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Finley’s Tornado Predictions

◼ Hite Rate = proportion 

correct

◼ HR = (28+2680)/2803

=  0.966

Oyes Ono

Fyes 28 72

Fno 23 2680



“No Tornados” Always Predicted

◼ Hite Rate = proportion 

correct

◼ HR = (0+2752)/2803

=  0.982

Oyes Ono

Fyes 0 0

Fno 51 2752



Finley lessons

◼ Finley’s scheme has the advantage that it 

predicted more than half of the tornado cases 

successfully

◼ ‘No tornados’ scheme never did

◼ Hit rate may not be the best way to 

summarize the value of this forecast scheme

◼ Because hits in upper left box (Fyes; Oyes) are 

extremely crucial – hit rate misses the point!



Predictor Selection

◼ Many potential predictors available

◼ Do not simply add potential predictors to the 
regression

◼ Dangers in too many predictors in forecast 
equation

◼ Collinearity (more detail later…)



A useful predictor…?



…what about celestial objects as 

predictor…?



It’s a Mad, Mad, Mad, Mad World…

◼ Predictand: Snowfall (inches)

◼ Predictors (!!!!)
◼ USA Federal deficit

◼ US Air Force personnel

◼ US sheep







Lessons from MMMMW example:

◼ Choose only physically reasonable or meaningful 

potential predictors

◼ Test prediction equations on sample of data not 

involved in its development

◼ Large skill difference between dependent and 

independent samples may suggest overfitting

◼ Large independent sample necessary to ensure 

stability of regression

◼ Small sample size → chance of sampling error



Also be aware of…

◼ Autocorrelation in predictand: might have to 
exclude additional adjacent years in cross-
validation process

◼ Predicting a value that is contained in the 
training period of an empirical model (cross-
validation: the value that is predicted, is 
omitted from the training period, which is the 
preferred method)



Cross-Validation

Year1 Year 2 Year 3 Year 4 Year 5 Year 6

Model 1 omitted

Model 2 omitted

Model 3 omitted

Model 4 omitted

Model 5 omitted

Model 6 omitted

Model 7
AVOID this model!!!



What is Autocorrelation?
◼ A series of numbers set besides itself will have 

correlation of 1

◼ Shifting the series upward or downward by one 

value, each value paired with preceding value

◼ Correlating these lagged values determines if 

dependencies exist among successive values –

correlation value referred to as autocorrelation

◼ Effective sample size decreases by 1 for each lag

◼ No autocorrelation: series of observations are 

independent of one another



One-Tailed vs. Two-Tailed Tests

◼ A statistical test can be either one-tailed (-sided) or 

two-tailed (-sided)

◼ Probabilities on the tails of the distribution govern 

whether a test result is significant or not

◼ Whether a test is one- or two-tailed depends on the 

nature of the hypothesis being tested:

❑ just interested in positive correlations: one-tailed (i.e., skill 

of a forecast time series)

❑ interested in both positive and negative correlations: two-

tailed (i.e., association between any two time series)



Probabilities for N(0,1) – 95%  interval
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Autocorrelation

continued
◼ At Lag = 6, some high 

negative correlations seen

◼ Since only interested in 
positive autocorrelation, 
negative values can be 
discarded (1-tailed test)

◼ The significance thresholds 
(sloping lines) are 
calculated for varying 
sample size – critical level 
increases with decreasing 
sample size





Variance Adjustment

◼ Least-squares statistical models minimize squared errors, 

not the absolute value of actual errors – damping is 

caused

◼ Observed variance (σo) is subsequently underestimated 

(perpetual near-normal forecasts may result)

◼ However, other regression formulas called LAD (least 

absolute deviation) are based on the absolute value of 

actual errors – damping much less severe

◼ For least-squares methods, one should try to raise the σf

to σo

◼ Here, ŷva = ŷ/CVcorr



A simple Indian Ocean forecast model –

scatter plot of Nino3.4 and equatorial IO:



Cross-Validated Forecast of equatorial IO:



Cross-Validated and Variance Adjusted



◼ Histograms of forecast 

equatorial Indian 

Ocean SST indices 

before and after 

variance adjustment

◼ The same number of 

bins, i.e. 10, is used

◼ A larger number of 

extremes is found after 

variance adjustment







Pros and Cons of Variance Adjustment

◼ PROS:

❑ Forecasts’ variance similar to observed

❑ High amplitude events are better captured if 

model skill is not low

◼ CON:

❑ Large forecast discrepancies are further magnified



Is the linear correlation between two 

variables telling us everything we need to 

know…?

◼ Strong but nonlinear relationships between 

two variables may not be recognized

◼ Correlation coefficient provides no 

explanation for the physical relationship

between two variables (MMMMW example)

◼ What about trends in the data?



Trends in Predictor/Predictand

Correlation = 0.5937



Detrended

Correlation = 0.1665



Confirmation of scientific theories

◼ Can we never have any grounds for supposing 

a scientific theory is true? 

