PRINCIPAL COMPONENT ANALYSIS

Willem A. Landman

AMS Meteorology Glossary: Regression analysis to determine from a set of
independent variables those contributing most to the explained variance.

Lecture 2
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An example of a possible configuration of the station data vectors f,
(the subscript n = 1,...,N denotes a particular instant of time)

and the empirical orthogonal vectors e, (m = 1,...M with, in general, M<<N)



PCA

p X p symmetric, nonsingular matrix, i.e.,
covariance matrix S

\ 4
Pre- and post-multiply with orthonormal matrix
U
UTsU =L

orthonormal = orthogonal with unit length:
ul,u,=1;u,u,=1;,u"u,=0



Characteristic Equation: |S—Il| =0

* Columnsof U:u, u,, ..., u,are the
eigenvectors of S

* Diagonal elementsof L: [, |, ..., |p are the
eigenvalues of S

—The ratio of each eigenvalue to the total will
indicate the proportion of the total
variability accounted for by each
eigenvector



Transformed variables...

* X = observations, p x 1 variables

* Transform p correlated variables x;, x,, ... into p new
UNcorrelated variables:

z = UT[Ax],
the PRINCIPAL COMPONENTS

Ax = Uz



Getting ready for eigenanalysis

e Covariance S =X"X or S* = XXT

* Covariance matrix requires:
X = AXx (mean = 0)

* Correlation matrix requires:
X =Ax/ o (mean = 0; std =1)



In practice...

 Geophysical field, i.e., global SSTs of JFM

X =

1950 1951 n

grid point 1

grid point p




Example (1)

Matrix=
11.0000 22.0000 33.0000
3.3166 -4.6904 5.7446

Normalised matrix=
-1.0000 0 1.0000
0.3406 -1.1258 0.7852

Standard deviations=



S=1/(n-1)A*A'

Correlation matrix=
1.0000 0.2223
0.2223 1.0000

Unsorted Eigenvalues=
0.7777 0
0 1.2223

Unsorted Eigenvectors
-0.7071 0.7071
0.7071 0.7071

SORTED Explained variance=

61.1161 38.8839

SORTED Eigenvectors=
0.7071 -0.7071
0.7071 0.7071

Example (2)
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Modes of Variation: Eigenanalysis on AxTAx

e S—mode:
[Ax]=[n x p]; [AXTAx]=[p x n][n x p]=[p x p]

e T—mode:
[Ax]=[p x n]; [Ax"Ax]=[n x p][p x n]=[n x n]



Covariance
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Correlation
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When the covariance matrix CANNOT be
used...

* When variances differ widely:
Eqg. 10 SST var. << Eq. PO SST var.

e When units are different:
SSTs combined with 200 hPa gpm heights



How many modes?

Proportion of variance
SCREE test
Average root (Guttman — Kaiser)

Sensitivity tests (used in statistical modelling)



The SCREE test

Y Scree Plot

ee Plot
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Extended EOFs (EEOFs)

Example of time evolution:

AMJ—-JAS—OND—-JFM SSTs combined into one
field x

Resulting PCA will result in evolutionary or
steady-state features of SSTs



EEOF1
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EEOF1

FEOF 1 (JFM: t = 0)




ROTATION

Rotation required when Buell patterns exist
(Richman 1986)

Same amount of variation explained after
rotation

Two types of rotation
e Orthogonal — varimax

* Oblique
Rotation might be useful for a group of PCs
whose eigenvalues are similar



Interpreting the Principal Components

Principal components are notoriously difficult to interpret
physically.

The weights are defined to maximize the variance, not
maximize the interpretability!

With spatial data (including climate data) the interpretation
becomes even more difficult because there are geometric
controls on the correlations between the data points.
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Buell patterns

Imagine a rectangular domain in which all the points are
strongly correlated with their neighbours.

The points in the middle of the domain will have the
strongest average correlations with all other points. This is
often represented by PC 1.

The points furthest apart will have the strongest negative
correlations. This is often represented by PC 2.
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Buell patterns?

Are these real, or are they a function of the domain shape?

X Spatial Loadings (EOF1) X Spatial Loadings (EOF2)

100 |--
BN bt

85

.....
__________________________________
......
i 1

'

'

45E &0E 55E BOE BSE YOE Y5E BOE B5E S0E 95E 100E 45E 50E 55E BOE B5E YOE 7V5E BOE 85E S0E 95E 100E

105

-0.90-0.75-0.60-0.45-0.30-0.15 0.000.15 0.30 0.45 060 0.75 0.90 -0.90-0.75-0.60-0.45-0.30-0.15 0.000.15 0.30 0.45 0.60 0.75 0.90

Simon Mason

Z
._I
M
7
Z
>
|
O
Z
>
W
A
M
7
m
>
:U
)
T
Z
"
=
=
c
._I
M



Buell patterns

Because of domain shape dependencies:

1. the first PC frequently indicates positive loadings with
strongest values in the centre of the domain;

2. the second PC frequently indicates negative loadings on
one side and positive loadings on the other side in the
direction of the longest dimension of the domain.

