Yearbooks

Programme: BSc extended programme - Mathematical Sciences

Kindly take note of the disclaimer regarding qualifications and degree names.
Code Faculty Department
02130016 Faculty of Natural and Agricultural Sciences Department: Natural and Agricultural Sciences Dean's Office
Credits Duration NQF level
Minimum duration of study: 4 years Total credits: 144 NQF level:  07

Admission requirements

Candidates who do not comply with the minimum admission requirements of programmes in the Department of Mathematical Sciences, may be considered for admission to the BSc – Extended programme for the Mathematical Sciences, which requires an additional year of study.

Please note: Progression from the BSc – Extended programme – Mathematical Sciences to the mathematics-intensive programmes will be considered only if students obtained a GPA of 65% in their first-year modules. Students who pass all first-year modules will be advised on alternative academic pathways.

In addition, admission into the BSc (Actuarial and Financial Mathematics) programme will only be considered if students have passed IAS 111 and achieved a minimum mark of 60% in WTW 153 and WST 153.

BSc – Extended Programme – Mathematical Sciences

Minimum requirements

Achievement level

English Home Language or English First Additional Language

Mathematics

APS

NSC/IEB

NSC/IEB

4

5

28

Note:

*The BSc – Extended programmes are not available for students who meet all the requirements for the corresponding mainstream programme.

*Please note that only students who apply in their final NSC or equivalent qualification year will be considered for admission into any of the BSc – Extended programmes.

 

Additional requirements

  • Students in the BSc Extended: Mathematical Sciences programme must achieve a minimum GPA requirement of 65% in year 1, in order to progress from semester two to semester three.
  • Students in the BSc Extended: Mathematical Sciences programme who pass all their modules in semester one and two, may be considered in other programmes in the Faculty of Natural and Agricultural Sciences as well as other faculties.
  1. Students who are admitted to one of the BSc extended programmes register for one specific programme. Three extended programmes are available:
  • BSc (extended programme) – Mathematical Sciences 
  • BSc (extended programme) – Biological and Agricultural Sciences 
  • BSc (extended  programme) – Physical Sciences 
  1. These programmes are followed by students who, as a result of exceptional circumstances, will benefit from an extended programme.
  2. Students who do not comply with the normal three-year BSc entrance requirements for study in the Faculty of Natural and Agricultural Sciences, may nevertheless be admitted to the Faculty by being placed on the BSc (extended programme). Generally the BSc (extended programme) means that the first study year in Mathematics, Physics, Biology and Chemistry is extended to take two years. After completing the BSc (extended programme) successfully, students join the second year of the normal BSc programme to complete their degrees. The possibility of switching over to other faculties such as Engineering, Built Environment and Information Technology, Veterinary Science and Health Sciences, after one or two years in the extended programme, exists. This depends on selection rules and other conditions stipulated by the other faculties.
  3. Students who wish to follow one of the BSc extended programmes will be subjected to an Institutional Proficiency Test and will be considered for admission by the Admissions Committee. Information in this regard is available at the Client Services Centre.
  4. Applications for admission to the BSc (extended programme) should be submitted before 30 September each year. Details are obtainable from the Student Administration at the Faculty of Natural and Agricultural Sciences.
  5. The rules and regulations applicable to the normal study programmes apply mutatis mutandis to the BSc (extended programme), with exceptions as indicated in the regulations pertaining to the BSc (extended programme). For instance, students placed in the BSc (extended programme) must have a National Senior Certificate with admission for degree purposes.
  6. An admissions committee considers applications for the BSc (extended programme) annually. Regarding subject choices, admitted students are individually placed on the BSc (extended programme) according to their prospective field of study. Students may NOT change this placement without the permission of the Chairperson of the admissions committee.

