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Statistical post-
processing to rainfall
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Hindcast skill: GFDL precip predicting malaria cases over Limpopo, South Africa
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Correlations between hindcasts (re-forecast) and observed for
the seasons indicated. Lead-times up to 3 months are presented.
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Natural logs (In) of the malaria seasonal
data resulted in data to become normally
distributed (Lilliefors test)
GFDL-CM2p5-FLOR-B01 seasonal rainfall
forecasts are statistically downscaled to
seasonal malaria values (canonical modes
of forecasts used in a multiple linear
regression model as predictors)
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Cross-validated malaria cases hindcasts (1-month lead) for the four seasons
indicated. Time series have been normalised. The top value on each panel
is the Kendall’s tau (Kt) correlation between hindcast (red dashed) and
observed (black asterisked). 10: Kt when using Indian Ocean SST as
predictor; Pa: Kt when using equatorial Pacific Ocean SST as predictor.

SST as predictors are used as baseline:
Multiple linear regression models
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during which forecast skill remains the most consistent.
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Respectively 5- and 10-year moving windows are used to
calculate correlations between observed and hindcasts for the
four seasons indicated. The DJF season is not only found to be
associated with highest skill (correlations), but is also the season
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Seasonal forecasts should be expressed
probabilistically — and also need to be
verified as such

Probabilistic forecasts are produced
through the calculation of error variances
of downscaled ensemble mean values
Typically, the first 10 years of the 20-year
period are used to train the statistical
model to produce probabilistic forecast for
the second 10-year period

To obtain 20 years of probabilistic forecasts,
we swapped the two 10-year periods
around, with the result that the second 10-
year period can be used to also produce
probabilistic forecasts for the first 10-year
period. This process results in the
production of 20 years of probabilistic
forecasts

Original DJF malaria hindcasts

2000 2005 2010 2015

"Split" DJF malaria hindcasts

5 10 15 20
Top panel shows the DJF hindcasts from before.
Bottom panel shows the cross-validated
hindcasts by placing the second 10 years of the
20-year period In front of the first 10 years.
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Note on resolution slopes: The
full period shows slopes that
are close to perfect reliability

First 10 years more above-normal DJF cases —
high ROC-A and BSS-A

Second 10 years more below-normal DJF cases —
high ROC-B and BSS-B

THUS skill level is a function of verification period
2AFC (probability of a correct decision made by,
for example, a health practitioner), shows values
great than 50% for the whole and for second 10-
year period
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Summary:

e Limpopo is area of relatively high seasonal predictability

e Existing experience in statistical downscaling for applications
modelling applied here for malaria predictions

e Justification presented to use physical global coupled models’
output as input in malaria models (statistical, in this case)

* |ssues to be cognizant of:
e Verification period may strongly influence perceived forecast skill
e Some predicted years may simply be “wrong”
e Such years may have serious implications on future health operations



The final paragraph of the paper:

e We have developed and presented a robust and skillful seasonal
forecast system for mid-summer malaria incidence...

e .we have demonstrated how occasional false-positive
and false-negative forecasts can result in material financial losses.

* Therefore we urge caution in relying on these forecast models
exclusively for disease management....

 ..we therefore suggest... to make sure that good climate monitoring
systems are in place to supplement forecasts from models...

e ...we propose that disease surveillance and control activities should
not be replaced by forecasts...

o ...forecasts should only be used to supplement health practices that
are currently going on in the region.
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