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Abstract 

Seasonal forecast system development has made significant advances in recent years, including the development 
of models for hydrological, agricultural and health applications utilising forecast output from complex global 
climate models. The skill levels of these models are in some cases (location and season) found to be promising 
when evaluated over an extended period of time – notwithstanding the fact that during some years forecasts may 
still be wrong even for skilful models. In this study, we investigate what the financial implications might be when 
forecast crop-yields are wrong in consecutive years. The paper first introduces a linear statistical dry-land crop-
yield model that uses output from a coupled ocean-atmosphere climate model as a predictor of crop-yield. The 
crop model is shown to be skilful, but produced poor forecasts for three consecutive years during the test period. 
We evaluate what the possible cost implication might be for a farmer who makes financial investments or takes 
financial risks in proportion to the crop-yield forecasts.     
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Introduction 
The seasonal forecast community has developed 
complex climate models for operational seasonal 
forecasting in South Africa (Beraki et al., 2014). For 
optimal seasonal forecast production, atmospheric 
models are coupled to similar models for the ocean, 
the land surface and sea ice. Notwithstanding their 
demonstrated accuracies, statistical correction 
methods are recommended even for today’s coupled 
climate model forecasts (Barnston and Tippet, 2017). 
The use of such multi-tiered forecast systems have 
shown to be more accurate for seasonal rainfall 
forecasts, at least for SADC (Landman et al., 2012). 
Recently, hindcasts (or re-forecasts) over a period 
spanning several decades have been used in the 
development of application models for agriculture in 
southern Africa (Malherbe et al., 2014) and hydrology 
(Muchuru et al., 2014). In some cases, the developed 
application models have been used in an operational 
seasonal forecasting environment (see the archived 
forecasts produced by the University of Pretoria for 
examples: https://tinyurl.com/ybrb3a72). As is the 
practice with operational seasonal forecasting, these 
forecasts, including applications forecasts, are 
accompanied by some indication of forecast skill 
evaluated over an independent test period. The skill 
estimates represent a general statement on the overall 
skill of the forecast system. In this study, we want to 
develop an application model, and more specifically a 
model for the prediction of dry-land crop-yields at a 
single farm in South Africa. We then determine the 
skill levels of the model, followed by an assessment of 
possible financial implications for the forecast user (in 
the agricultural sector) when there is a succession of 
poor or “missed” forecasts produced by the model.  

Data and Methodology 
a. Data 

A set of coupled model hindcasts (or re-forecasts) and 
end of season crop-yield data are used in the following 
analysis. The climate model data have been used 
already for a number of predictability studies (e.g. 
Landman et al, 2012) and consists of ensemble mean 
(from 12 members) 850 hPa geopotential height (i.e. 
near-surface atmospheric circulation) as a proxy for 
rainfall hindcasts. This geopotential height field has 
long since been established as a predictor that can 
replace a climate model’s predicted rainfall fields in 
statistical downscaling for southern Africa (Landman 
and Goddard, 2002). The geopotential height 
anomalies are forecast using the ECHAM4.5-MOM3 
coupled model (DeWitt, 2005) for December to 
February (DJF) seasons, with a model initialization 
month of November. Since DJF is often the best 
forecast skill season over the region and the rainfall 
during this season plays a significant role during grain 
filling and tasselling, it was decided to use only 
climate model data for DJF as a predictor of end of 
season dryland crop-yield. Even though additional 
atmospheric variables (e.g. relative or specific 
humidity) might improve forecast skill, we leave aside 
additional variables as our focus is on demonstrating 
the impact of poor forecasts, and geopotential height 
is sufficient for deriving a reasonably skilful model.  

The crop-yield data have been obtained from a farm 
near Bapsfontein (26°0′0″S 28°26′0″E) in South 
Africa. The period over which the analysis is done is 
the 21 years from 1987/88 to 2007/08. This period 
consists of 7 El Niño, 7 La Niña and 7 ENSO-neutral 
seasons according to the Oceanic Niño Index for cold 
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and warm episodes. The crop yields are first detrended 
to remove the linear upward trend often associated 
with crop-yield data. To ensure that the yield data are 
from a normal distribution for optimal statistical 
modelling to be performed, the natural logarithm of 
the yield values are calculated and referred to in the 
following text. The Lilliefors (Wilks, 2011) goodness-
of-fit test shows that the newly derived crop yield 
values are indeed from an unspecified normal 
distribution.  