Similar kinds of problems arise when using:

1. gridded data with converging longitudes, or simply with
longitude spacing less than latitude spacing;

2. station data.
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Rotation

The weights are defined to maximize the variance, not
maximize the interpretability!

The weights could be redefined to meet alternative criteria.
Rotation is sometimes performed to maximize the weights
of as many metrics as possible, and to minimize the weights
of the others.

The variances of the first few principal components are
reduced after rotation.

Simon Mason
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Rotation

Rotation does NOT solve Buell pattern problems, nor
station and uneven gridded data problems, it only reduces
them.

These problems are only of concern for interpretation.
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Canonical Correlation Analysis
(CCA)



CCA...

e |dentifies new variables that maximize the
interrelationship between two data sets

* This is in contrast to the patterns describing
the internal variability within a single data set
identified in PCA

e |tisin this sense that CCA is referred to as
“double-barreled” PCA



CCA...

In multiple regression, the predictand is a
scalar

CCA can also be viewed as an extension of
multiple regression to the case of a vector-
valued predictand variable

The predictor: vector of SSTs, SLP, etc.
The predictand: vector of rainfall stations, etc.

Widely applied to geophysical data in the form
of fields



The Mathematics of CCA

Consider two vector variables X (predictor) and Y
(predictand):

X = (X, X5, Xp)T, and
Y=(Yy, Yy V)T

where q<p

We will consider the case where both X and Y are centered
data sets, i.e., the mean has been removed



With PCA...

U=E'X

E: eigenvectors
X: centered data



With CCA...

V = A™X
W =B'Y
each is a linear combination of elements of the
respective data vectors Xand Y

A: corresponding vectors of weights of X,

B: corresponding vectors of weights of Y, (called
canonical vectors)

X and Y: centered data



Properties of CCA...

 corr[V,,W,] 2 corr[V,,W,] = ... 2 corr[V,,W,/]

* corr[V,W_]=r, k=m,
=0, k#m

e var[V ] =var[W_]=1, m=1,.,M

Each of the M successive pairs of canonical variates
exhibits a weaker correlation than the previous
pair

Canonical correlations, r_, are correlations between
the pairs of canonical variates



Computing CCA...

* A joint variance-covariance matrix of the
variables X and Y is constructed

e These two data vectors are combined into one
single vector C" = [X",YT],

 The variance-covariance matrix of C:
[Sc] = [C]'[C]/(n-1)



Correlation Matrix

[R] = [2]'[z]/(n-1)
dim [Z] =n x K

n: “occasions”

K: number of variables

dim [R] = K x K



Structure of the Correlation Matrix for PCA

(of fields with observations of more than one variable at each location)

The sub-matrices located on the

_ diagonal contain ordinary
[R] - [[Bl,l]_ [Bl,z] [erL] correlation matrices for each of
.R2,1. .Rz,z] [Rz,L] the L variables

R41[R] - [R ]
L: variables of which multiple observations exist
K: locations

KL: dimensionality of the data vector: the first K elements are
observations of the first variable, the second K elements are
observations of the second variable, etc...

dim[R] = MxM, where M = KL



Analogous to PCA
with more than one variable...

[R] = [[Rl,l] [R1,2]
[Ry1] [Ry,]]



Algebraic problem to solve for A and B...

$ = ATS,,B — % A(ATS,,A — 1) — % u(B'S,,B — 1),
(A and u are Langrangian multipliers)

dY/OA =S, B —AS,, A =0
dA/0B =ST,,A— pS..,B =0

...and after a lot more incredible algebra...



The Mathematics of CCA

The CCA eigenvalue problem:

(S Sy Syy 1Sy — A21)A = 0

Xy vy

(Syy1SxSxc 1Sy — A21)B= 0

VX~ XX

The largest eigenvalue A%, is associated with the
first eigenvector A, or B,

(A2=r)



Analogies between PCA and CCA

Define a new set of variables
(PCs) that optimally describes
variance in a single data set

The PCs are based on the
eigenvalue problem of the
covariance matrix

The eigenvalues represent the
relative variance with each EOF

Define a new set of variables that
optimally describes the cross-
correlation between two different
data sets

The set of variables is based on
the coupled eigenvalue problem
of the cross-covariance and auto-
covariance matrices between two
data sets

The eigenvalues represent the
level of correlation between
patterns of predictor variables
and patterns of predictand
variables



PCA version of CCA

In practice: sometimes useful to “prefilter” the two
fields (predictor and predictand) of raw data

The two analyses may be truncated at different
numbers of principal components

BEWARE: important information could be lost when
truncating the PCA

PCA necessary when there is strong spatial
correlation within fields

With small sample size (humber of years), PCA pre-
filtering tends to improve stability — necessary for
forecasting independent data



SEPTEMBER 1987 T. P. BARNETT AND R. PREISENDORFER 1825

Origins and Levels of Monthly and Seasonal Forecast Skill for United States Surface Air
Temperatures Determined by Canonical Correlation Analysis

T. P. BARNETT
Climate Research Group, Scripps Institution of Oceanography, La Jolla, CA 92093

R. PREISENDORFER
Pacific Marine Environment Laboratory, National Oceanographic and Atmospheric Administration, Seattle, WA 98115
{Manuscript received 2 July 1986, in final form 4 February 1987)

ABSTRACT

Statistical techniques have been used to study the ability of SLP, SST and a form of persistence to forecast
cold/warm season air temperatures over the United States and to determine the space-time evolution of these
fields that give rise to forecast skill.

