinusoidal behaviour in both the horizontal and vertical:

w = Wpsin <7Tp> sin(kx) sin(ly)

Pbo

fo BE fo? 92 Y . :
‘ <V2 i UW) W= <8x2 + 37,@2 + o o W sin o sin(kx) sin(ly)

- % sin(k) [Wo sin <Z§> sin(ly)}

aa 22 sin(ly) [WO sin (Zﬁ’) sin(ka:)}

R (;rf) (W sin(kz) sin(ly)

o Op?
= k% sin(kx) [Wo sin (Zf) sin(ly)}
~ 2 sin(ly) [WO sin <;§> sin(k:a:)}

™

s (pofsin <;§> [Wo sin(kz) sinly)]
~ Wysin (;ﬁ’) sin(ke) sin(ly) [—kQ -~ (7?0‘))2]

Ry L (o 2 w
o\ po
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.. Term A is proportional to —w

For synoptic-scale motions W = —pgw
SoWw X —w

.. w < 0 implies upward vertical motion.

Since w < 0 implies upward motion, and

2 62
(VQ—I—fgapQ>wo<—w

. v2 f02 82 . .
. + 78702 w o< w, the vertical velocity

—> Upward motion is forced where the right-hand side of the omega equation is positive and downward
motion is forced where it is negative.

The omega equation with negligible diabatic heating:

fo? 02 fod — = Il o[ =/( 00
(v2 - gapQ) w= ;0873 Vg-V(¢+ ]+ Ev2 [Vg-v <>]

0 _
Term B: Ea— V-V (¢ + f)]. the differential vorticity advection.
o op

This term is proportional to the rate of increase with height, or with pressure, of the advection of absolute
vorticity. To discuss the role of this term we consider an idealized developing baroclinic system. Moreover,
we consider a short-wave system where relative vorticity advection is larger than the planetary vorticity

advection. The figure below shows schematically the geopotential contours at 500hPa and 1000hPa for
such a system.

500hPa contours

H: centre of the surface high pressure system
L: centre of the surface low pressure system

At the centres of the surface high and surface low V(, and V', must be very small: Previously it was
discussed that, since ﬁCg and Vg are zero at both trough and ridge axes, the vorticity advection term is zero
at the axes. However, since the H and L centres are not located exactly on the 500hPa trough/ridge axis, Wg
and V ; are only very small (not zero) and so vorticity advection must be very small, thatis V, - V (¢, + f)
must be very small.
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Cg >0 = Cg>0
B S o
Vg Vn <0 O Vg Vn>o0
= I - A
o %(Vq vn)>o Haip(vg~v77)<o E
524 (7 9 0B B4 (v, ) -0 5
i i ”
2 )
& &
= S

2,
o)
)
500hPa \ A \ En3 \
I
I
I

1000hPa

Vy-Vn~0
n= Cg +f

Southern Hemisphere

At point A, Vg - Vn < 0 since the flow is going from a ridge where ¢y > 0 towards a trough where ¢, < 0.
From the 500hPa level towards the surface where the high is (V4 - Vi ~ 0), there is thus an increase in
Vg - Vn along the vertical pressure axis. Therefore

o —
a*p(Vg-Vn)>0
_fo O

== (V4-Vn) <0 above the surface high
o Op

At point B, V, - Vn > 0 since the flow is going from a trough where ¢, < 0 towards a ridge where ¢, > 0.
From the 500hPa level towards the surface where the low is (Vg -Vn ~ O), there is thus a decrease in
V4 - Vn along the vertical pressure axis. Therefore

9 v, ) <0

Op
SR v
SO ( g 17) >0 above the surface low
o Op
. fo? 02 )
Considering that <V2 + 82) w X w, and that Term B > 0 above point L, w > 0, that means
g Op

ascending motion.
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1 - = od
Since Term B < (0 above point H, w < 0, that means subsiding motion. Now for Term C: i v [Vg -V (—
o

and remembering that

= =/ 0P
V¢V <_8p> > 0 for cold advection

and

= =/( 0®
V¢V <_6p> < 0 for warm advection

Consider the diagram at the top of Page 21: East of the surface low, in the warm front zone, the warm
advection tends to be a maximum and west of the surface low, behind the cold front, the cold advection
tends to be a maximum.

= =/ 0%
East of surface low: Warm advection, V, - V (—) <0

= = P
. Bast of surface low V2 VgV _gp >0
1 [ —( 03\]
.= Vg - 0
UV gV o >

w > 0 and maximum

West of surface low V2 Vg -V <0

<0

V|7,V

w < 0 and minimum

Sinking motion
The vertical motions forced by the (Term C)
horizontal thermal advection are:

Term B, subsiding
motion

Term B, ascending /

motion Upward motion
(Term C)

Bonus homework: Write a short essay (not more than one page) on the so-called Dines compensation.
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The Sutcliffe form of the omega equation

A problem with the traditional omega equation is that there exists significant cancellation between the two
terms on the right hand side of this form of the equation. Here we are presenting an alternative approximate
form of the omega equation that can be applied in synoptic analysis in the Southern Hemisphere.

