Yearbooks

Programme: BScAgric Plant Pathology

Kindly take note of the disclaimer regarding qualifications and degree names.
Code Faculty
02133433 Faculty of Natural and Agricultural Sciences
Credits Duration NQF level
Minimum duration of study: 4 years Total credits: 568 NQF level:  08

Admission requirements

  • The following persons will be considered for admission: a candidate who is in possession of a certificate that is deemed by the University to be equivalent to the required Grade 12 certificate with university endorsement, a candidate who is a graduate from another tertiary institution or has been granted the status of a graduate of such an institution, and a candidate who is a graduate of another faculty at the University of Pretoria.
  • Life Orientation is excluded in the calculation of the Admission Point Score (APS).
  • Grade 11 results are used for the conditional admission of prospective students. Final admission is based on the Grade 12 results.

Minimum requirements

Achievement level

English Home Language or English First Additional Language

Mathematics

Physical Science 

APS

NSC/IEB

AS Level

NSC/IEB

AS Level

NSC/IEB

AS Level

5

C

5

C

5

C

32

*  Cambridge A level candidates who obtained at least a D in the required subjects, will be considered for admission. International Baccalaureate (IB) HL candidates who obtained at least a 4 in the required subjects, will be considered for admission.

Candidates who do not comply with the minimum admission requirements for BScAgric (Plant Pathology), may be considered for admission to the BSc – Extended programme – Biological and Agricultural Sciences. This programme takes a year longer than the normal programmes to complete.

BSc – Extended Programme – Biological and Agricultural Sciences

 Minimum requirements

Achievement level

English Home Language or English First Additional Language

Mathematics

Physical Science  

APS

NSC/IEB

AS Level

NSC/IEB

AS Level

NSC/IEB

AS Level

4

D

4

D

4

D

26

Other programme-specific information

 

 

Electives are chosen as follows:

Third year – 12 credits

Compilation of curriculum
Students must register for elective modules in consultation with the head of department who must ensure that the modules do not clash on the set timetable.

The Dean may, in exceptional cases and on recommendation of the relevant head of department, approve deviations from the prescribed curriculum.

Promotion to next study year

A student will be promoted to the following year of study if he or she passed 100 credits of the prescribed credits for a year of study, unless the Dean on the recommendation of the relevant head of department decides otherwise. A student who does not comply with the requirements for promotion to the following year of study, retains the credit for the modules already passed and may be admitted by the Dean, on recommendation of the relevant head of department, to modules of the following year of study to a maximum of 48 credits, provided that it will fit in with both the lecture and examination timetable.

Pass with distinction

The BScAgric degree is conferred with distinction if a student obtains a weighted average of at least 75% in the modules of the major subjects in the third and the fourth year of study, with a weighted average of at least 65% in the other modules of the third and the fourth year of study.

Minimum credits: 140

Fundamental =    12

Core modules   =   128

Additional information:

Students who do not qualify for AIM 102 must register for AIM 111 and AIM 121.

Fundamental modules

Core modules

  • Module content:

    Simple statistical analysis: Data collection and analysis: Samples, tabulation, graphical representation, describing location, spread and skewness. Introductory probability and distribution theory. Sampling distributions and the central limit theorem. Statistical inference: Basic principles, estimation and testing in the one- and two-sample cases (parametric and non-parametric). Introduction to experimental design. One- and twoway designs, randomised blocks. Multiple statistical analysis: Bivariate data sets: Curve fitting (linear and non-linear), growth curves. Statistical inference in the simple regression case. Categorical analysis: Testing goodness of fit and contingency tables. Multiple regression and correlation: Fitting and testing of models. Residual analysis. Computer literacy: Use of computer packages in data analysis and report writing.

    View more

  • Module content:

    Basic plant structure and function; introductory plant taxonomy and plant systematics; principles of plant molecular biology and biotechnology; adaptation of plants to stress; medicinal compounds from plants; basic principles of plant ecology and their application in natural resource management.

