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Hit rate
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DJF Rainfall Area-Average (Africa south of 10°S)
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How do we rank ito forecast skill?
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Two regions are found to be marginally compatible when the skill
difference is significant at the 90% level but not the 95% level
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What have we learnt to far...

e Seasonal rainfall and temperature predictability is a function of both “space
and time”

e Restricted to regions and seasons
 Summer rainfall predictability highest during anomalously wet seasons

* Forecasts for “normal seasons” do not work!
* No ENSO, no forecast
* Multi-model ensembles produce the best forecasts

* SADC ranked low with other ENSO affected regions — predictability is
limited

* Winter rainfall areas may be predictable at the same level of skill as
summer regions
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Do Statistical Pattern Corrections Improve Seasonal Climate Predictions in

the North American Multimodel Ensemble Models?

(@) Cross-validation: DJF 1982/83 - 2007/08
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ABSTRACT 13

Canonical correlation analysis (CCA)-based statistical corrections are applied to seasonal mean pre-
cipitation and temperature hindcasts of the individual models from the North American Multimodel En-
semble project to correct biases in the positions and amplitudes of the predicted large-scale anomaly patterns.
Corrections are applied in 15 individual regions and then merged into globally corrected forecasts. The CCA
correction dramatically improves the RMS error skill score, demonstrating that model predictions contain
correctable systematic biases in mean and amplitude. However, the corrections do not materially improve the
anomaly correlation skills of the individual models for most regions, seasons, and lead times, with the ex-
ception of October-December precipitation in Indonesia and eastern Africa. Models with lower uncorrected
correlation skill tend to benefit more from the correction, suggesting that their lower skills may be due to 0
correctable systematic errors. Unexpectedly, corrections for the globe as a single region tend to improve the S5tatSST CA-SST MOM-DC2
anomaly correlation at least as much as the merged corrections to the individual regions for temperature, and
more so for precipitation, perhaps due to better noise filtering. The lack of overall improvement in correlation
may imply relatively mild errors in large-scale anomaly patterns. Alternatively, there may be such errors, but
the period of record is too short to identify them effectively but long enough to find local biases in mean and
amplitude. Therefore, statistical correction methods treating individual locations (e.g.. multiple regression or
principal component regression) may be recommended for today’s coupled climate model forecasts. The
findings highlight that the performance of statistical postprocessing can be grossly overestimated without
thorough cross validation or evaluation on independent data.
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The prediction scheme

1. Phenomena to be predicted should contain a climate signal (e.g. ENSO) in the
data; 2. Observed and model time series must be over sufficiently long enough
periods so that robust statistical relationship can be developed; 3. and some
form of quality control of the observed data had taken place.
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Crop-Yield Index
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Yield Index

Financial impacts of "bad" yield forecasts
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* Inclusion of the 3 consecutive poor forecasts in the CP calculations has significantly delayed

financial recovery
* Much less of a detrimental effect is caused by a single poorly forecast season (2005)
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We urge caution in relying on these forecast models exclusively for disease
management - we therefore suggest to make sure that good climate
monitoring systems are in place to supplement forecasts from models

We propose that disease surveillance and control activities should not be
replaced by forecasts — forecasts should only be used to supplement
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December-January-February

December-January-February

observed rainfall categories for each
homogeneous rainfall region
during El Nifio {1960-2003)

Copytight: AG Bartman, LRF (SAWS)

December-January-February

observed rainfall categories for
each homogeneous rainfall region
during La Nifia (1960-2003)

Copyright: AG Bariman, LRF (SAWS)




Lessons from applications modelling

* Many examples of successful applications modelling
* Lake Kariba inflow
* Vaal Dam outflow
* Farms — rainfall and crops
* Malaria in Limpopo

* Co-production can be achieved through

* Involvement of user before modelling starts
Data exchange, including “citizen science”
Financial risk assessment when using forecasts
Do not create false expectations
Develop a basic understanding of observations




Better ENSO and subsequent climate predictions alone are not enough to
reduce the risks associated with climate extremes

* Develop and improve on methods for forecast uptake — methodologies to
better communicate the climate information to policy-makers,
stakeholders, and the public

* Regions of the World significantly affected by climate extremes may
consider collaboration on issues such as understanding and modelling

* Forecast system evaluation and verification, including process-based
verification

* Use of available model output from international centres for multi-model
optimization and forecast calibration through statistical post-processing

* Demonstrate potential for financial gain through forecast use

* Maintain and further develop observational networks, including a “citizen
science” network