First, employ the chain rule of differentiation for the two terms on the right hand side of the traditional
omega equation.

The omega equation:

1 — =/( 09
(7 ) S AR N & )

Apply the chain rule of differentiation on Term B:

fo 9 — 1 OV?® afﬂ
[3}0 v<f0vq>+f> vg< o

2
fo V2<I> ny l A (6.352)
8;0 O' Op
Also for Term C:

o ()25 (0 ()
-
0
oy

() i+ (V) (4 29) (o) - 27, v (52)

1 5 O (0D 5 0P - = [oVie
o[ (5) g ()] v () e

NOTE: The last terms in (6.35a) and (6.35b) are equal and opposite, therefore they cancel.

. (V2 + f0> w = Term B + Term C

o Op?
)
{3}? v<fov D+ f (B1)

S eeug@) o

Scale analysis of these two expanded terms can help to compare the relative sizes of the two terms in order
to reduce them.
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Note: R=287JK kg !
1Pa=1Nm™2
1J=1Nm

v, — /1 vV, =
TermBl:“ZO[a;-V(fOVz(I)—i-f)]Z?[alj]'v(49+f)

679 N 10ms~! B Ims™?

Op 10 x 102Pa 102N m—2
=102N"tm?s7!
=102kg 'mts?m?s!

=10"2kg ' m?s

V(C+f)~ % (107> —107%)s7!
~107%m™* (107) s

— 10—10 m—l S—l

—4 1
o.Bl~ 10% [10_2 kg~ ! m? s] [10_10 m~! S_l]

1
= —1071%kg tms?
o

vy 2 (22 4 (v 2 (22
Term Cl: p [(V “g) O (3]9) + (V Ug) Jy (819)]

0®  RT 102JK 'kg ' (10%K)

—_—_—

dp p 1000 x 102 Pa
104Nmkg_1 -1 3 -1
= TiNmz 0 ke

L?° L

SOl ~ % <1U1 (107" m? kg_1)> ~ % (10°m) * 10m s 107! m3 kg !

1
= —107 ¥ kg tms!
o
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.. B1~ 100 x C1

2 92 ov, —
— (V“@apz)““f[a;’v“”fﬂ

The remaining term on the right of this equation represents the advection of absolute vorticity by the thermal
wind. The left hand side, <V2 + fo2(522> w, is proportional to —w. When w < 0 upward vertical motion
is implied, and the left hand side is gropz())rtional to the vertical velocity. Therefore, upward motion is forced
where ? [aa‘;g V(¢ + f)} > 0, and downward motion is forced where é {88‘;9 V(¢ + )] <o.

Consider an idealized schematic for a developing synoptic-scale system in the Southern Hemisphere mid-
latitudes.

w>0

Isotherm: level of constant thickness

Vr : thermal wind, directed along the
isotherms with cold air to the right

—~ 1 —~
BN
NN — =
“> !“> Vg -Vig <O
.o

&l S
[> >

Vg Vg >0
Cg <0 g >0 (g <0

Take note that the 500 hPa contours lead the 1000 hPa contours due to the westward tilt of the system. The
result is that the 500 hPa geopotential field lead the isotherm pattern on the figure. The thermal wind, V7, is
parallel to the isotherms, and so the term on the right that represents the advection of absolute vorticity by
the thermal wind can be estimated from the change of absolute vorticity along the isotherms.

Keep in mind that we are working here with short-wavelength synoptic-scale systems where relative vor-
ticity advection dominates planetary vorticity advection. Consider the region marked I on the figure of the
idealized system. In that region a surface low pressure system is located, and above this surface low at the
500 hPa level the relative vorticity advection is a positive maximum since (Vg - V(y) opp, > 0. This
positive advection term is over the surface low pressure center and subsequently contributes to spin-up of
the cyclone because the wind is blowing higher positive vorticity into the area of the surface low. However,

on the vertical axis of this surface low pressure (Vg . ﬁCg) ~ 0 because (Wg) ~ 0.

1000 hPa 1000 hPa
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Apply the operator (;9 to the absolute vorticity advection term. We get (‘?p (Vg NV (¢ +f )) ~ (;; (Vg . VCQ)

for the short-wavelength system considered here.

