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Finley’s Tornado Predictions

Oyes Ono
|:yeS 28 792 Hite Rate = proportion
correct
F oo N — (28+2680)/2803

= 0.966



“No Tornados” Always Predicted

Oyes C)no
|:yeS Hite Rate = proportion
correct
F oo I . — (0+2752)/2803

= 0.982



Finley lessons

Finley’s scheme has the advantage that it
predicted more than half of the tornado cases
successfully

‘No tornados’ scheme never did

Hit rate may not be the best way to
summarize the value of this forecast scheme

Because hits in upper left box (F,.q; O,es) are
extremely crucial — hit rate misses the point!




Predictor Selection

Many potential predictors available

Do not simply add potential predictors to the
regression

Dangers in too many predictors in forecast
equation

Collinearity (more detail later...)



A useful predictor...?




...what about celestial objects as
predictor...?




It’s a Mad, Mad, Mad, Mad World...

= Predictand: Snowfall (inches)

= Predictors (!
= USA Federal deficit
= US Air Force personnel
= US sheep
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Ithaca winter snow, inches
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Lessons from MMMMW example:

Choose only physically reasonable or meaningful
potential predictors

Test prediction equations on sample of data not
Involved In its development

Large skill difference between dependent and
Independent samples may suggest overfitting

Large independent sample necessary to ensure
stability of regression

Small sample size — chance of sampling error



Also be aware of...

Autocorrelation in predictand: might have to
exclude additional adjacent years in Cross-
validation process

Predicting a value that is contained Iin the
training period of an empirical model (cross-
validation: the value that is predicted, Is
omitted from the training period, which is the
preferred method)




‘ Cross-Validation

Yearl Year 2 Year 3 Year 4 Year 5 Year 6

Model 1 omitted

Model 7

AVOID this model!l!




What is Autocorrelation?

A series of numbers set besides itself will have
correlation of 1

Shifting the series upward or downward by one
value, each value paired with preceding value

Correlating these lagged values determines if
dependencies exist among successive values —
correlation value referred to as autocorrelation

Effective sample size decreases by 1 for each lag

No autocorrelation: series of observations are
Independent of one another



One-Tailed vs. Two-Tailed Tests

A statistical test can be either one-tailed (-sided) or
two-tailed (-sided)

Probabilities on the tails of the distribution govern
whether a test result is significant or not

Whether a test is one- or two-tailed depends on the
nature of the hypothesis being tested:

o Just interested in positive correlations: one-tailed (i.e., skill
of a forecast time series)

o Interested in both positive and negative correlations: two-
tailed (i.e., association between any two time series)



Probabilities for N(0,1) — 95% interval

Typical distribution used
In a two-tailed test
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Numbers indicate areas under curve, left of -1.96, right of 1.96, and between.



Autocorrelation

continued

At Lag = 6, some high
negative correlations seen

Since only interested Iin
positive autocorrelation,
negative values can be
discarded (1-tailed test)

The significance thresholds
(sloping lines) are
calculated for varying
sample size — critical level
Increases with decreasing
sample size

......................................

..................................




DJF Iglmpopo malarla mdex Effect of years left out in cross-valldatlon
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Variance Adjustment

Least-squares statistical models minimize squared errors,
not the absolute value of actual errors — damping is
caused

Observed variance (o,) Is subsequently underestimated
(perpetual near-normal forecasts may result)

However, other regression formulas called LAD (least
absolute deviation) are based on the absolute value of
actual errors — damping much less severe

For least-squares methods, one should try to raise the o;
to o,

Here, y,, = y/CVcorr



A simple Indian Ocean forecast model —
scatter plot of Nino3.4 and equatorial 10:

Prediztand; Eq Indlan Ozean index




‘ Cross-Validated Forecast of equatorial 10O:
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Cross-Validated and Variance Adjusted
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Histograms of forecast
equatorial Indian
Ocean SST indices
before and after
variance adjustment

The same number of
bins, i.e. 10, Is used

A larger number of
extremes is found after
variance adjustment
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Pros and Cons of Variance Adjustment

PROS:

o Forecasts’ variance similar to observed

o High amplitude events are better captured if
model skill is not low

CON:
o Large forecast discrepancies are further magnified



Is the linear correlation between two
variables telling us everything we need to
know...r

Strong but nonlinear relationships between
two variables may not be recognized

Correlation coefficient provides no
explanation for the physical relationship
between two variables (MMMMW example)

What about trends In the data?




Trends in Predictor/Predictand
Correlation = 0.5937




Detrended
Correlation = 0.1665




Confirmation of scientific theories

Can we never have any grounds for supposing
a scientific theory Is true?

Assuming that scientific theories can be
scientifically confirmed... under what
circumstances are they best confirmed?

For atheory to be strongly confirmed it needs to
make predictions that are both surprising and true



Is it surprising that a forecast of “above
the average yield” was made for 20057
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Collinearity (1)

Independent variables (the predictors):

o They add more to the final prediction when they are
not highly inter-correlated

o If they are strongly correlated, then either one of
them will do nearly as well as both together

o If they are extremely highly correlated (e.g. >0.98),
the regression scheme will bomb



Collinearity (2)

When the independent variables are not

correlated at all:

o The equation coefficients indicate the sign and
strength of the relationship between the given
Independent variable and the predictand

When independent variables are inter-

correlated, the coefficients cannot be

iInterpreted in a simple way - the role of
each independent variable may be
uncertain



Collinearity (3)

Interpretability of coefficients:

o Perfect interpretability is not normally a goal of multiple
regression

o If correlation among predictors exists, interpretability will
lessen, but regression will still work properly (unless
collinearity is extreme)

Example:

o Two predictors are correlated, say, correlation = 0.7, and
both correlate positively with predictand individually

o The regression equation might have strong positive
coefficient and strong negative coefficient

o Multiple regression still usable (provided stability of
regression model is tested with cross-validation or retro-
active forecasting)



PC time scores of gpm heights at various pressure levels
— not to be used together in one statistical model!
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Model 1: CV correlation = 0.2; Model 2: CV
correlation = 0.4.Which one 1s the better model?