It was found that virtually all forecast skill was due to three climatological features: a decadal scale change
in Northern Hemisphere temperature, ENSO-related phenomena, and the occurrence of two distinct short-
lived, but large-scale, coherent structures in the atmospheric field of the Northern Hemisphere. The physical
mechanisms responsible for the first two signals are currently unknown. One of the large-scale, coherent features
seems largely independent of the ENSO phenomena, while the second is at least partially related to ENSO and
may be part of a recently discovered global mode of SLP variation. Both features resemble various combinations
of known teleconnection patterns. These large-scale coherent structures are essentially stationary patterns of
SLP variation that grow in place over two to three months. The structures decay more rapidly, typically in 1
month, leading to a highly asymmetric temporal life cycle.

The average forecast skills found in this study are generally low, except in January and February, and are
always much lower than expected from studies of potential predictability. Increase in the average skills will
require new information uncorrelated with any of the data used in this study and/or prediction schemes that
are highly nonlinear. However, the concept of an average skill may be misleading. A forecast quality index is
developed and it is shown that one can say in advance that some years will be highly predictable and others
not. Use of the classical definition of “winter” in forecast work may not be advisable since each of the months
that make up winter are largely uncorrelated and predicted by different atmospheric features.

Monthly Weather Review, 115.



CCA as analysis tool

X(Xlt) = ZJrJ(t)gJ(X),J = 11 2; cec ) p
Y(x't) = 5, s (t)h(X), k=1,2, .., q

g; and h, are vectors whose components show the
correlation at a specific location between the
predictor or the predictand and their respective
canonical component time series (r; and s )



Example

Predictor: DJF 850 hPa geopotential heights
forecast by the ECHAM3.6 GCM

Predictand: Southern African DJF observed
rainfall indices

g-map: correlations between the 850 hPa
heights and the predictor canonical
component time series

h-map: correlations between the rainfall
indices and the predictand canonical
component time series



Predictor:
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0.6839

S — Trend of Predictor Canonical VVector 1
Predictor Canonical VVector 1
Trend of Predictand Canonical VVector 1
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Example

Predictor: DJF rainfall simulated by the ECHAMA4.5
GCM

Predictand: Southern African DJF observed station
rainfall

g-map: correlations between the GCM-rainfall and
the predictor canonical component time series

h-map: correlations between the station rainfall and
the predictand canonical component time series

hn-map: correlation between the station rainfall and
the predictor canonical component time series



G—map mode 1, DJF Precip ECHAM4 (SIM)

H map CCA Mode 1
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SST model of the Indian Ocean

* Demonstration of a very simple model
predicting DJF SSTs of the Indian Ocean using
SON SSTs of the Pacific Ocean

* Only the spatial patterns will be shown...
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H—map Mode 2 (

e : :

DJF SSTs)
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HOMEWORK

Consider the maps and time series of the
previous Indo-Pacific Ocean example. Using
CCA diagnostics, explain how the SON SSTs of
the equatorial Pacific represented by the first
CCA mode are linearly related to the DJF SSTs
of the equatorial Indian Ocean.



	���PRINCIPAL COMPONENT ANALYSIS��Willem A. Landman
	Slide Number 2
	PCA
	Characteristic Equation: |S – lI| = 0
	Transformed variables…
	Getting ready for eigenanalysis
	In practice…
	Example (1)
	Example (2)
	Modes of Variation: Eigenanalysis on ∆xT∆x
	Covariance
	Correlation
	When the covariance matrix CANNOT be used…
	How many modes?
	The SCREE test
	Extended EOFs (EEOFs)
	EEOF1
	EEOF1
	EEOF1
	EEOF1
	EEOF1
	ROTATION
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Canonical Correlation Analysis�(CCA)
	CCA…
	CCA…
	The Mathematics of CCA
	With PCA…
	With CCA…
	Properties of CCA…
	Computing CCA…
	Correlation Matrix
	Structure of the Correlation Matrix for PCA�(of fields with observations of more than one variable at each location)
	Analogous to PCA�with more than one variable…
	Algebraic problem to solve for A and B…
	The Mathematics of CCA
	Analogies between PCA and CCA
	PCA version of CCA
	Slide Number 44
	CCA as analysis tool
	Example
	Slide Number 47
	Example
	Slide Number 49
	SST model of the Indian Ocean
	Slide Number 51
	Slide Number 52
	HOMEWORK