0 — — ov, — _ 0
%(VQ'VCQ):TJ'VCQ_‘_ g'%(vgg)
v,

=7 V¢, since (5 = (y(z,y)

‘We can write

@ ‘ﬁC _ 5(Vg 'VCg)
op g op
_ (Vg - Vig)000npa — (Vg - Vg)500hPa
1000 hPa —500 hPa
0 — positi
~ pf)émve value <0
positive value
v, —
= —— V(<0
Op S
For short-wave systems:
oV, —
-V <0
fo 6Vg =
il et 0
o | ap V(¢ + )] >
. fO 879 = . .
In region I where — e V ({g + f) | has now been demonstrated to be a positive value, upward motion
o

is forced. Using similar arguments for the region over the surface high pressure system, downward motion is
forced. Therefore, upward (downward) motion is forced east (west) of the 500 hPa trough above the surface
low (high) pressure system.

Revisiting the idealized schematic for a developing system, upward motion occurs where relative vorticity
increases moving left to right along an isotherm, and downward motion occurs where relative vorticity
decreases moving left to right along an isotherm. Notwithstanding the increase in relative vorticity when
moving along the isotherm, in the Southern Hemisphere cyclonic storms are associated with negative relative
vorticity. Moreover, since (; o< ® in the Southern Hemisphere the negative vorticity is associated with
negative geopotential deviations in region I, which results in the 1000 — 500 hPa thickness decreasing there
leading to a developing trough.

[ — 0P
Cold advection occurs behind the cold front, i.e. V, -V <_8) > 0, and warm advection ahead of the
P
— = 0P
warm front, i.e. V, -V <_8> < 0. As a result, the horizontal temperature advection is small above
14
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the centre of the surface low in region 1. Therefore, in order to cool the atmosphere—as required by the
thickness tendency—is by adiabatic (no heat or mass exchange with the environment) cooling through the
vertical motion field. As a result, in the presence of differential vorticity advection, the vertical motion
maintains a field in which temperature and thickness are proportional (remember that from the thermal wind

bo

equation we have seen that &1 — &9 = R(T) In ) ). Because of this proportionality, the vertical motion
o

maintains the temperature field, which is determined by the geopotential field.

The Q-vector

Objective: To better appreciate the essential role of the divergent ageostrophic motion in quasi-geostrophic
flow.

Here we examine separately the rates of change, following the geostrophic wind, of the vertical shear of the
geostrophic wind and of the horizontal temperature gradient.

The approximate horizontal momentum equation:

Dj")‘;g = —fok x Vo — Byk x V, (6.11)
Quasi-geostrophic momentum equations:

(6.16) : Dgzg — fova — Byvy =0 (6.38)

(6.17) : D,#:g + fouq + Byug =0 (6.39)

Quasi-geostrophic thermodynamic energy equation

0 — = op\  J
<8t+Vg-V)T— (f)w— o (6.13a)
D, 0 = =
Dt ot +Vy-V
D,T op J
’ —\5)w=— 4
" Dt (R “ cp (6.40)
vy R (0T
- =7\ 5 3.28
P op f (33? )p 528
ou R (0T
and p——2 = — <> (3.29)
Pap ~ 7 \oy »
On mid-latitude S3-plane:
Oug  ROT vy ROT
il d il
fo op oy fo 5 ) 9
Vector form: o
fok x Wy = EvT (Bonus homework)
op p
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Obtaining equation for the evolution of the thermal wind components:

Dgug
Dt

0
*”gay> ] /o

fO ((6 38)) = fogp < — fova —5yvg) =0

.fﬁ 9 .9 23%
% [\ ot " Yor

~ foBy 8”9 _

.Q%ﬁaugﬁ%_2%_ 9y _
"fo[ap(at)+3 ( 5$>+3p<vgf9y>] fo ap 1Py =0
-, 0%y Gug aug %uy [ 6ug 0? ug 28% Ovg
..foaat Bp or + fou U D + fo ap By ng = fo —fﬁyaip—o
0%uy 0%uy 8ug Oug (%g aug 9 ava Ovg
--f066t+f0 gaa + fov ga +f :E+f007p37y_f0 aip—foﬁyaip—o
T o ougiy o] oy
~+fo [aﬁ“gax”ga ] ap TP [ﬁp o " ap oy | 10 gy F0Pvg, =0
Dy (p g _ [0y Oug  Ivg0ug| 50 v
= oy <f0 8p> =—fo [Gp P ap Oy + fo ap + fo 3 (6.43a)
Similarly:
Ovg\ Oug Ovg  Oug duy 9 0Uq Oug
Dt <f0 8p) =—fo [6]) T ap Oy — [ ap —foﬁya (6.43b)
Bonus homework: Derive (6.43b)
Reminder:
_ 8ug_R8T 8u98ug %% B GE% OT%
(3.29) fo  p Oy —fo [Op dr  Op Oy | Oy Ox  Ox Oy
. 8% __Ror . |Oug vy Ovydvg| f’LT%_fLT%
(3.28) fo p Ox = /o {8 ox  Op Oy Oy Oxr  Ox Oy