Depends on the length of the respective
model training periods

The shorter the climate period, the higher the
required correlation for statistical significance
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Assumptions on Stability

Predictability remains constant

The relationships between predictor and
predictand variables remain valid under
future climate conditions
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LEPS Scores

Variation in Forecast Skill
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A large increase in LEPS
scores is seen for the most
recent of the three 9-year
periods considered here.
The skill is therefore seen
not to be stable throughout
this cross-validation period.
The increase In skill may be
attributable to the large
number of ENSO events
during the 1990s, since the
main contribution in forecast
skill of the model comes
from the equatorial Pacific
Ocean



DJF Limpopo malqria index ‘ JFM Limpopo malaria index
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Pearson correlation
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This figure shows where the largest changes in the
association (correlation) between DJF Indo-Pacific SSTs
and central south African DJF rainfall (1977/78 to
1996/97 - 1957/58 to 1976/77) are found, and indicates
that the climate system is not always stable




Field Significance and Multiplicity

Special problems with statistical tests
iInvolving atmospheric fields — testing for
pattern significance

Positive grid-point-to-grid-point correlation of
underlying data produces statistical
dependence among local tests

Multiplicity: the problem when the results of
multiple independent significant tests are
jointly evaluated



Central Intericr DJF Rainfall and SON $5Ts
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.and...

...after only a few rerandomization of the
rainfall time series...



ainfall and SON SST

R e

Using a Monte Carlo approach, it was possible to design a rerandomized rainfall
time series that produced an El Nifio type spatial pattern in the oceans. Clearly the
real association between SON SSTs and the series of random numbers is zero
('), but the substantial grid-point-to-grid-point correlation among the SON SSTs
yields spatial coherent areas of chance sample correlation that are deceptively
high (due to the high spatial correlations the spatial degrees of freedom is far less

than the number of grid-points).



Will empirical modelling become
obsoleter

No!

Simple models can serve as a base-line against which
the skill of elaborate models such as GCMs can be
compared

Empirical modelling can be applied to post-processing
of dynamical model forecast output (beware, the same
pitfalls are prevalent as discussed here for “ordinary”
empirical modelling)



GCM-based forecast skill improvement over

simple SST-Rainfall model skill
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Improvement over raw GCM output using
Statistical Post-Processing
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“Do Statistical Pattern Corrections Improve Seasonal Climate Predictions in

the North American Multimodel Ensemble Models?
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ABSTRACT

Canonical correlation analysis (CCA J-based statistical corrections are applied to sessonal mean pre-
cipitation and temperature hindcasts of the individual models from the North American Multimodel En-
semble project o correct biases in the positions and amplitudes of the predicted larpe-scale anomaly patterns,
Corrections are applied in 15 individual regions and then merged into globally corrected forecasts. The CCA
correction dramatically improves the RMS error skill score, demonstrating that model predictions contain
correctablesystematic biases in mean and amplitude. However, the corrections do not materially improve the
anomaly correlation skills of the individual models for most regions, seasons, and lead times, with the ex-
ception of October—December precipitation in Indonesia and eastern Africa. Models with lower uncorrected
correlation skill tend to benefit more from the correction, suggesting that their lower skills may be due o
correctable systematic errors, Unexpectedly, corrections for the globe as asingle region tend o improve the
anomaly correlation at least as much as the merged corrections to the individual regions for temperature, and
maore 50 for precipitation, perhaps due o better noise filiering. The lack of overall improvement in correl ation
may imply relatively mild errors in large-scale anomaly patterns. Alernatively, there may be such errors, but
the period of record is too short to identify them effectively but long enough @ find local bisses in mean and
amplitude. Therefore, statistical correction methods treating individual locations (e.g., multiple regression or
principal component regression) may be recommended for wday's coupled climate model forecasts. The
findings highlight that the performance of statistical postprocessing can be grossly overestimated without

thorough cross validation or evaluation on independent data.

1. Introduction

In principle, dynamical climate prediction models are
expected to produce more accurate climate predictions
than statistical models on seasonal to interannual time
scales. This expectation is based on the fact that dy-
namical models make use of the often complex and
nonlinear physical laws governing oceanic and atmo-
spheric behavior, while statistical models use only

8 Denotes content that is immediately available upon publica-
Lo a5 Open access.

Corresponding auwthor. Anthony G. Bamston, tonybi@in.
columbia.edu

DOL 10.1175/JCLI-D-17-0054.1

relationships (often linear) gleaned from finite records
of observational data. Operationally, however, dynam-
ical models did not show clear superiority over statistical
models in predicting monthly or seasonally averaged
climate until near the turn of the twenty-first century, as
more advanced data assimilation methods and computer
power finally enabled them to perform closer to their
potential.

While comprehensive coupled ocean-atmosphere dy-
namical models are now heavily relied upon for sea-
sonal climate predictions, they still have aspects in need
of further improvement. Their systematic errors, or
biases, vary by model, season, lead time, and location.
The presence of biases creates an opportunity for sta-
tistical models to detect and correct them, resulting in
improved final forecast guality. Such methods can be




To make empirical forecasts usetul:

Be aware that some models may only appear
to be useful

Always test forecasts on independent data

“Fine tuning” (e.qg., variance adjustment) of
forecasts may have pros AND cons

Collinearity, instability and multiplicity -
modellers beware!

Use these models correctly, since empirical
models are not and will not become obsolete