Other programme-specific information

1.1    Requirements for specific modules
A candidate who:

  1. does not qualify for STK 110, must enrol for STK 113 and STK 123;
  2.  egisters for Mathematical Statistics (WST) and Statistics (STK) modules must take note that WST and STK modules, except for STK 281, may not be taken simultaneously in a programme; a student must take one and only one of the following options:
  • WST 111, WST 121, WST 212, WST 211, WST 221, WST 311, WST 312, WST 322, WST 321, and STK 353

or

  • WST 111, WST 121, WST 212, WST 211, WST 221, WST 311, WST 312, WST 322, STK320, STK353.

or

  • STK 110, STC 122, STK 210, STK 220, WST 212, STK 310, STK 320, STK 353.
  1. registers for a module presented by another faculty must take note of the timetable clashes, prerequisites for that module, subminimum required in examination papers, supplementary examinations, etc.

1.2    Fundamental modules

  1. It is compulsory for all new first-year students to satisfactorily complete the Academic orientation (UPO 102) and to take Academic information management modules (AIM 111 and AIM 121) and Language and study skills (LST 110). Please see curricula for details.
  2. Students who intend to apply for admission to MBChB or BChD in the second semester, when places become available in those programmes, may be permitted to register for up to 80 module credits and 4 core modules in the first semester during the first year provided that they obtained a final mark of no less than 70% for Grade 12 Mathematics and achieved an APS of 34 or more in the NSC.
  1. The BSc extended programmes are not available for students who meet all the requirements for the corresponding mainstream programme.
  2. Please note that only students who apply in their final NSC or equivalent qualification year will be considered for admission into any of the BSc extended programmes.
  3. Students who are placed on the BSc extended programme will take a minimum of five years to complete the BScAgric, BSc (Culinary Science) or BSc (Nutrition) programmes.
  4. Students enrolled for the BSc extended programme – Biological and Agricultural Sciences, do not qualify to apply for the mid-year intake in the Faculty of Health Sciences.
  5. Progression from the BSc extended programme – Mathematical Sciences 02130016 to the mathematics-intensive programmes will be considered only if students obtained a GPA of 65% in their first-year modules. Students who pass all first-year modules will be advised on alternative academic pathways. In addition, admission into the BSc (Actuarial and Financial Mathematics) programme will only be considered if students have passed IAS 111 and achieved a minimum mark of 60% in WTW 153 and WST 153.

Promotion to next study year

Academic promotion requirements
It is expected of students who register for the first year of the BSc (extended programme) to pass all the prescribed modules of the first year.
It is expected of students accepted into the BSc (extended programme) to finish a complete corresponding BSc first year within the two years of enrolment in the BSc (extended programme). Students who do not show progress during the first semester of the first year will be referred to the Admissions Committee of the Faculty.

Minimum credits: 88

Fundamental =   24
Core              =   56
Elective         =     8

Additional information:

  • In the second semester, students register for PHY 143 or PHY 144.
  • NB Students may register for an extended module only once.
  • Admissions from the BSc -- Extended programmes to the BSc (Actuarial and Financial Mathematics) programmes will only be considered if students have passed all their first-year modules with an average of at least 60%, passed IAS 111 and achieved a minimum percentage of 60% for WTW 143 and WTW 153.  

Fundamental modules

  • Module content:

    Find, evaluate, process, manage and present information resources for academic purposes using appropriate technology.

    View more

  • Module content:

    Apply effective search strategies in different technological environments. Demonstrate the ethical and fair use of information resources. Integrate 21st-century communications into the management of academic information.

    View more

  • Module content:

    In this module students use different information and time management strategies, build academic vocabulary, revise basic grammar concepts and dictionary skills, examine learning styles, memory  and note-taking techniques, practise academic reading skills and explore basic research and referencing techniques, learn how to use discourse markers and construct definitions, and are introduced to paragraph writing. The work is set in the context of the students’ field of study.

    View more

  • Module content:

    In this module students learn how to interpret and use visual literacy conventions. Students write more advance paragraphs, and also learn how to structure academic writing, how to refine their use of discourse markers and referencing techniques and how to structure their own academic arguments. Students’ writing is expected to be rational, clear and concise. As a final assignment all aspects of the LST 133 and LST 143 modules are combined in a research assignment. In this project, students work in writing teams to produce a chapter on a career and to present an oral presentation of aspects of the chapter. The work is set in the context of the students’ field of study.