However, the divergence of the geostrophic wind vanishes: V - Vg =0

COug  Ovy Oug Oy
0T Ouy 0T Oug| R [OT Ovg 0T Ouyg
e
B R GTﬁvg 0T Ouy
[8.1/ oy 396811]
= —Q2
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aug oT 8119 oT
oy 61‘ oy 8y

R0, o5 (25 7
p \ Oy oz 8y
R 0 0- 0-
_ RO 0= 9=\r
~ (ugz—i-vgj) ((%H- 8yj>
= EQV VT (6.45a)
p Oy
For
g%_@l%_ 3T81}Q+8T 8ug
oy dx  Ox Oy Oy Ox  Ox \ Ox
R [ Ouy 0T | Ovy OT
= +
ox dr = Oz Oy
o
_ R[0u,0T 0,01
Q= [Gw 8x+8x 6y}
R 0 - 0-
=L (ugz—i—vgj) <83:Z+(9y]>T
RIO—- =
— fgavg-vzﬂ (6.45b)

Consider the thermodynamic energy equation

D, T op J
_E,== 6.40
Dt RY ¢, (6-40)

0 0 [0 0 0 _opOw 10J

9z (640): 57 {a gy Ty ] R oz o0z
.82T+8u90T+ 82T+8vg8T+U 02T_@87w+i6;]
ox0t  Ox Ox 98 2 9z Oy Y0rz0y R Ox ¢, Or
- 0°T i o0*T Oug OT n Ovy OT L 9P Ow L 10J
o ox dr = Oz Oy R oz p ox

0 0 0 8T Oug OT | Oug OT opdw 19J

+ g2 + g = + + ==
ot oz dy ) oz o dx ' Oz Oy R 9z p Az

R
Multiply throughout by —:
p

Dy (ROT\ _ R 8u98T+6vg8T U@fw R 0J
"Dt\poxr)  p\0xdx Ozx dy 0r  pc, Ox
R (Ouy 0T ~ Ovy 0T Oow KOJ R
= (e e ) ) 0 RO =t 4
D <6x Oxr Oz Oy > 7 oz * p Oz [H CJ (6.462)
ROT R Oug OT (%g oT ow kdOJ
Dt (p 3y> p <8y dr ~ Oy dy > 03y+p8y (6.46b)
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Bonus homework: Derive (6.46b). Hint: Start by (%((6.40))

Revisiting (6.43a), and remembering

Ouy _ vy Ou, _ROT ov, __ROT
or Oy’ fo op  p Oy and foap_ p Ox
Qug\ _ . [Oug Qg | Ovg Ot zava Ovg
oo (1) =t | Gee + Gl 4 128 4 fusy
_ R[0T 0uy OT Oug] zé’va @vg
__p ﬁyﬁx_ax&/] fo + JobBy
R 87T dvg _al% 28% 81)9
a p_3y< 3y) 3933?;] Jo gy TP
_ R[0T Ovg | OT Ouy 20, 81)9
a [&y dy ' Ox 8y}+f + foby
ov
_ 2 0Va
=-Q2+ fo 3
and for (6 46b):
ROT 8u98T+8vg€)T 8;«)_}_&87(]7@ n %_}_R@J
p oy oy 0z oy oy) oy poy T "oy " poy
Dy (9% _ 4 [Og 909, Ovg vy 28%_ 8%
Dt (fo 8p> =—fo op 9z T Op oy —Jfo foBy
_ R[0T, oToy, gaua_ 8%
 p |0y 0z Oz 8y] fo JoBy
_ R [0ug 0T  0Ovy 0T 28%_ 8ug
 p |0z oxr | Ox 8y] fo JoBy
ou ou
_ . _ p29Ua Oy
=01 fo ap foﬁ@/ap
and for (6.46a)
ROTY\ R 8u98T+6vgaT 8w+n8J O+ %_}_m&]
Dt por) oz 0z | 9r dy oz por ' 70z pox

(6.47)

(6.48)

(6.43b)

(6.49)

(6.50)

D, 0
We set out to examine separately the rates of change < Dt) of the vertical shear ( 3 Vg) of the geostrophic
D

wind and of the horizontal temperature gradient (VT'). We subsequently derived two sets of equations de-
scribing these relationships. The first set of equations, in @2, is:

(6.47) :

(6.48) :

Dy Odug\ 2 0Uq 81)9
Dt<08p>_ Q2 + fo? 7+f5

ROT 7Q+87w+
Dt p8y s Uay

/iZ?J
p Iy

(shear)

(temperature gradient)
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(6.48) — (6.47):

