

University of Pretoria Yearbook 2021

BEngHons Water Resources Engineering (12240162)

Department	Civil Engineering
Minimum duration of study	1 year
Total credits	128
NQF level	08

Programme information

The curriculum is determined in consultation with the relevant heads of departments. A student is required to pass modules to the value of at least 128 credits.

The degree is awarded on the basis of examinations only.

Admission requirements

- 1. BEng degree awarded by the University of Pretoria **or** relevant four-year bachelor's degree in engineering that the Engineering Council of South Africa (ECSA) regards as acceptable for registration as a candidate engineer and for eventual registration as a professional engineer
- 2. An entrance examination may be required
- 3. Comprehensive intellectual CV

Examinations and pass requirements

- i. The examination in each module for which a student is registered, takes place during the normal examination period after the conclusion of lectures (i.e. October/November or May/June).
- ii. A student registered for the honours degree must complete his or her studies within two years (full-time), or within three years (part-time) after first registration for the degree: Provided that the Dean, on recommendation of the relevant head of department, may approve a stipulated limited extension of this period.
- iii. A student must obtain at least 50% in an examination for each module where no semester or year mark is required. A module may only be repeated once.
- iv. In modules where semester or year marks are awarded, a minimum examination mark of 40% and a final mark of 50% is required.
- v. No supplementary or special examinations are granted at postgraduate level.

Pass with distinction

A student passes with distinction if he or she obtains a weighted average of at least 75% in the first 128 credits for which he or she has registered (excluding modules which were discontinued timeously). The degree is not awarded with distinction if a student fails any one module (excluding modules which were discontinued timeously).

Curriculum: Final year

Minimum credits: 128

SSC 780 compulsory module / verpligte module

Core modules

Civil research 780 (SSC 780)

Module credits 32.00 NOF Level 08

Contact time 8 contact hours per year

Language of tuition Module is presented in English

Department Civil Engineering

Period of presentation Year

Module content

The course will require all honours students to conduct research in an appropriate field of civil engineering, linked to the main discipline in which the student specializes for their honours degree.

Elective modules

Free surface flow 794 (SHC 794)

Module credits 24.00 NQF Level 08

Prerequisites No prerequisites.

Contact time 32 Contact hours

Language of tuition Module is presented in English

Department Civil Engineering

Period of presentation Year

Module content

A research term paper will be prepared.

This course entails the calculation of design flows for different return periods, using the statistical, deterministic – and empirical methods. Dambreak analysis is included in this course as well as channel and level pool routing.

Water resource analysis and management 796 (SHC 796)

Module credits 24.00

NQF Level 08

Prerequisites No prerequisites.

^{*}This is a compulsory module.

Contact time 32 Contact hours

Language of tuition Module is presented in English

Department Civil Engineering

Period of presentation Year

Module content

A research term paper will be prepared.

In this course students will be familiarized with the background and procedures used in the creation of flow records and the use of the WRSM2005 model. Surface water systems will be analysed and gross yields will be determined. In the second part of the course the theory and procedures required for the yield determination of surface water resources will be discussed.

Applied statistical methods and optimisation 798 (SHC 798)

Module credits 24.00

NQF Level 08

Prerequisites No prerequisites.

Contact time 40 Contact hours

Language of tuition Module is presented in English

Department Civil Engineering

Period of presentation Year

Module content

A research term paper will be prepared.

The course will apply some of the basics theories and methodologies in statistics and operations research to solve common civil engineering problems. The course seeks to demonstrate the use and application in the civil engineering field. Each of the applications seeks to determine how best to design and operate a system, usually under conditions requiring the allocation of scarce resources. Emphasis will be on the applications of these methods in common civil engineering practice. Some of the applications will include; optimum network design, maximum flow problem, project scheduling, queuing theory, probabilistic analysis, Markov chain applications, etc.

Pump systems 785 (SHW 785)

Module credits 24.00

NQF Level 08

Prerequisites No prerequisites.

Contact time 32 Contact hours

Language of tuition Module is presented in English

Department Civil Engineering

Period of presentation Year

Module content

A research term paper will be prepared.

Numerical methods and finite element applications for Civil Engineers 790 (SIK 790)

Module credits 24.00

NQF Level 08

Contact time 40 contact hours

Language of tuition Module is presented in English

Department Civil Engineering

Period of presentation Year

Module content

In the first part of this course, numerical procedures and some underlying theory for solving systems of equations, eigenvalue problems, integration, approximation and boundary value problems will be discussed. The second part of the course covers general finite element theory, discretization aspects related to geometry, nodes and numbering, element type and shape, interpolation functions, formulation of element characteristic matrices and vectors for elasticity problems, assembly and solution of the finite element equations, modelling procedures and results processing. The student will use Finite Element software to apply the theory that was covered in the course for solving typical Civil Engineering problems.

Infrastructure management 790 (SSI 790)

Module credits 24.00

NQF Level 08

Prerequisites No prerequisites.

Contact time 40 Contact hours

Language of tuition Module is presented in English

Department Civil Engineering

Period of presentation Year

Module content

A research term paper will be prepared.

This module will cover the following topics: Asset Management principles, Maintenance Management principles, Maintenance strategies and philosophies, Condition based Maintenance, Reliability Centred Maintenance (RCM), Resource Management, Maintenance Management Systems, Total Productive Maintenance (TPM) and Risk Management. Maintenance management of the following disciplines will be studied in detail: Road infrastructure, Railway infrastructure, Airport infrastructure, Buildings and other structures, Water resources and water supply.

The information published here is subject to change and may be amended after the publication of this information. The General Regulations (G Regulations) apply to all faculties of the University of Pretoria. It is expected of students to familiarise themselves well with these regulations as well as with the information contained in the General Rules section.