    View more

  • Module content:

    General introduction to inorganic, analytical and physical chemistry. Atomic structure and periodicity. Molecular structure and chemical bonding using the VSEOR model. Nomenclature of inorganic ions and compounds. Classification of reactions: precipitation, acid-base, redox reactions and gas-forming reactions. Mole concept and stoichiometric calculations concerning chemical formulas and chemical reactions. Principles of reactivity: energy and chemical reactions. Physical behaviour gases, liquids, solids and solutions and the role of intermolecular forces. Rate of reactions: Introduction to chemical kinetics.

    View more

  • Module content:

    Theory: General physical-analytical chemistry: Chemical equilibrium, acids and bases, buffers, solubility equilibrium, entropy and free energy, electrochemistry. Organic chemistry: Structure (bonding), nomenclature, isomerism, introductory stereochemistry, introduction to chemical reactions and chemical properties of organic compounds and biological compounds, i.e. carbohydrates and aminoacids. Practical: Molecular structure (model building), synthesis and properties of simple organic compounds.

    View more

  • Module content:

    Chromosomes and cell division. Principles of Mendelian inheritance: locus and alleles, dominance interactions, extensions and modifications of basic principles.. Probability studies. Sex determination and sex linked traits. Pedigree analysis. Genetic linkage and chromosome mapping. Chromosome variation.

    View more

  • Module content:

    The module will introduce the student to the field of Microbiology. Basic Microbiological aspects that will be covered include introduction into the diversity of the microbial world (bacteria, archaea, eukaryotic microorganisms and viruses), basic principles of cell structure and function, microbial nutrition and microbial growth and growth control. Applications in Microbiology will be illustrated by specific examples i.e. bioremediation, animal-microbial symbiosis, plant-microbial symbiosis and the use of microorganisms in industrial microbiology. Wastewater treatment, microbial diseases and food will be introduced using specific examples.

    View more

  • Module content:

     Introduction to the molecular structure and function of the cell. Basic chemistry of the cell. Structure and composition of prokaryotic and eukaryotic cells. Ultrastructure and function of cellular organelles, membranes and the cytoskeleton. General principles of energy, enzymes and cell metabolism. Selected processes, e.g. glycolysis, respiration and/or photosynthesis. Introduction to molecular genetics: DNA structure and replication, transcription, translation. Cell growth and cell division.

    View more

  • Module content:

    Units, vectors, one dimensional kinematics, dynamics, work, equilibrium, sound, liquids, heat, thermodynamic processes, electric potential and capacitance, direct current and alternating current, optics, modern physics, radio activity.

    View more

  • Module content:

    *Students will not be credited for more than one of the following modules for their degree: WTW 134, WTW 165, WTW 114, WTW 158. WTW 134 does not lead to admission to Mathematics at 200 level and is intended for students who require Mathematics at 100 level only. WTW 134 is offered as WTW 165 in the second semester only to students who have applied in the first semester of the current year for the approximately 65 MBChB, or the 5-6 BChD places becoming available in the second semester and who were therefore enrolled for MGW 112 in the first semester of the current year. 
    Functions, derivatives, interpretation of the derivative, rules of differentiation, applications of differentiation, integration, interpretation of the definite integral, applications of integration. Matrices, solutions of systems of equations. All topics are studied in the context of applications.

    View more

  • Module content:

    Animal classification, phylogeny organisation and terminology. Evolution of the various animal phyla, morphological characteristics and life cycles of parasitic and non-parasitic animals. Structure and function of reproductive,
    respiratory, excretory, circulatory and digestive systems in various animal phyla. In-class discussion will address the sustainable development goals #3, 12, 13, 14 and 15 (Good Health and Well-being. Responsible Consumption and Production, Climate Action, Life Below Water, Life on Land).