= <R8T> Qz—Uafw Kk OJ [D <f 8u9>+Q _ 8va_f5y8vg _0

p Oy dy poy Dt 0
ROT Oug ow kOJ 28% ng B
o (5 Rt ) < 2@e o - SO i o =0
Take note that
faug_R(?T
“op ~ p oy
ROT _ . dug _
poy "Cop
ow KkOJ 20, ovg
20Q)2 U@y E@iy—kfoaip foﬁyaip—o
Ow 90U vy Kk O0J
Ua*—fo ) —foﬂai Q2 587
(6.50) + (6.49):
v ROT Ou ow kdJ
. Mg g , ol Jug _ oW kOJ
‘Dt<f06p+p8> Q1+ fo® —Qi-oo b Oz
Take note that
(%g ROT
fogt =25
p Ox
foavg ROT _0
p@m
Kk O0J 23ua 8ug Gw
b it (1
Oow Oug ou Kk OJ
T
p Ox
0
%((6.52)). 0? o [0 0 8@ 0%J
0w 2 0 (Oug Ug 1 K
2 g <a> fogya <a> >or  poz®
0
S ((6:51)

(6.41a)

6.51)

(6.41b)

(6.52)

(A)

(B)
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(A)+(B):

APw 9w 5 0 [ Oug 9 0 [0y, Oduy
oo 7o e () e () - e ()
0 6119 s Bavg B 8@1 2(9@2 B EaZJ B E62J

N 01: oy poxr? poy?

Oug, 9 v, ou
w= I <0p> o <3p> fOBya <8pg)

- foﬁy8 (8;9> foﬁavg — _9V.0- vy
p

‘We have:

1) The divergence of the geostrophic wind vanishes:

V-Vy=0
~Oug  Ovg B
. + 3y =0
g Oy
"0 Oy
aua Ovg, Ow
2) (6.12 e _ =
) (6.12): + 9y o
0 (0u v ou v v
2 _ 27 a a g g g
oViw — fo 8p<8x+8y> f06y8p<8x+ ) foﬁ
- 9ov.0- vy
p
UV%J—]"OZ2 _w 9V - Q+f05% _ V2J
Op Op
“w d
V2 + fo? ‘; = 9V Q+foﬂﬁ - 7V2J
= the Q-vector form of the omega equation.
From (6.45a,b):
Q= (Q1,Q2)
R 0 RO—- —
= —_——— T —_— . T
( pafvv v poyg oY )

(6.53)

(6.54)

Outside regions of active precipitation, diabatic heating is due primarily to net radiative heating, which is
weak in the troposphere. Therefore, the Laplacian of the diabatic heating can be neglected. Also, the term
related to the beta (/3) effect is generally small for synoptic scale motion, and is subsequently also neglected.

The resulting Q vector form of the omega equation is

2
w + f0287 = —QV

Ql
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Next we will discuss @) as a forcing function of the omega equation.

2 92

. . 0
Previously it was demonstrated that <V2 + f082> WX —Ww

o Op

82
Multiplying throughout with o (o > 0): <0V2 + f0282> WX —w
P

2
So when < fol== + 0V2> w > 0, we have ascending (upward) motion (w < 0)

0
Op?
L =2V-Q >0

~V-Q<0

.. Negative divergence of @, i.e. convergence of @, leads to ascending motion.

2

0
Similarly, when ( fOQW + 0V2> w < 0, we have descending (downward) motion (w > 0)
p

=2V-Q <0
V-Q>0

.. Divergence of @ leads to descending motion.

Vg start  Cgld

Vg
end ~

Q

Consider an idealized developing synoptic-scale system in the Southern Hemisphere mid-latitudes at the
500hPa level. The Q-vector direction and magnitude can be estimated by referring the motion to a Cartesian
coordinate system. In this coordinate system, the x-axis is parallel to the local isotherm and the y-axis is
perpendicular to the isotherm. Since warm air is to the left of an observer moving along an isotherm,
temperature increases in the positive y-direction in the Southern Hemisphere. In this configuration, the

Isotherm
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Q-vector may be simplified:

G== o o T or oy
T T
= —];(?;;fgy since ?933 = 0 (z-axis parallel to isotherm)

G== oy Ty oy
_ _Rovor
p 9y Oy
_ Rou, 0T Oug Oy _
p Ox Oy ox y
—  ROT (Ovy- Oug-
— Q__p y (sz_ Ox )
: Oug-  Ovg=\  — 0V,
consider — k£ X (axz—l— Ep )— kx—ax
_ _Ougz, 9
- Oz Ox
— ROT oV
= "7 | x4
@ p Oy ( Ox >
_ROT (- 9V,
p Oy oz

The Q-vector can be obtained by considering the vectorial change of V, along the isotherm. Consider
two cases, A and B, of an observer moving along an isotherm. For each case, draw an arrow describing
the geostrophic wind vector observed at the start of each movement. Draw a second arrow showing the
geostrophic wind vector at the end of each movement. Next, draw the vector difference from the head of the
start vector to the head of the end vector. The Q-vector direction points 90° to the left (anti-clockwise) from
the geostrophic difference vector in the Southern Hemisphere as dictated by the reduced Q-vector equation
above. The resulting vector, multiplied by 97'/0y, provides its magnitude.