b. Methods 
The IRI’s Climate Predictability Tool (CPT) is used 
for producing crop-yield hindcasts and for 
verification. The predictor set is the ensemble mean 
850 hPa geopotential height field of the coupled 
model, and the predictand the Bapsfontein crop yields. 
The canonical modes of the hindcasts are used in a 
multiple linear regression model as predictors. The 
forecast skill level of the statistical crop-yield model 
is first tested using a cross-validation setup with a 5-
year-out window. Then the crop model is used to 
produce retro-active crop-yield forecasts for the two 
periods from 1999 to 2008 and from 2003 to 2008. The 
retro-active forecast process of the CPT creates 
probabilistic forecasts over these periods for three 
equi-probable categories with thresholds defined by 
respectively the 33.3rd (below which is the low yield 
category) and 66.7th (above which is the high yield 
category) tercile values of the climatological record. 
For a comprehensive description of the retro-active 
forecast process, refer to Landman et al. (2012).  

We only show Pearson correlation values between 
cross-validated forecast and observed time series in 
order to represent the deterministic skill level of the 
crop model. Two sets of retro-active probabilistic 
forecasts are used to determine the potential economic 
value of the crop forecast system (Hagedorn and 
Smith, 2009). For this purpose we make use of the 
cumulative profit (CP) values generated by the CPT 
software. The CP values evaluate probabilistic 
forecasts by means of quantifying the skill of the 
forecast using an effective daily interest rate. Some 
capital is invested into the first of a series of 
consecutive probabilistic forecasts, say for example 
ZAR1,000. Depending on the outcome of how well 
the forecast performs, a return is obtained on the 
investment. This return is calculated based on ‘fair 
odds’ and assuming that the ZAR1,000 is spread 
across the forecast categories in proportion to the 
forecast probabilities. This means that for the 
observed category (above, below or normal), the 
farmer is returned three times the amount of money 
invested in that category each year. The CP results can 
be interpreted as follows: for the CP value of, say, 20 
found for a specific retro-active forecast year, it means 

that an initial investment of ZAR1,000 in the first year 
would be worth ZAR(1,000x20=)20,000 in the 
specified year. One would subsequently invest all of 
the ZAR20,000 on the next year’s forecast, and so 
forth. See Mason (2018) for a comprehensive 
explanation on the calculation of CP values. 

Results 
The cross-validation hindcasts and observed values, 
both normalised here, are presented in Fig 1. On the 
figure El Niño and La Niña years are respectively 
shown as “El” and “La”. Also presented in the figure 
are the differences between the observed and predicted 
crop indices.  

 

Figure 1. Cross-validation crop-yield hindcasts vs. observed 
values. The time series have been normalised. The Pearson 
correlation values for the first 11 years (1988 to 1998) and 
for all the years are presented on the figure, along with their 
levels of statistical significance.    

Two features of the cross-validated results are 
immediately apparent. The first is that all the El Niño 
years are associated with below average predicted 
yields, and all the La Niña seasons are associated with 
above average predicted yields. One may thus deduce 
that ENSO phases play a significant part in this crop 
model’s yield predictions for the Bapsfontein farm. 
Second, although all but one (2005) of the El Niño 
years are found to be actual low-yield years, a number 
of La Niña years are also actual low-yield years. For 
example, for the three-year period of 1999 to 2001 the 
observed yields are below average. The reasons for the 
forecast failures during these three seasons may be 
related to the observed rainfall outcomes during those 
summers: the 1998/99 and 2000/01 seasons were not 
wet La Niña years over parts of SADC leading to low 
levels of soil moisture, and during 1999/00 the larger 
part of the region was flooded and possible damages 
to crops occurred.  



35th Annual conference of South African Society for Atmospheric Sciences      
SASAS2019 

http://www.arc.agric.za/arc-iscw/SASASconference/Pages/default.aspx 

 

Corresponding author: Tel: +27-12-420-3713; Email: Willem.Landman@up.ac.za 
 

The deterministic skill level of the cop-yield model is 
typical for southern Africa (c.f. Landman et al., 2012). 
Moreover, the correlation between forecasts and 
observed for the first half of the test period is very high 
(correlation > 0.8), suggesting that future forecasts 
may turn out to be skilful. However, the yield forecasts 
associated with the three La Niña seasons of 1998/99 
to 2000/01 turned out to be poor. The question we 
want to answer in this study is whether or not these 
poor yield forecasts could have had a detrimental 
effect on the finances of a farmer basing decisions on 
them – specifically investment decisions, for the sake 
of the example. We address this question by first 
calculating the CP values for the seasons following the 
first 11 years of the data, i.e. from 1999 to 2008 as 
shown in Fig. 2. Negative CP values are found for the 
majority of the years, with positive values found only 
for 2005, 2007 and 2008. In fact, it was only at the end 
of the retro-active period when the farmer obtained 
substantial and positive CP’s. The second retro-active 
period that excludes the poor forecasts associated with 
the three consecutive La Niña seasons present much 
better CP outcomes. In fact, it was primarily only 
during the 2005 season when there is a big difference 
between the forecast and observed anomalies where 
the CP value of this retro-active period is negative. 
Take note how the inclusion of the poor forecasts in 
the CP calculations has significantly delayed financial 
recovery, and how much less of a detrimental effect a 
single poorly forecast season (2005) has on profits 
compared to when consecutive seasons of poor 
forecasts are included. The above is a simple example, 
which can be expanded to include more realistic 
investment and planting strategies e.g. including 
maize prices and input costs. 

