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Schematic illustration of the differences
between the real world (a) and the world
as represented by GCMs (b)
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Reasons why downscaling of GCM
output is useful for operational
seasonal forecasting (1)

e There are important differences between the
real world and its model representation

e Small-scale affects (such as topography)
important to local climate could be poorly
represented in the GCM

e Variables such as streamflow may not be
represented explicitly by the GCM



Reasons why downscaling of GCM
output is useful for operational
seasonal forecasting (2)

e GCMs are not perfect and their forecasts are
subject to error (i.e., parameterization schemes
are not perfect)

e Spatial biases: GCM climatology may have
rainfall maximum displaced

e Temporal biases: GCM climatology may have
seasonal cycle wrong

e In developing countries, limited research funds
could be directed to statistical post-processing
of output from international centres



Two empirical approaches...

e Perfect Prog(nosis): no attempt to correct for
possible GCM biases; GCM forecasts are
assumed to be perfect

e Model Output Statistics (MOS): influence of
specific characteristics included directly into
equations



Perfect Prog

e In development:
90 = fpp(xO)

e In Implementation:
yt = fpp(xt)



MOS

In development AND
Implementation:

Vi = Fmos(Xt)



Paper on Perfect Prog
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Figure . (a) LEPS scores for retro-active forecasts for the nine regions (KZC: KwaZulu—Natal coast; NEL northeastern interior,
MWB: northern Mamibia western Botswana, SWC: southwestern Cape: CIN: central intencor; WIN: western interior: TEA:
Transker: LOW: Lowveld; SCO: south coast) with a |-month lead-time: (b) LEPS scores for vanance-adusted retro-active forecasts
with a |-month lead-time. The schd line represents the CCA model scores; the circlad hne multi-tiered model scores. Horzontal lines
indicate 90, 93 and 99% confidence levels



Stanificantly, the potential for GCM seasonal forecasting of rainfall over southern Africa is high. In the
past. statistical modelling offered the best prospects for seasonal climate forecasting: in future, GCMs will
undoubtedly provide the best basis for doing so. At present, both methods are needed and are best

blended in a multi-tiered approach to offer pragmatic and cost-¢ffective solutions to a complex problem.
(2000)

Examples of
complex problems:
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Do Statistical Pattern Corrections Improve Seasonal Climate Predictions in
the North American Multimodel Ensemble Models?

ANTHONY G. BARNSTON
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ABSTRACT

Canonical correlation analysis (CCA)-based statistical corrections are applied to seasonal mean pre-
cipitation and temperature hindcasts of the individual models from the North American Multimodel En-
semble project to correct biases in the positions and amplitudes of the predicted large-scale anomaly patterns.
Corrections are applied in 15 individual regions and then merged into globally corrected forecasts. The CCA
correction dramatically improves the RMS error skill score, demonstrating that model predictions contain
correctable systematic biases in mean and amplitude. However, the corrections do not materially improve the
anomaly correlation skills of the individual models for most regions, seasons, and lead times, with the ex-
ception of October-December precipitation in Indonesia and eastern Africa. Models with lower uncorrected
correlation skill tend to benefit more from the correction, suggesting that their lower skills may be due to
correctable systematic errors. Unexpectedly, corrections for the globe as a single region tend to improve the
anomaly correlation at least as much as the merged corrections to the individual regions for temperature, and
more so for precipitation, perhaps due to better noise filtering. The lack of overall improvement in correlation
may imply relatively mild errors in large-scale anomaly patterns. Alternatively, there may be such errors, but
the period of record is too short to identify them effectively but long enough to find local biases in mean and
amplitude. Therefore, statistical correction methods treating individual locations (e.g., multiple regression or
principal component regression) may be recommended for today’s coupled climate model forecasts. The
findings highlight that the performance of statistical postprocessing can be grossly overestimated without
thorough cross validation or evaluation on independent data.