    View more

Minimum credits: 147

Core modules

  • Module content:

    Structural and ionic properties of amino acids. Peptides, the peptide bond, primary, secondary, tertiary and quaternary structure of proteins. Interactions that stabilise protein structure, denaturation and renaturation of proteins. Introduction to methods for the purification of proteins, amino acid composition, and sequence determinations. Enzyme kinetics and enzyme inhibition. Allosteric enzymes, regulation of enzyme activity, active centres and mechanisms of enzyme catalysis. Examples of industrial applications of enzymes and in clinical pathology as biomarkers of diseases. Introduction to practical laboratory techniques and Good Laboratory Practice. Techniques for the quantitative and qualitative analysis of biological molecules, enzyme activity measurements . Processing and presentation of scientific data.

    View more

  • Module content:

    Nitrogen metabolism in plants; nitrogen fixation in Agriculture; plant secondary metabolism and natural products; photosynthesis and carbohydrate metabolism in plants; applications in solar energy; plant growth regulation and the Green Revolution; plant responses to the environment; developing abiotic stress tolerant and disease resistant plants. Practicals: Basic laboratory skills in plant physiology; techniques used to investigate nitrogen metabolism, carbohydrate metabolism, pigment analysis, water transport in plant tissue and response of plants to hormone treatments. 

    View more

  • Module content:

    Origin and development of soil, weathering and soil formation processes. Profile differentiation and morphology. Physical characteristics: texture, structure, soil water, atmosphere and temperature. Chemical characteristics: clay minerals, ion exchange, pH, buffer action, soil acidification and salinisation of soil. Soil fertility and fertilisation. Soil classification. Practical work: Laboratory evaluation of simple soil characteristics. Field practicals on soil formation in the Pretoria area.

    View more

  • Module content:

    The chemical nature of DNA. The processes of DNA replication, transcription, RNA processing, translation. Control of gene expression in prokaryotes and eukaryotes.  Recombinant DNA technology and its applications in gene analysis and manipulation.

    View more

  • Module content:

    Chromosome structure and transposable elements. Mutation and DNA repair. Genomics and proteomics. Organelle genomes. Introduction to genetic analysis of populations: allele and genotypic frequencies, Hardy Weinberg Law, its extensions and implications for different mating systems. Introduction to quantitative and evolutionary genetics.

    View more

  • Module content:

    Introduction to financial management in agriculture: Farm management and agricultural finance, farm management information; analysis and interpretation of farm financial statements; risk and farm planning. Budgets: partial, break-even, enterprise, total, cash flow and capital budgets. Time value of money. Introduction to production and resource use: the agricultural production function, total physical product curve, marginal physical product curve, average physical product curve, stages of production. Assessing short-term business costs; Economics of short-term decisions. Economics of input substitution: Least-cost use of inputs for a given output, short-term least-cost input use, effects of input price changes. Least-cost input use for a given budget. Economics of product substitution. Product combinations for maximum profit. Economics of crop and animal production.

    View more

  • Module content:

    The agribusiness system; the unique characteristics of agricultural products; marketing functions and costs; market structure; historical evolution of agricultural marketing in South Africa. Marketing environment and price analysis in agriculture: Introduction to supply and demand analysis.
    Marketing plan and strategies for agricultural commodities; market analysis; product management; distribution channels for agricultural commodities, the agricultural supply chain, the agricultural futures market.

    View more

  • Module content:

    Growth, replication and survival of bacteria, Energy sources, harvesting from light versus oxidation, regulation of catabolic pathways, chemotaxis. Nitrogen metabolism, iron-scavenging. Alternative electron acceptors: denitrification, sulphate reduction, methanogenesis.  Bacterial evolution, systematic and genomics. Biodiversity; bacteria occurring in the natural environment (soil, water and air), associated with humans, animals, plants, and those of importance in foods and in the water industry.

