
PRINCIPAL COMPONENT ANALYSIS

Willem A. Landman

Lecture 2

AMS Meteorology Glossary: Regression analysis to determine from a set of
independent variables those contributing most to the explained variance.



An example of a possible configuration of the station data vectors fn

(the subscript n = 1,…,N denotes a particular instant of time) 

and the empirical orthogonal vectors em (m = 1,…M with, in general, M<<N)

organized in clusters



PCA
p x p symmetric, nonsingular matrix, i.e., 

covariance matrix S
▼

Pre- and post-multiply with orthonormal matrix
U

UTSU = L

orthonormal = orthogonal with unit length:
uT

1u1 = 1; uT
2u2 = 1; uT

1u2 = 0



Characteristic Equation: |S – lI| = 0

• Columns of U: u1, u2, … , up are the 
eigenvectors of S

• Diagonal elements of L: l1, l2, … , lp are the 
eigenvalues of S
– The ratio of each eigenvalue to the total will 

indicate the proportion of the total 
variability accounted for by each 
eigenvector



Transformed variables…

• x = observations, p x 1 variables

• Transform p correlated variables x1, x2, … into p new 
UNcorrelated variables:

z = UT[∆x],
the PRINCIPAL COMPONENTS

∆x = Uz



Getting ready for eigenanalysis

• Covariance S = XTX or S* = XXT

• Covariance matrix requires:
X = ∆x (mean = 0)

• Correlation matrix requires: 
X = ∆x / σ (mean = 0; std =1)



In practice…

• Geophysical field, i.e., global SSTs of JFM 

X =
1950 1951 … n

grid point 1

:

grid point p



Example (1)
• Matrix=
• 11.0000   22.0000   33.0000
• 3.3166   -4.6904     5.7446

• Normalised matrix=
• -1.0000         0        1.0000
• 0.3406   -1.1258    0.7852

• Standard deviations=
• 1
• 1

• Means=
• 0
• 0



Example (2)
• S=1/(n-1)A*A'
• Correlation matrix=
• 1.0000    0.2223
• 0.2223    1.0000

• Unsorted Eigenvalues=
• 0.7777         0
• 0    1.2223

• Unsorted Eigenvectors
• -0.7071 0.7071
• 0.7071 0.7071

• SORTED Explained variance=
• 61.1161   38.8839

• SORTED Eigenvectors=
• 0.7071   -0.7071
• 0.7071    0.7071

Principal Components= UT[∆x]

0.7071  0.7071    X    -1.0000           0      1.0000

-0.7071  0.7071           0.34066   -1.1258   0.7852



Modes of Variation: Eigenanalysis on ∆xT∆x

• S – mode: 
[∆x]=[n x p]; [∆xT∆x]=[p x n][n x p]=[p x p]

• T – mode:
[∆x]=[p x n]; [∆xT∆x]=[n x p][p x n]=[n x n]



Covariance



Correlation



When the covariance matrix CANNOT be 
used…

• When variances differ widely: 
Eq. IO SST var. << Eq. PO SST var.

• When units are different:
SSTs combined with 200 hPa gpm heights



How many modes?

• Proportion of variance

• SCREE test

• Average root (Guttman – Kaiser)

• Sensitivity tests (used in statistical modelling)



The SCREE test



Extended EOFs (EEOFs)

Example of time evolution:
AMJ–JAS–OND–JFM SSTs combined into one 

field x

Resulting PCA will result in evolutionary or 
steady-state features of SSTs



EEOF1



EEOF1



EEOF1



EEOF1



EEOF1



ROTATION

• Rotation required when Buell patterns exist 
(Richman 1986)

• Same amount of variation explained after 
rotation

• Two types of rotation
• Orthogonal – varimax
• Oblique

• Rotation might be useful for a group of PCs 
whose eigenvalues are similar



Interpreting the Principal Components

Principal components are notoriously difficult to interpret
physically.