    View more

Core modules

  • Module content:

    Heat: temperature and scales, work, energy and heat, calorimetry, specific heat, expansion, heat transfer. Measurements: SI-units, measuring error and uncertainty, (graphs), significant figures, mathematical modelling.One-dimensional kinematics. Geometrical optics: reflection, refraction, dispersion, mirrors, thin lenses.

    View more

  • Module content:

    Descriptive statistics – Univariate:
    The role of Statistics, various types of data. Sampling, probability and non-probability sampling techniques and the collection of data. Frequency, relative and cumulative distributions and graphical representations. Additional concepts relating to data processing: sigma notation, factorial notation. Descriptive measures of location,dispersion and symmetry. Exploratory data analysis.
    Probability:
    Introductory probability theory and applications. Set theory and probability laws. Introduction to random variables. Assigning probabilities, probability distributions, expected value and variance in general. Specific discrete probability distributions (Uniform, Binomial).  Report writing and presentation. Identification, use, evaluation and interpretation of statistical computer packages and statistical techniques.

    View more

  • Module content:

    Probability and inference:
    Probability theory and theoretical distributions for continuous random variables (Uniform, Normal and t). Sampling distributions (means and proportions). Estimation theory and hypothesis testing of sampling averages and proportions (one- and two-sample cases).
    Optimisation techniques with economic applications:
    Applications of differentiation in statistic and economic related problems. Integration. Applications of integration in statistic and economic related problems. Systems of equations in equilibrium. The area under a curve and applications of definite integrals in Statistics and Economics. Report writing and presentation. Identification, use, evaluation and interpretation of statistical computer packages and statistical techniques.

    View more

  • Module content:

    Real numbers, elementary set notation, exponents and radicals. Algebraic expressions, fractional expressions, linear and quadratic equations, inequalities. Coordinate geometry: lines, circles. Functions: definition, notation, piecewise defined functions, domain and range, graphs, transformations of functions, symmetry, even and odd functions, combining functions, one-to-one functions and inverses, polynomial functions and zeros. Sequences, summation notation, arithmetic, geometric sequences, infinite geometric series, annuities and instalments. Degrees and radians, unit circle, trigonometric functions, fundamental identities, trigonometric graphs, trigonometric identities, double-angle, half-angle formulae, trigonometric equations, applications. Elements of Euclidean geometry.
    This module is offered at the Mamelodi Campus to students from the BSc and BCom Extended programmes.

    View more

  • Module content:

    Functions: exponential and logarithmic functions, natural exponential and logarithmic functions, exponential and logarithmic laws, exponential and logarithmic equations, compound interest. Limits: concept of a limit, finding limits numerically and graphically, finding limits algebraically, limit laws without proofs, squeeze theorem without proof, one-sided limits, infinite limits, limits at infinity, vertical, horizontal and slant asymptotes, substitution rule, continuity, laws for continuity without proofs. Differentiation: average and instantaneous change, definition of derivative, differentiation rules without proofs, derivatives of polynomials, chain rule for differentiation, derivatives of trigonometric, exponential and logarithmic functions, applications of differentiation: extreme values, critical numbers, monotone functions, first derivative test, optimisation.

    View more

  • Module content:

    The module serves as an introduction to computer programming as used in science. Modelling of dynamical processes using difference equations; curve fitting and linear programming are studied. Applications are drawn from real-life situations in, among others, finance, economics physics and ecology.
    This module is offered at the Mamelodi Campus to students from the BSc Extended programmes.

    View more

Elective modules

  • Module content:

    Vectors. Kinematics of a point: relative motion, projectile, circular motion. Dynamics: Newton’s laws, friction. Work: point masses, ideal gas law, springs, power. Energy: kinetic energy, potential energy, conservative forces, spring, conservation of mechanical energy. Hydrostatics and dynamics: density, pressure, Archimedes' law, continuity, Bernouli.

    View more

  • Module content:

    The main topics covered in this module are Mechanics and Thermodynamics. Kinematics: Basic types of motion, one-dimensional motion, two- and three dimensional motion, linear momentum and its conservation, multi-object systems and the centre of mass.
    Forces: Types of forces, Newton's Laws of Mechanics and applications, friction.
    Energy: Work, heat, conservation of mechanical energy.
    Thermodynamics: First law of thermodynamics, empirical gas laws, mechanical model of the ideal gas, energy of the ideal gas, basic thermodynamic processes.