    View more

  • Module content:

    Organisation and molecular architecture of fungal thalli, chemistry of the fungal cell. Chemical and physiological requirements for growth and nutrient acquisition. Mating and meiosis; spore development; spore dormancy, dispersal and germination. Fungi as saprobes in soil, air, plant, aquatic and marine ecosystems; role of fungi as decomposers and in the deterioration of materials; fungi as predators and parasites; mycoses, mycetisms and mycotoxicoses; fungi as symbionts of plants, insects and animals. Applications of fungi in biotechnology.

    View more

  • Module content:

    Development and importance of crop protection. Basic principles in crop protection i.e. epidemic development of disease and insect pest populations, ecology of plant diseases and abiotic factors that affect plant health i.e. environmental pollution and pesticides, nutrient deficiencies and extreme environmental conditions. Ecological aspects of plant diseases, pest outbreaks and weed invasion. Important agricultural pests and weeds, globally as well as in African context. Life cycles of typical disease causing organisms. Basic principles of integrated pest and disease management. The importance of crop protection in the context of sustainable development will be highlighted.

    View more

  • Module content:

    Fundamental principles of plant pathology. The concept of disease in plants. Causes of plant diseases. Stages in development of plant diseases. Disease cycles and selected examples relevant to Africa. Diagnosis of plant diseases and the sustainable development goals that articulate with plant pathology.

    View more

  • Module content:

    Influence of climate on cropping systems in South Africa. The surface energy balance. Hydrological cycles and the soil water balance. Sustainable crop production. Simple radiation and water limited models. Potential yield, target yield and maximum economic yield. Crop nutrition and fertiliser management. Principles of soil cultivation and conservation. Climate change and crop production – mitigation and adaptation.

    View more

Minimum credits: 136

Core modules

  • Module content:

    Botanical characteristics, classification, growth requirements, production practices and utilization of crops rich in starch, oil, sugar and protein, fibre crops, narcotic and medicinal plants. The use of conservation agriculture (CA) in field crop production is becoming ever increasingly important, especially since it is directly related to Sustainable Development Goals (SDGs) 2 (food), 6 (water), 7 (energy) 13 (climate) and 15 (soil). During the semester applicable AC and SDG examples will be highlighted. Practicals will consist out of a trial on the experimental farm and visits to research institutions and producers.

    View more

  • Module content:

    The emphasis is on the efficiency of the mechanisms whereby C3-, C4 and CAM-plants bind CO2 and how it impacted upon by environmental factors. The mechanisms and factors which determine the respiratory conversion of carbon skeletons and how production is affected thereby will be discussed. Insight into the ecological distribution and manipulation of plants for increased production is gained by discussing the internal mechanisms whereby carbon allocation, hormone production, growth, flowering and fruitset are influenced by external factors. To understand the functioning of plants in diverse environments, the relevant structural properties of plants, and the impact of soil composition, water flow in the soil-plant air continuum and long distance transport of assimilates will be discussed.  Various important techniques will be used in the practicals to investigate aspects such as water-use efficiency, photosynthesis and respiration of plants.

    View more

  • Module content:

    Plant genetics and genomics: gene control in plants, epigenetics, co-suppression, forward and reverse genetics, structural and functional genomics. Plant development: flowering, genetics imprinting. Plant-environment interactions. Crop genetic modification: food security, GMO regulation, plant transformation, whole-chromosome transformation, synthetic biology, homologous recombination. Crop molecular markers: marker types, genotyping, QTL mapping, marker-assisted breeding. Future of crop biotechnology: applications of genomics, biopharming, genetical genomics, systems biology

    View more

  • Module content:

    The organised nursery industry in South Africa. Principles: seed production; seed germination; rooting of cuttings; budding and grafting; propagation using specialised organs; micro propagation (tissue culturing). Practices: Greenhouse construction, lighting in the nursery; cooling and heating; soil-based and soil-less growing media; container types; irrigation and fertilisation; growth manipulation; pest and disease management. Management, economic and marketing aspects of a typical nursery operation. Students will get hands-on experience and will visit nurseries.