Near the 500hPa low, the geostrophic wind change vector produces a Q-vector parallel to the thermal wind,
while near the high the Q-vector is anti-parallel to the thermal wind. The two Q-vectors thus converge in
the area between the trough and ridge lines where we have already shown upward motion to occur.

Ageostrophic flow

The characteristic horizontal scale of the geostrophic wind in the mid-latitude troposphere is about 10 to
20 ms~!, while the scale of the ageostrophic wind is an order of magnitude smaller, often only 1 —2ms™".
Although the ageostrophic flow is only a small component of the wind field, the upward motion, omega
(w), is determined only by its ageostrophic part. Here we will further demonstrate the significance of the

ageostrophic wind components.

50



Consider the following thermal wind relationship

8ug B R oT

fo > oy

Then the evolution of the thermal wind components leads to

0 o 0
<fo ug) :—Q2+f028” + foBy ”g (1)
ROT aw Kk OJ
Dt <p dy ) Q2+ Ty 3 p oy @

Assume that diabatic heating is small enough to disregard and consider the flow to be purely geostrophic,
i.e. V, =0, and w = 0 because w is determined only by the ageostrophic part of the wind field:

_(97w _ Oug n v,
dp Oz oy

Equations (1) and (2) are reduced to

(foaug> =—Q2+ foﬁyaa% 3)
P

ROT
Dt(p 0y>:Q2 @

Scale analysis is subsequently performed in order to estimate the magnitudes of the various terms of equation
(3). First, consider the left-hand side of equation (3)

(f()aU;> = (foaug> uga <f08ug> ”gay <f08ug>

U foU?
) L/Ufo ~ Lop

8 Oug Oduy 1, U foU?
99z (fo ap>a d%a (fo ) ~ OIS, = Tap

Consider the right-hand side of equation (3)

. Oug OT avg oT .
Q2= [ 9y 07 + 9y By ] but consider (3.28) and (3.29)
ng:_Eai — g:_@%’
8ug ROT T fpdu

Pop “Foy — oy R op
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) ~ Rfp | Ougdv, 0Ovy0uy
e R ]
| Oug Ovy  Ovy Ouy
Sit
Oug Ovg vy aug]

= (fo+ By) [ay ap By op

Assuming that the meridional displacement, y, is at most equal to the length scale of 10° m, then

By ~ 107 m™ s x (105 m)

=10"s"t < fo
) B Oug Ovg  Ovg Ouy
Q= o dy dp 0Oy Op
foU?
Lép

Scale analysis has therefore shown that the order of magnitude of the left-hand side of the equation and Q)2
is the same, which is
foU? 1074571 x(10ms~1)?
Lép  (105m) x 1000 kgm—!s—2
—10 M kgIm2s !

y = |(f - fo)/beta]

08 7

0.7 .

06
3 oy X 49
% L Y 0.4622 ]
205 Y 0.4300 ,—‘

01} 1

35 40 45 50 55
Degrees South

Figure 3: Meridional displacement in absolute terms in the Southern Hemisphere.
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Since the meridional displacement y = 3~1(f — fo), the figure above shows that meridional displacements
between about 41°S and 49°S, y can be approximated by 10° m. As a result, scale analysis of the 3 term of
equation (3) results in

dvg 107157 x107 M m™ ' s7! X105 m x10ms ™!
op 1000 kgm—1s—2
=10 2kg tm?s!

The § term is therefore an order of magnitude smaller than the rest of the terms and is subsequently disre-
garded. This result leads to

D ou
Fi <foapg> = —Q2

. Dy ([ Ouy
Q2= Dt<08p>

D ROT
= ——% [ —Z—— |, because of the the thermal wind relationship.
Dt \ p Oy

However, the reduced form of equation (4) is

D, (ROT
Q=71 (=50,
Dt \ p dy
which contradicts the scaled result for (Jo. The implication is that in order to address this contradiction is for
0 oT
either the vertical shear # or the temperature gradient (8) to vanish. We can therefore not ignore
p Yy

the ageostrophic wind terms, and so the ageostrophic circulation is required to keep the flow in approximate
thermal wind balance.