◼ Assuming that scientific theories can be 

scientifically confirmed… under what 

circumstances are they best confirmed?

For a theory to be strongly confirmed it needs to 

make predictions that are both surprising and true

But there are grounds for supposing that certain scientific theories are true



Is it surprising that a forecast of “above 

the average yield” was made for 2005?



Collinearity (1)

◼ Independent variables (the predictors):

❑ They add more to the final prediction when they are 

not highly inter-correlated 

❑ If they are strongly correlated, then either one of 

them will do nearly as well as both together

❑ If they are extremely highly correlated (e.g. >0.98), 

the regression scheme will bomb 



Collinearity (2)

◼ When the independent variables are not 

correlated at all:

❑ The equation coefficients indicate the sign and 

strength of the relationship between the given 

independent variable and the predictand

◼ When independent variables are inter-

correlated, the coefficients cannot be 

interpreted in a simple way - the role of 

each independent variable may be 

uncertain



Collinearity (3)

◼ Interpretability of coefficients:
❑ Perfect interpretability is not normally a goal of multiple 

regression

❑ If correlation among predictors exists, interpretability will 
lessen, but regression will still work properly (unless 
collinearity is extreme)

◼ Example:
❑ Two predictors are correlated, say, correlation = 0.7, and 

both correlate positively with predictand individually

❑ The regression equation might have strong positive 
coefficient and strong negative coefficient

❑ Multiple regression still usable (provided stability of 
regression model is tested with cross-validation or retro-
active forecasting)



PC time scores of gpm heights at various pressure levels 

– not to be used together in one statistical model!



Model 1: CV correlation = 0.2; Model 2: CV 

correlation = 0.4.Which one is the better model?

◼ Depends on the length of the respective 

model training periods

◼ The shorter the climate period, the higher the 

required correlation for statistical significance
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Assumptions on Stability

◼ Predictability remains constant

◼ The relationships between predictor and 

predictand variables remain valid under 

future climate conditions



Variation in Forecast Skill
A large increase in LEPS

scores is seen for the most

recent of the three 9-year

periods considered here.

The skill is therefore seen

not to be stable throughout

this cross-validation period.

The increase in skill may be

attributable to the large

number of ENSO events

during the 1990s, since the

main contribution in forecast

skill of the model comes

from the equatorial Pacific

Ocean



Cross-validated malaria cases hindcasts (1-month

lead) for the four seasons indicated. Time series

have been normalised. The top value on each

panel is the Kendall’s tau (Kt) correlation between

hindcast (red dashed) and observed (black

asterisked). IO: Kt when using Indian Ocean SST

as predictor; Pa: Kt when using equatorial Pacific

Ocean SST as predictor.

SST as predictors are 

used as baseline: Multiple 

linear regression models



Respectively 5- and 10-year moving

windows are used to calculate correlations

between observed and hindcasts for the

four seasons indicated. The DJF season is

not only found to be associated with highest

skill (correlations), but is also the season

during which forecast skill remains the most

consistent.
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This figure shows where the largest changes in the

association (correlation) between DJF Indo-Pacific SSTs

and central south African DJF rainfall (1977/78 to

1996/97 - 1957/58 to 1976/77) are found, and indicates

that the climate system is not always stable



Field Significance and Multiplicity

◼ Special problems with statistical tests 

involving atmospheric fields – testing for 

pattern significance

◼ Positive grid-point-to-grid-point correlation of 

underlying data produces statistical 

dependence among local tests

◼ Multiplicity: the problem when the results of 

multiple independent significant tests are 

jointly evaluated





…and…

…after only a few rerandomization of the 

rainfall time series…  



Using a Monte Carlo approach, it was possible to design a rerandomized rainfall 
time series that produced an El Niño type spatial pattern in the oceans. Clearly the 
real association between SON SSTs and the series of random numbers is zero 
(!!!), but the substantial grid-point-to-grid-point correlation among the SON SSTs 
yields spatial coherent areas of chance sample correlation that are deceptively 
high (due to the high spatial correlations the spatial degrees of freedom is far less 
than the number of grid-points).



Will empirical modelling become 

obsolete?

◼ No!

◼ Simple models can serve as a base-line against which 
the skill of elaborate models such as GCMs can be 
compared

◼ Empirical modelling can be applied to post-processing 
of dynamical model forecast output (beware, the same 
pitfalls are prevalent as discussed here for “ordinary” 
empirical modelling)



GCM-based forecast skill improvement over 

simple SST-Rainfall model skill

GCM-based 

forecasts 

generally 

outscore 

baseline 

model



Improvement over raw GCM output using 

Statistical Post-Processing

Post-processed 

GCM forecasts 

generally 

outscore raw 

GCM output





To make empirical forecasts useful:

◼ Be aware that some models may only appear
to be useful

◼ Always test forecasts on independent data

◼ “Fine tuning” (e.g., variance adjustment) of 
forecasts may have pros AND cons

◼ Collinearity, instability and multiplicity -
modellers beware!

◼ Use these models correctly, since empirical 
models are not and will not become obsolete