The weights are defined to maximize the variance, not
maximize the interpretability!

With spatial data (including climate data) the interpretation
becomes even more difficult because there are geometric
controls on the correlations between the data points.

Simon Mason



Buell patterns

Imagine a rectangular domain in which all the points are
strongly correlated with their neighbours.

The points in the middle of the domain will have the
strongest average correlations with all other points. This is
often represented by PC 1.

The points furthest apart will have the strongest negative
correlations. This is often represented by PC 2.

Simon Mason



Buell patterns?

Are these real, or are they a function of the domain shape?

Simon Mason



Buell patterns

Because of domain shape dependencies:

1. the first PC frequently indicates positive loadings with
strongest values in the centre of the domain;

2. the second PC frequently indicates negative loadings on
one side and positive loadings on the other side in the
direction of the longest dimension of the domain.

Similar kinds of problems arise when using:

1. gridded data with converging longitudes, or simply with
longitude spacing less than latitude spacing;

2. station data.

Simon Mason



Rotation

The weights are defined to maximize the variance, not
maximize the interpretability!

The weights could be redefined to meet alternative criteria.
Rotation is sometimes performed to maximize the weights
of as many metrics as possible, and to minimize the weights
of the others.

The variances of the first few principal components are
reduced after rotation.

Simon Mason



Rotation

Rotation does NOT solve Buell pattern problems, nor
station and uneven gridded data problems, it only reduces
them.

These problems are only of concern for interpretation.

Simon Mason



Canonical Correlation Analysis
(CCA)



CCA…

• Identifies new variables that maximize the 
interrelationship between two data sets

• This is in contrast to the patterns describing 
the internal variability within a single data set 
identified in PCA

• It is in this sense that CCA is referred to as 
“double-barreled” PCA



CCA…
• In multiple regression, the predictand is a 

scalar
• CCA can also be viewed as an extension of 

multiple regression to the case of a vector-
valued predictand variable

• The predictor: vector of SSTs, SLP, etc.
• The predictand: vector of rainfall stations, etc.
• Widely applied to geophysical data in the form 

of fields



The Mathematics of CCA
Consider two vector variables X (predictor) and Y
(predictand):

X = (X1, X2,…, Xp)T, and
Y = (Y1, Y2,…, Yq)T

where q ≤ p

We will consider the case where both X and Y are centered 
data sets, i.e., the mean has been removed



With PCA…

U = ETX

E: eigenvectors
X: centered data



With CCA…

V = ATX
W = BTY

each is a linear combination of elements of the 
respective data vectors X and Y

A: corresponding vectors of weights of X,
B: corresponding vectors of weights of Y, (called 

canonical vectors)
X and Y: centered data



Properties of CCA…
• corr[V1,W1] ≥ corr[V2,W2] ≥ … ≥ corr[VM,WM]

• corr[Vk,Wm] = rc,    k = m,
= 0,    k ≠ m

• var[Vm] = var[Wm] = 1, m=1,…,M

Each of the M successive pairs of canonical variates 
exhibits a weaker correlation than the previous 
pair
Canonical correlations, rc, are correlations between 
the pairs of canonical variates



Computing CCA…

• A joint variance-covariance matrix of the 
variables X and Y is constructed

• These two data vectors are combined into one 
single vector CT = [XT,YT], 

• The variance-covariance matrix of C:
[SC] = [C]T[C]/(n-1)



Correlation Matrix

[R] = [Z]T[Z]/(n-1)

dim [Z] = n x K
n: “occasions”

K: number of variables

dim [R] = K x K



Structure of the Correlation Matrix for PCA
(of fields with observations of more than one variable at each location)