The role of ageostrophic circulation in vertical motion is implied through the determination of the omega
(w) motion field, since w is determined only by the ageostrophic part of the wind field

Oug i v, _Oiw
Ox oy  Op

- — Ow
VVe=—y

However, the total ageostrophic flow field cannot be determined by the divergence alone, because

D,V — —
#z—fgkxva—ﬂykxvg

By again neglecting the 3 effect for simplicity

D,V, -
Z9'9 _ 1% "
Dt Jok >V

_ D.V

ExkxVy=——kx L9

X kxV 7 X Dt
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The left-hand side is

AR
=kx|0 0 1
Val Va2 0

- — a23_ (_g)(_val)
— _(szzlg + Va23)

-V,
V=1 F Dol
Vo= ]}Ok <aavl;g +Vy VV9>
FEx B84 2 E XV, V7,

The ageostrophic wind forcing therefore consists of two parts. The first term on the right represents the
isallobaric! wind, and the second term is called the advective part of the ageostrophic wind.

Consider the isallobaric term

1—- 00— 1—- 0 /1—- —
—kx =V,=—kx = —kxV®
fo "ot fo T ot <f0 >
zlzkxk:xv<aq)>
Jo t
f12l<:><l-c><Vx
0
.
= R (gt 57)
14 ox- Ox-
B fo2k . (833 8yz>
1 Ox- Ox=
:72 —77/—7j
fo ox 0y
1
fo?

Therefore, the isallobaric wind is proportional to the gradient of the geostrophic tendency. Since fy? is
involved, there is no change of sign in crossing the equator. This isallobaric wind blows towards falling
geopotential in both hemispheres.

Next consider the term that is the advective part of the ageostrophic wind. At the synoptic scale, baro-
clinic waves grow in the mid-latitudes due to baroclinic instability (arising from vertical shear of the mean

!of equal or constant pressure change.
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flow and thermal wind). When such waves are part of the jet stream, the advective term is dominated by
zonal advection, since jet streams are quasi-horizontal with maximum winds embedded in the mid-latitudes
westerlies. Let ©w denote the mean zonal flow, then

= The ageostrophic wind
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Next, we will perform a scale analysis on this ageostrophic wind equation. First, do the scale analysis of the
isallobaric wind
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Next, scale the term that is the advective part of the ageostrophic wind
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, which is the same as was found for the isallobaric wind.
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Figure 4: Mean zonal flow distribution at the two pressure levels indicated.

The scale analysis done here shows that both the isallobaric wind and the advective part are about 1 ms~1,

given both the typical horizontal wind speed and the mean zonal flow to be 10 ms~'. However, profiles of
the time-mean zonal geostrophic wind, averaged over longitudes, show that for two isobaric levels, one at
850 hPa and the other at 300 hPa, that there is a strong jetstream at 300 hPa in the mid-latitudes.

Zonal mean winds of the 300 hPa jetstream are typically of the order of 30 to 40 ms~! in the mid-latitudes,
while at 850 hPa the zonal maximum wind is closer to the 10 m s~! value used in the scale analysis. There-
fore, at the 300 hPa jetstream the advective contribution to the ageostrophic wind dominates over the isal-
lobaric contribution. At both high and low latitudes, that is on the edges or flanks of mid-latitude baroclinic
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systems, zonal wind at the 300 hPa level are of similar strength and weak. Thus, at the flanks the two con-
tributions to the ageostrophic flow are similarly small so that the resulting ageostrophic wind is small. The
net effect is that at 300 hPa the ageostrophic motion is primarily zonal.

At the 850 hPa level, owing to the relatively weak zonal wind in the mid-latitudes, the advective part does
not dominate as it does at the 300 hPa level. Moreover, owing to the weak wind at 850 hPa at the flanks, the
advective contribution is nearly zero there. On the other hand, since the isallobaric wind is always directed
down the gradient of pressure tendency, it will cause a meridional component in both the northern and
southern flanks of the baroclinic wave, and a zonal component along the central axis of the wave. However,
along the zonal axis the isallobaric contribution may balance that of the advective contribution, with the
net result that the ageostrophic motion will only have a meridional component in the northern and southern
flanks at 850 hPa.

Vertical and horizontal motions in a developing short-wave baroclinic system
in the Southern Hemisphere — a summary

This chapter on the quasi-geostrophic theory started off by presenting a classic theory on the motion of mid-
latitude developing baroclinic systems in the Southern Hemisphere. In this theory the atmospheric level of
non-divergence (transition from positive to negative divergence, and vice versa) was introduced and it was
concluded that if this level is low enough in altitude that the system will move eastward. The eastward
movement of these systems fits into the theory of short-wave developing baroclinic systems discussed in
this chapter. The 500 hPa level is often assumed to be the level of non-divergence, and is about halfway
through the vertical depth of the mass of the atmosphere. Next, through the use of highly idealistic circula-
tion fields at the 500 hPa level the relative importance of the advections of relative and planetary vorticity
was investigated — relative vorticity advection dominates planetary vorticity advection for short-wave sys-
tems. Moreover, for fast-moving extratropical short-wave weather systems that are not rapidly amplifying or
decaying the local rate of change of geostrophic vorticity is represented only by the advection of geostrophic
vorticity. However, in the presence of developing systems this rate is also a function of the divergence effect,
which forms part of the ageostrophic flow.