 
Figure 2. Cumulative profits as determined over the two 
retro-active forecast periods. Red: results from the retro-
active period from 1999 to 2008; Orange: results from the 
retro-active period from 2003 to 2008.   

Summary and Conclusions 
Southern Africa ranks poorly against the majority of 
regions where ENSO has an effect on seasonal-to-
interannual climate variability (Landman et al., 2019). 
Notwithstanding, seasonal forecasts have been found 
skilful over certain areas of the region and in particular 
during certain times of the year (Landman et al., 2012; 
Archer et al., 2019). Moreover, the majority of end-of-
season crop yields over areas which include the 
Bapsfontein farm, are likely to be predictable when 
there is an ENSO event taking place (Landman and 
Beraki, 2012). Here we presented a linear statistical 
crop-yield prediction model that uses output from a 
coupled climate model that is linked with dry-land 
crop-yields at a single farm. The results presented may 
not be representative for all crop farms in the SADC 
region, since not all end-of-season yields may be 
equally influenced by ENSO events.  

Verification of the hindcasts produced by the crop 
model shows significant levels of skill. In fact, the first 
half of the 21-year deterministic verification period 
shows an unprecedented level of skill (corr > 0.81). 
Notwithstanding, the model performed poorly for 
three consecutive seasons during a series of La Niña 
events. We wanted to find out how such a sequence of 
poor forecasts may have affected the farmer during 
these three and subsequent years. The main 
conclusions that may be derived from this study are 
that the consecutive poor forecasts could have 
devastating consequences for the farmer, and that a 
possible financial recovery may only have happened a 
good number of years after the three poorly predicted 
years. We also show that a single poorly predicted 
season does not necessarily have the same negative 
financial impact. 

So what implications does this result hold for seasonal 
forecast model developers, as well as those concerned 
with applying seasonal forecasts? There are several 
immediate implications, including: 

• Even using a skilful seasonal forecast model 
may not immediately translate into tangible 
benefits to the user (or farmer as in this case), 
but may require sustained use of skilful 
forecasts over a period of several years; 

• The yield forecasts and ENSO are 
symmetrical (low yields predicted during El 
Niño; high yields predicted during La Niña), 
but this symmetry is not as evident in the 
observed outcomes since not all La Niña 
seasons produced high yields; 

• Even the hedging that takes place in CP 
calculations for each year (the capital is 
spread across the three categories according 
to the predicted probabilities) does not 
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guarantee positive benefits. However, 
placing all resources on the assumption of 
single category outcome is even riskier. 

It is clear that we may have to shift our priorities 
towards addressing user needs through tailored 
forecasting and the honest conveyance of model 
forecast caveats to users (including communication of 
uncertainty). Focussing our limited resources on 
demonstrating our capabilities as a modelling 
community, to address technical modelling challenges 
such as the production of high-resolution forecasts, 
risks ignoring fundamental limitations in using all 
seasonal forecasts. This is especially concerning in 
light of recent research which demonstrates that high 
resolution seasonal forecasts may hold very little 
benefit (Scaife et al., 2019). There are also some 
potentially relatively easy gains, such as exploring the 
benefit of using other prediction variables (e.g. pre-
season soil moisture, evaporation-related variables 
etc), or combining a wider range of publicly available 
seasonal forecasts.  

We need to be much more honest and transparent 
about our prediction capabilities even with skilful 
models such as the one presented here. Indeed, 
communicating how to use and interpret seasonal 
forecasts, as well as linking them to variables and 
impacts of interest to specific user groups in particular 
locations may hold as much, if not more benefit.  
Importantly, the process of producing responsible 
seasonal forecasts goes beyond producing the forecast 
itself and must not undermine trust between forecast 
producers and users through overblown promises of 
forecast accuracy and skill. To do so is to risk our 
efforts being misunderstood and ultimately ignored. 
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