[R] = ⌠[R1,1] [R1,2] … [R1,L]
[R2,1] [R2,2] … [R2,L]
.…………………..
[RL,1] [RL,2] … [RL,L]⌡

L: variables of which multiple observations exist
K: locations
KL: dimensionality of the data vector: the first K elements are 

observations of the first variable, the second K elements are 
observations of the second variable, etc…

dim[R] = MxM, where M = KL

The sub-matrices located on the 
diagonal contain ordinary 
correlation matrices for each of  
the L variables



Analogous to PCA
with more than one variable…

[SC] = ⌠[SXX] [SXY]
(IxI)      (IxJ)

[SYX] [SYY]
(JxI)      (JxJ) ⌡

[R] = ⌠[R1,1] [R1,2]                
[R2,1] [R2,2]⌡



Algebraic problem to solve for A and B…

ψ = ATSXYB – ½ λ(ATSXXA – 1) – ½ µ(BTSYYB – 1),
(λ and µ are Langrangian multipliers)

∂ψ/∂A = SXYB – λSXXA = 0
∂λ/∂B = ST

XYA – µSYYB = 0

…and after a lot more incredible algebra…



The Mathematics of CCA

The CCA eigenvalue problem:

(Sxx
-1SxySyy

-1Syx – λ2I)A = 0

(Syy
-1SyxSxx

-1Sxy – λ2I)B= 0

The largest eigenvalue λ2
1 is associated with the 

first eigenvector A1 or B1
(λ2 = rc)



Analogies between PCA and CCA

• Define a new set of variables 
(PCs) that optimally describes 
variance in a single data set

• The PCs are based on the 
eigenvalue problem of the 
covariance matrix

• The eigenvalues represent the 
relative variance with each EOF

• Define a new set of variables that 
optimally describes the cross-
correlation between two different 
data sets

• The set of variables is based on 
the coupled eigenvalue problem 
of the cross-covariance and auto-
covariance matrices between two 
data sets

• The eigenvalues represent the 
level of correlation between 
patterns of predictor variables 
and patterns of predictand 
variables



PCA version of CCA

• In practice: sometimes useful to “prefilter” the two 
fields (predictor and predictand) of raw data

• The two analyses may be truncated at different 
numbers of principal components

• BEWARE: important information could be lost when 
truncating the PCA

• PCA necessary when there is strong spatial 
correlation within fields

• With small sample size (number of years), PCA pre-
filtering tends to improve stability – necessary for 
forecasting independent data



Monthly Weather Review, 115.



CCA as analysis tool

X(x,t) = Σjrj(t)gj(x), j = 1, 2, … , p

Y(x’,t) = Σksk(t)hk(x’), k = 1, 2, … , q

gj and hk are vectors whose components show the 
correlation at a specific location between the 

predictor or the predictand and their respective 
canonical component time series (rj and sk)



Example

• Predictor: DJF 850 hPa geopotential heights 
forecast by the ECHAM3.6 GCM

• Predictand: Southern African DJF observed 
rainfall indices

• g-map: correlations between the 850 hPa 
heights and the predictor canonical 
component time series

• h-map: correlations between the rainfall 
indices and the predictand canonical 
component time series



0.99

0.61

0.93

0.89

0.99

0.95

0.98



Example

• Predictor: DJF rainfall simulated by the ECHAM4.5 
GCM

• Predictand: Southern African DJF observed station 
rainfall

• g-map: correlations between the GCM-rainfall and 
the predictor canonical component time series

• h-map: correlations between the station rainfall and 
the predictand canonical component time series

• hn-map: correlation between the station rainfall and 
the predictor canonical component time series





SST model of the Indian Ocean

• Demonstration of a very simple model 
predicting DJF SSTs of the Indian Ocean using 
SON SSTs of the Pacific Ocean

• Only the spatial patterns will be shown…







HOMEWORK

Consider the maps and time series of the 
previous Indo-Pacific Ocean example. Using 
CCA diagnostics, explain how the SON SSTs of 
the equatorial Pacific represented by the first 
CCA mode are linearly related to the DJF SSTs 
of the equatorial Indian Ocean. 
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