Consider Figure X1 that shows a mean sea-level (i.e., 1000 hPa) pressure pattern represented by fine lines
and 500 hPa pattern by thick lines for the Southern Hemisphere. First we will consider vorticity advection
for short-wave systems at both the 1000 hPa and 500 hPa levels, by neglecting the effect of planetary
vorticity advection. The vertical lines on the figure respectively represent trough and ridge axes at 500 hPa
as well as at the surface. At the surface by the centres of both the low and the high pressure systems, the
geostrophic vorticity advection is close to zero. However, at the 500 hPa level above the surface low (high)
pressure system the advection of geostrophic vorticity is higher (lower) and positive (negative). Vorticity
advection is usually higher in absolute terms at 500 hPa than at the surface because the wind speeds tend
to increase with height, therefore 500 hPa winds near a trough will often be stronger than low-level winds.
Accordingly, there is a positive change in the vertical of the geostrophic vorticity advection, referred to
as differential vorticity advection, which is a negative value above the surface low owing to the decrease
in pressure with increasing height above the surface. However, in the Southern Hemisphere where the
Coriolis parameter is negative, multiplying the differential vorticity advection term with f leads to a positive
differential vorticity advection term. Take note that rising air is implied by an increase with height of
cyclonic relative vorticity advection, which is the case above the surface low.
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The positive advection of relative vorticity at the 500 hPa level above the surface low pressure system has
implications for the horizontal displacement of mid-latitude disturbances. Consider Figure X2 as well as
the geopotential tendency equation. This equation consists of two terms on the right respectively represent-
ing vorticity advection (the dominant forcing term in the upper troposphere) and thickness or temperature
advection (largest in magnitude in the lower troposphere). Due to the advection of relative vorticity at
500 hPa above the surface low, geopotential heights are decreasing, while geopotential heights are increas-
ing at 500 hPa above the surface low. Vorticity advection at the 500 hPa level thus acts to propagate the
disturbance horizontally to spread it vertically. Regarding the temperature advection term of the tendency
equation, below the 500 hPa trough cold advection in association with the cold front occurs, while warm
advection in association with the warm front occurs below the 500 hPa ridge. The effect of cold advection
below the 500 hPa trough is to deepen the trough in the upper troposphere, while the effect of the warm
advection below the 500 hPa ridge is to build the ridge in the upper troposphere. What is the source of
this advection? Recalling the figure of a developing synoptic-scale system in the section that discussed the
Sutcliffe form of the omega equation, the 500 hPa contours lead the 1000 hPa contours due to the west-
ward tilt of the developing system. During this development the result is that the 500 hPa geopotential
field leads the isotherm pattern. While the angle between the geopotential height contours and the thickness
contours increases, an increase in the horizontal temperature advection is the result. However, as the system
is allowed to further develop, the surface low pressure contours, the 500 hPa contours and the thickness
contours come into alignment with each other. This later stage of development results in the weakening of
the horizontal temperature advection and marks the end of the intensification phase in the lifecycle of the
short-wave baroclinic system.
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The omega equation was used to determine where upward and downward motion in a developing system
may occur. Figure X3 shows the results from analyzing three versions of this equation, namely its traditional
form that consists of two terms on the right respectively representing differential vorticity advection and
thickness (temperature) advection, the reduced Sutcliffe form that only has one term on the right representing
the advection of vorticity by the thermal wind, and the Q-vector form. The differential vorticity advection
terms have shown that upward (downward) motion in the developing system occurs over the surface low
(high) pressure systems, and that the thickness advection forces upward (downward) motion at the 500 hPa
ridge (trough) axis ahead (behind) the warm (cold) front. Although the interpretations of these two physical
processes have apparent advantages as demonstrated here, in practice there is often a significant amount of
cancellation between them. For this reason an alternative, albeit an approximate form of the omega equation,
is often applied in synoptic analyses — hence the Sutcliffe version of the equation. This version showed that
upward (downward) motion is forced east (west) of the 500 hPa trough above the surface low (high) pressure
system. This finding is in agreement with the interpretation of the Q-vector form of the omega equation as
shown above.

To summarize, temperature advection forces the strengthening of mid-tropospheric troughs and ridges, the
advection of relative vorticity acts to propagate the developing system horizontally, while differential rel-
ative vorticity advection forces rising (sinking) motion over surface low (high) pressure systems, as is the
advection of vorticity by the thermal wind.
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