Paper on MOS
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DJF Rainfall (SIMULATION)
DJF 850 hPa gpm (SIMULATION) Robustness
] of approach
established

Canonical Coefficients

Fic. 5. CCA mode-1 predictor maps of the (a) 21- and (b) 27-yr traming pertods used in the MOS equations relating simulation mode
830-hPa geopotential heights to DJF regional rainfall. Shaded regions depict areas of significant correlations at the 93% level of confidence.
CCA mode-1 predictand maps of the (c) 21- and (d) 27-yr tramning periods vsed in the MOS equaticns. Canonical coefficient scores of mode
1 of the (&) 21- and (f) 27-yr training periods, of the §50-hPa geopontential heights (dashed line), and the regional ranfall (solid line);
canonical correlations are in the bottom left-hand corner.



MOS LEPS scores

b
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Experimental Long-Lead Forecast Bulletin, 10, 75-77

Forecasts of Southern African DJF Rainfall Using Model Output Statistics
contributed by W. A. Landman, L. Goddard and A. Barnston

Categorized rainfall MOS forecasts for DJF 2001/02. A
refer to above- and N to near-normal equi-probable
rainfall categories. LEPS scores are shown with the
predicted categories, calculated from 30 years of cross-
validated rainfall forecasts. LEPS scores significant at

12 2L

the 95% level of confidence are indicated with a “*”, and

k%)

those significant at the 99% level, with )
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(a) CCA mode 2 predictor
map of the 30-year training
period used in the MOS
equations relating GCM
predicted 850 hPa
geopotential heights to DJF
regional rainfall. Shaded
regions depict areas of
significant loadings at the
95% level of confidence.
(b) DJF 2001/02 850 hPa
geopotential height
anomalies in gpm, based
on the 30-year climate
period of 1970/71 to
1999/2000.



Sensitivity to different
domain configurations

Data and Methods

= ECHAMA4.5
simulation rainfall
for climatological
seasons (DJF, MAM,
JJA, SON)

Southern African
regional rainfall for
corresponding
seasons
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Conclusions

s The smaller domains worked better than
the bigger ones — GCM is working well!

e smaller domains involve primarily
recalibration and some spatial correction

= The GCM has the ability to adequately
simulate ENSO teleconnection patterns
over southern Africa

= DJF and MAM: Best domain includes
portion of ocean that supplies moisture
to the region

Selecting an Optimal Domain

e Identify moisture sources for the region and season

* Extend domain boundaries to include moisture sources
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Predicting southern African summer rainfall using a combination of

MOS and perfect prognosis
Willem A. Landman'? and Lisa Goddard®

Recerved 7 March 2005; revised 7 March 2005; accepted 8 July 2005; published 11 August 2005.

[1] A statistical-dynamical approach to probabilistic
precipitation forecasts ol southern Afrncan summer rainfall
15 described and validated. An ensemble of seasonal
precipitation and circulation fields 1s obtained from the
ECHAM4.5 atmospheric general circulation model
(AGCM). Model output statistics (MOS) then spatially
recalibrate the AGCM fields relative to observations.
Although the MOS equations are built using the
simulation data, in which observed S58Ts force the AGCM,
the same set of equations can be applied to the predicted

data, in which predicted 55Ts force the AGCM. The use of

prediction data in a set of equations developed for
simulations, assumes that the AGCM forecast skill
approximates its simulation skill and that the systematic
biases of the AGCM do not change in a prediction setting;
this assumption 15 analogous to a perfect prognosis (PP)
approach. Probabilistic forecast skill 1s assessed using this
MOS-PP-recalibration scheme for 3 equi-probable

or set of fields, to variability in another 15 applied in a
forecast setting. PP assumes that the relationships between
the variables do not change in the forecast setting. Perfect
prognosis (PP) [Wilks, 1995] performed over a 10-year
retro-active period demonstrated useful operational forecast
skill over the austral summer rainfall period of southern
Alrica [Landman et al., 2001]. In MOS a system of
equations maps variability in model field(s) to vanability
in observed fields in order to minimize biases in model
output. Model output statistics (MOS) [Wilks, 1995] recal-
ibration has shown improved skill over both raw AGCM-
simulated rainfall and over a simple statistical forecasting
technique using global sea-surface temperature (55T)
patterns as predictors [Landman and Goddard, 2002].
Strictly speaking, the MOS equations applied to AGCM
simulation data are not the same set of MOS equations
applied to AGCM forecast data. In a pure MOS approach a
different set of equations would be developed for each lead-