    View more

Minimum credits: 28

Core             =   16
Elective        =   According to degree programme of choice

Additional information:

Possible third semester electives: PHY 154, PHY 153

Students must register for the applicable third-semester modules (second year, first semester) and the second-semester, modules must be selected from the normal degree programme of the student’s choice.

Equivalent modules:

  • Physics extended modules: PHY 133, PHY 143 and PHY 153: Equivalent to BSc module PHY 114
  • PHY 133, PHY 144 and PHY 154: Equivalent to BSc module PHY 131
  • Mathematics extended modules:
    • WTW 135, WTW 143 and WTW 153: Equivalent to BSc module WTW 114
    • WTW 155: Equivalent to WTW 152
    • WTW 135 GS, WTW 144 and WTW 154: Equivalent to BSc module WTW 134
    • WTW 133, WTW 144 and WTW 154: Equivalent to BSc module WTW 134
  • Mathematical Statistics extended modules: WST 133, WST 143 and WST 153: Equivalent to BSc module WST 111

Please note: If FRK is selected as an elective, INF 183 has to be taken as well.

Core modules

  • Module content:

    Probability distributions:
    Introductory distribution theory and special statistical distributions (Binomial, Geometric, Hypergeometric, Poisson, Uniform, Normal, Gamma). Generating functions and moments. Bivariate probability distributions.
    Identification, use, evaluation and interpretation of statistical computer packages and statistical techniques.

    View more

  • Module content:

    Differential calculus of a single variable with proofs and applications. The mean value theorem, the rule of L'Hospital. Upper and lower sums, definite and indefinite integrals, the Fundamental theorem of Calculus, the mean value theorem for integrals, integration techniques, with some proofs.

    View more

Elective modules

  • Module content:

    The focus is on object-oriented (OO) programming. Concepts including inheritance and multiple inheritance, polymorphism, operator overloading, memory management (static and dynamic binding), interfaces, encapsulation, reuse, etc. will be covered in the module. The module teaches sound program design with the emphasis on modular code, leading to well structured, robust and documented programs. A modern OO programming language is used as the vehicle to develop these skills. The module will introduce the student to basic data structures, lists, stacks and queues.

    View more

  • Module content:

    This module deals with the core principles of economics. A distinction between macroeconomics and microeconomics is made. A discussion of the market system and circular flow of goods, services and money is followed by a section dealing with microeconomic principles, including demand and supply analysis, consumer behaviour and utility maximisation, production and the costs thereof, and the different market models and firm behaviour. Labour market institutions and issues, wage determination, as well as income inequality and poverty are also addressed. A section of money, banking, interest rates and monetary policy concludes the course.

    View more

  • Module content:

    This module deals with the core principles of economics, especially macroeconomic measurement the private and public sectors of the South African economy receive attention, while basic macroeconomic relationships and the measurement of domestic output and national income are discussed. Aggregate demand and supply analysis stands core to this course which is also used to introduce students to the analysis of economic growth, unemployment and inflation. The microeconomics of government is addressed in a separate section, followed by a section on international economics, focusing on international trade, exchange rates and the balance of payments. The economics of developing countries and South Africa in the global economy conclude the course.

    View more

  • Module content:

    *Only for students in BSc (Actuarial and Financial Mathematics), BSc (Mathematics), BSc (Applied Mathematics), BSc (Mathematical Statistics), BSc Extended programme – Mathematical Sciences and BCom (Statistics) who comply with the set prerequisites.


    Key principles of financial management. Company ownership. Taxation. Introduction to financial statements. Structure of financial statements. Depreciation and reserves. Preparing financial statements. Group financial statements and insurance company financial statements. Interpretation of financial statements. Limitation of financial statements. Issue of share capital.

    View more

  • Module content:

    Financial instruments. Use of financial derivatives. Financial institutions. Time value of money. Component cost of capital. Weighted average cost of capital. Capital structure and dividend policy. Capital project appraisal. Evaluating risky investments.