MOS-PP Combination

e Set up a MOS set of equations using simulation
data (i.e., DJF SSTs for DJF output)

e Use forecast fields from the SAME GCM at lead-
times as input in MOS equations

- Reminiscent of Perfect Prognosis

- Difference: GCM data was used to set up the
prediction equations instead of observed fields



RPSS
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MOS-PP Combination

Advantages Disadvantage
e GCM biases are e Forecast fields
taken into produced at lead-times
consideration in a are not.as g_ood as the
much more simulation fields
representative way - Previous MOS work has
shown that at short
e Anew set of MOS lead-times, little skill is
equations do not lost for the summer
have to be set up with rainfall season

each forecast lead-
time



Experimental Design

Data

e MOS: ECHAM4.5
simulation rainfall for
DJF

e “Perfect Prognosis™.
ECHAMA4.5 forecast
rainfall from November
SST forcing (0-month)

e Predictand: Southern
African regional DJF
rainfall

Method
e Optimal CCA

— Simulation data

— 24-member ensemble
mean

-~ Best mean correlation
obtained from 3-year-out
cross-validation defines
best MOS model (48yrs)

e Forecasts (0-month)
- Ensemble of 12 members

- RPSS for three categories
over 27 years
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MOS Model Climate and
Forecast Years

27 MOS models are designed:

_ 1950/51-1972/73 (23 yrs) — 1973/74

_ 1950/51-1973/74 (24 yrs) — 1974175

- ... efc...

- 1950/51-1998/99 (49 yrs) — 1999/2000



RPSS
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The “poor” forecast of JFM 2004
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New forecast approached 04
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Assessing the predictability of extreme
rainfall seasons over southern Africa

GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L23818, doi:10.1029%2005GL023965, 2005

Assessing the predictability of extreme rainfall seasons over
southern Africa

Willem A. Landman,"* Stephanie Botes,' Lisa Goddard,” and Mxolisi Shongwe'
Received 4 July 2005; revised 30 September 2005; accepted 21 October 2005; published 10 December 2005,



Method

e ECHAMA4.5 simulation data (only provides an
estimation of the upper limit of forecast skill)
over 45 years

e Statistical post-processing of GCM rainfall fields
to regional rainfall indices

e RPSS and ROC (wet or dry extremes are more
predictable) probabilistic skill estimates (3-year-
out cross-validation) for 4 climatological seasons



From 3 to 5 categories

e 3 equi-probable category forecasts:
- 33.3 33.3 33.3

e 5 equi-probable category forecasts:
- 2020202020

Accurate prediction of the probabilities of rare events
(outer pentiles) is the aim of this analysis



Skill for 5 categories (45-years)
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ROC curves
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ROC curves
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Datasets and Variables

Cansips
CMC1-CanCM3

CMC2-CanCM4
COLA-RSMAS-CCSM3
COLA-RSMAS-CCSM4
CPC-CMAP
CPC-CMAP-URD
CPC-PRECIP
GFDL-CM2p1
GFDL-CM2p1-aer04
GFDL-CM2p3-FLOR-AQ6
GFDL-CM2p3-FLOR-B0O1
GHCN_CAMS

http://iridl.Ideo.columbia.edu/SOURCES/.Models/.NMME/

Models NMME Cansips[FORECAST ]

Models NMME CMC1-CanCM3[HINDCAST FORECAST ]
Models NMME CMC2-CanCM4[HINDCAST FORECAST ]
Models NMME COLA-RSMAS-CCSM3[MONTHLY ]
Models NMME COLA-RSMAS-CCSM4[MONTHLY ]
Models NMME CPC-CMAP[prate ]

Models NMME CPC-CMAP-URD[prate ]

Models NMME CPC-PRECIP[prate ]

Models NMME GFDL-CM2p1[MONTHLY ]

Models NMME GFDL-CM2p1-aerO4[MONTHLY ]

Models NMME GFDL-CM2p5-FLOR-AO6[MONTHLY ]
Models NMME GFDL-CM2p5-FLOR-BO1[MONTHLY ]
Models NMME GHCN_CAMS[updated temp ]

IRI-ECHAM4p5-AnomalyCoupled Models NMME IRI-ECHAM4p5-AnomalyCoupled[MONTHLY ]

IRI-ECHAM4p5-DirectCoupled

LSMASK
NASA-GMAQ
NASA-GMAQO-062012
NCDC-OISST
NCEP-CFSv1
NCEP-CFSv2

Models NMME IRI-ECHAM4p5-DirectCoupled]MONTHLY ]
Models NMME LSMASK]land ]

Models NMME NASA-GMAO[MONTHLY ]

Models NMME NASA-GMAQO-062012[MONTHLY ]

Models NMME NCDC-0OISST[sst ]

Models NMME NCEP-CFSvI[MONTHLY ]

Models NMME NCEP-CFSv2[HINDCAST FORECAST ]



http://iri.columbia.edu/our-expertise/climate/tools/cpt/
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> CLIMATE PREDICTABILITY TOOL

Climate Predictability Tool

The Climate Predictability Tool (CPT) is a software s Important Links
package for constructing a seasonal climate X " Downloads
forecast model, performing model validation, and ' ‘
producing forecasts given updated data. Its design
has been tailored for producing seasonal climate
forecasts using model output statistic (MQOS)
corrections to climate predictions from general

Tutorials

Frequently

circulation model (GCM), or for producing

forecasts using fields of sea-surface temperatures |
or similar predictors. Although the software is
specifically tailored for these applications, it can be

Tutorial (PDF, English version, July,

e CPT (PDF, French

used in more general settings to per’form Tutorial Videos for CPTv14.7.4 New Features:

cananical correlation analysis (CCA), principal
components regression (PCR), or multiple linear

- (English) and (Spanish
IRI-WMO Workshop on Tailoring of Seasonal Forecasts. A.Curtis/IRI (English) and (5panish)

CPTv14 5P| Demo



CCA equations (1979/1980-2008/2009)
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Malaria Index
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Dynamical Downscaling

e GCM resolution not fine enough to resolve small-
scale atmospheric circulation

e Possible to produce detailed simulations for selected
regions by nesting a Regional Climate Model (RCM,;
or LAM) into a global GCM

e GCM large-scale fields are used as driving initial and
time-dependent lateral boundary conditions (i.e., 6-
hourly) for the RCM

e Sea-surface temperatures prescribed



RCM for domain of interest




Regional Climate Model : The RCM
is coupled to a global model which
regularly provides boundary
conditions to the RCM during the
integration (e.g., every 6 hours)




Coupling zone
fixing the
coherency

between the

Global model

and the RCM




Comparison with GCMs

e Large-scale average circulation of RCM similar to
that of driving GCM

e RCM produces better regional detail of temperature
and precipitation distribution

e RCM able to simulate regional structures:
— precipitation maxima at coast and mountains
— sharp temperature gradient at coast

e RCM better able to represent orographic
precipitation



Model topography

An example for the topography of the model.

Real topography profile Topography profile in the model

using a doubling of horizontal and
Topography profile in the model vertical resolution

N\
N




Simulated rainfall differences
using a regional climate model

UEA DJF Total Rainfall Difference (mm) ReqCM2 DJF Total Rainfall Difference (mm)
1995/96 — 1994/95

1995/96 - 1994/95

s£  1E 1% 2E 25 ME  E  40E 4 50 S W€ 1 2t S0E e a0E #E S

Difference maps (wet season minus dry season): observed (left)
and simulated (right). Although the RCM was able to produce a lot
of detail in the rainfall spatial pattern, it still misplaced the area of
maximum rainfall difference
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Using a simple linear regression approach, prost-processing the RCM simulated rainfall
thresholds (bars on the right) at two grid-points in close proximity of respectively Bloemfontein
and Durban, improved on the “raw’” simulated thresholds (middle bars). Observed thresholds
are the bars on the left




Some RCM Limitations

e EXxcessive accumulated precipitation at steep
orography
e Simulated precipitation is sensitive to the

choice of cumulus parameterization scheme
(RCM and GCM should use similar scheme)

e RCMs can produce spurious precipitation
near the boundaries of the domain



Other RCM approaches...

e Two-way nested RCMs — modified synoptic
behaviour is fed back to influence the GCM
(computationally expensive)

e Variable resolution GCMs



Stretched Grid

Stretched grid corresponds to a variable resolution




Stretched Grid

Pole of interest

The closer to the pole of interest,
the higher the resolution




Stretched Grid

The spatial resolution here is equivalent
to a grid mesh of approximately 30 km.