    View more

  • Module content:

    The nature and function of accounting; the development of accounting; financial position; financial result; the recording process; processing of accounting data; treatment of VAT; elementary income statement and balance sheet; flow of documents; accounting systems; introduction to internal control and internal control measures; bank reconciliations; control accounts; adjustments; financial statements of a sole proprietorship; the accounting framework.

    View more

  • Module content:

    Professionalism, working in multicultural environments, self-development, propositional logic, financial needs.

    View more

  • Module content:

    Financial service providers, investment examples including an introduction to mathematics of finance, life insurance examples including an introduction to contingencies, general insurance examples including an introduction to reserving using run-off triangles, personal self-development.

    View more

  • Module content:

    Computer processing of accounting information.

    View more

  • Module content:

    System of particles: centre of mass, Newton's laws. Rotation: torque, conservation of momentum, impulse and collision, conservation of angular momentum, equilibrium, centre of gravity. Oscillations. Waves: sound, intensity, superposition, interference, standing waves, resonance, beats, Doppler effect. Physical optics: Young-interference, coherence, thin layers, diffraction, gratings, polarisation.

    View more

  • Module content:

    Sampling distributions and the central limit theorem. Statistical inference: Point and interval estimation. Hypothesis testing with applications in one and two-sample cases. Introductory methods for: Linear regression and correlation, analysis of variance, categorical data analysis and non-parametric statistics.  Identification, use, evaluation and interpretation of statistical computer packages and statistical techniques.

    View more

  • Module content:

    Propositional logic: truth tables, logical equivalence, implication, arguments. Mathematical induction and well-ordering principle. Introduction to set theory. Counting techniques: elementary probability, multiplication and addition rules, permutations and combinations, binomial theorem, inclusion-exclusion rule.

    View more

  • Module content:

    Non-linear equations, numerical integration, initial value problems for differential equations, systems of linear equations. Algorithms for elementary numerical techniques are derived and implemented in computer programmes. Error estimates and convergence results are treated.

    View more

  • Module content:

    *Students will not be credited for more than one of the following modules for their degree:
    WTW 124, WTW 146, WTW 148 and WTW 164. This module serves as preparation for students majoring in Mathematics (including all students who intend to enrol for WTW 218, WTW 211 and WTW 220).

    The vector space Rn, vector algebra with applications to lines and planes, matrix algebra, systems of linear equations, determinants. Complex numbers and factorisation of polynomials. Integration techniques and applications of integration. The formal definition of a limit. The fundamental theorem of Calculus and applications. Vector functions and quadratic curves. 

    View more

  • Module content:

    The module serves as an introduction to computer programming as used in science. Modelling of dynamical processes using difference equations; curve fitting and linear programming are studied. Applications are drawn from real-life situations in, among others, finance, economics and ecology.

    View more

  • Module content:

    Integration: Accumulated change, the definite integral, anti-derivatives, the definite integral as an area, interpretations of the definite integral.
    Matrices and systems of linear equations: Matrix addition and scalar multiplication, matrix multiplication, systems of linear equations. All topics are studied in the context of applications.

    View more

  • Module content:

    *Students will not be credited for more than one of the following modules for their degree: WTW 162 and WTW 264.

    Introduction to the modelling of dynamical processes using elementary differential equations. Solution methods for first order differential equations and analysis of properties of solutions (graphs). Applications to real life situations.

    View more


The regulations and rules for the degrees published here are subject to change and may be amended after the publication of this information.

The General Academic Regulations (G Regulations) and General Student Rules apply to all faculties and registered students of the University, as well as all prospective students who have accepted an offer of a place at the University of Pretoria. On registering for a programme, the student bears the responsibility of ensuring that they familiarise themselves with the General Academic Regulations applicable to their registration, as well as the relevant faculty-specific and programme-specific regulations and information as stipulated in the relevant yearbook. Ignorance concerning these regulations will not be accepted as an excuse for any transgression, or basis for an exception to any of the aforementioned regulations.

Copyright © University of Pretoria 2024. All rights reserved.

FAQ's Email Us Virtual Campus Share Cookie Preferences