The spatial resolution is progressively
relaxed towards the antipode (near New-
Zealand).
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ABSTEACT

A :|'egic:-11ﬂ] climate model is tested for several domain configurations over the southwestern Indian Coean
to examine the ability of the model to reproduce observed cyclones and their landfalling tracks. The
interaction between large-scale and local terrain forcing of tr-:upu:'Ll storms approaching and transiting the
island landmass of Madagascar makes the southwestern Indian Ccean a unique and interesting study area.
In addition, tropical cyclones across the southern Indian Ocean are likely to be significantly affected by the
large-scale zonal flow. Therefore, the effects of model domain size and the positioning of its lateral bound-
aries on the simulation of tropical cyclone—like vortices and their tracks on a seasonal time scale are
investigated. Four tropical cyclones, which occurred over the southwestern Indian Ocean in January of the
yvears 1995-07, are studied, ‘and four domains are tested. The regional climate model is driven by atmo-
spheric lateral boundary conditions that are derived from large-scale meteorological analyses. The use of
analyzed boundary fu::-]t'mq enables comparison with observed cyclones in these tests. Simulations are
performed using a 60-km horizontal resolution and for an extended time integration of about 6 weeks.
Eesults show that the positioning of the eastern boundary of the regional model domain is of major
importance in the life eycle of simulated tropical cyclone—like vortices: a vortex entering through the eastern
boundary of the regional model is generally well simulated. The size of the domain also has a bearing on
the ability of the regional model to simulate vortices in the Mozambique Channel, and the island landmass
of Madagascar additionally influences storm tracks. These results show that the regional model can produce
cyclonelike vortices and their tracks (with some deficiencies) given analyzed lateral boundary forcing.
Statistical analyses of GCM-driven nested model ensemble integrations are now required to further address
predictive skill of cyclones in the southwestern Indian Ocean and to test if the model can realistically
simulate tropical storm genesis as opposed to advecting existing tropical disturbances entering through the
maodel boundaries.



TCLVs generated by an
ensemble of 24 integrations of
1996 ECHAM4.5 GCM

simulations
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Tropical Storm Trocks Year 2000




Why Regional Models?

e GCMs tend to simulate tropical cyclone-like
vortex tracks in the SIO too far to the east

e Meaningful TC statistics require running
GCMs at a fine horizontal resolution

e Due to the coarse resolution of most GCMs,

an alternative approach is nesting regional
models



A first approach...

e Driving regional model with large-scale time-
dependent meteorological analysis data —
mimicking a “perfect” GCM

e The large-scale forcing will enable direct
comparison between regional model
performance and analysis

e No bogussing of TCLVs — no attempt is
made to synthetically strengthen TCLVs



The regional model

RegCM2

One-way nesting, whereby ECMWEF analyses data
are the initial and time-dependent lateral boundary
conditions

Horizontal resolution: 60 km
Time step: 150s
SSTs are monthly mean values

Initialized on 16 December preceding January
(minimum 16 days model spin-up time)
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Track Tropical Cyclone Bonita — January 1996
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Track Tropical Cyclone Gretelle - January 1997
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JTWC, analysis and simulated track...

Tracks Fabriola
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Skill comparisons

Skill comparison between baseline model (SST as predictor), GCM,
MOS and RegCM3 simulations of DJF rainfall from 1991/92 — 2000/2001

(10 years)
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Points to consider

e Both empirical and dynamical downscaling
techniques have the potential to improve on large-
scale forecasts of GCMs

e Empirical techniques are easy to use and do not
need lots of CPU; but climate might be unstable

e Dynamical techniques are complex and require a lot
of CPU; but skill limited by parameterization
schemes, etc.

e To justify its operational use, dynamical
techniques should outperform empirical
techniques
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