    View more

  • Module content:

    Introduction to the viruses as a unique kingdom inclusive of their different hosts, especially bacteria, animals and plants; RNA and DNA viruses; viroids, tumour viruses and oncogenes, mechanisms of replication, transcription and protein synthesis; effect on hosts; viral immunology; evolution of viruses.

    View more

  • Module content:

    Isolation of clonable DNA (genomic libraries, cDNA synthesis) cloning vectors (plasmids, bacteriophages, cosmids) plasmid incompatibility and control of copy number. Ligation of DNA fragments, modification of DNA end and different ligation strategies. Direct and indirect methods for the identification of recombinant organisms. Characterization (polymerase chain reaction, nucleic acid sequencing) and mutagenisis of cloned DNA fragments. Gene expression in Gram negative (E.coli) Gram positive (B.subtilis) and yeast cells (S.cerevisea). Use of Agrobacterium and baculoviruses for gene expression in plant and insect cells respectively. Applications in protein engineering, diagnostics and synthesis of useful products.

    View more

  • Module content:

    Principles and examples of plant diseases and their socio-economic importance particularly in the context of Africa. Current trends in plant pathology such as biosecurity, sanitary and phytosanitary issues of trade. Risk assessment and international food safety standards. The use of global information systems to assess disease spread and impact of global warming. Supply chain analysis, postharvest technology and food trade and how these aspects relate to the sustainable development goals.

    View more

  • Module content:

    Principles of plant disease control and how it resonates with the sustainable development goals. Non-chemical control including biological control, disease resistance, regulatory measures, cultivation practices, physical methods. Modern chemo-therapy: characteristics, mode of action and application of bioproducts, fungicides, bactericides and nematicides. Principles of integrated disease management. The module will also cover applicable South African legislation, the local crop protection industries and the procedure of registering new chemicals.

    View more

Minimum credits: 145

Core modules

  • Module content:

    The principles of experimental design as required for the selection of an appropriate research design. Identification of the design limitations and the impact thereof on the research hypotheses and the statistical methods. Identification and application of the appropriate statistical methods needed. Interpreting of statistical results and translating these results to the biological context.

    View more

  • Module content:

    Identification of important weeds of crops, gardens and recreational areas.
    Identification of alien invasive and indigenous encroaching species. Impacts of weeds on desirable vegetation. Interference between crop and weed species through allelopathy and competition phenomena. Role of weeds in plant-biodiversity and crop production potential. Weeds in annual and perennial crop situations. Weed biology and ecology. Mechanical, cultural, biological and chemical weed management practices. Integrated weed management. Herbicide formulations and application techniques. Modes of action of herbicides, and their behaviour and fate in the environment.

    View more

  • Module content:

    Basic principles of the scientific process. Literature accessing and article assessment. Manuscript preparation and presentation of seminars. Basic instruction on the use of visual aids, etc. for effective oral presentations.

    View more

  • Module content:

    A practical research project of limited extent under the supervision of one of the lecturers within the department. Any topic in plant pathology can be selected that reflect a current plant disease in South Africa.

    View more

  • Module content:

    Understanding of how plant disease epidemics occur in nature and how they can be monitored and analysed. In-depth knowledge how of plant diseases cause crop losses, how these losses are quantified, and how losses are predicted. Examples of how epidemiology is used to set the strategy of plant disease control. Use of some statistical procedures and modelling for quantifying and comparing epidemics. Classical case studies from South African disease epidemiological models will be discussed i.e. citrus black spot. Impact of climate change on plant disease development and how this relates to achieving the sustainable development goal #13 Take urgent action to combat climate change and its impact. In-depth discussions on plant-pathogen interactions and plant defence mechanisms. 

    View more

  • Module content:

    Advanced aspects of chemical and biological control of plant diseases as well as disease resistance. The importance of plant disease control in the context of sustainable development will be emphasised.

    View more

  • Module content:

    This module will address the most recent concepts in plant pathology with a focus on diseases that is unique in the African context and the unpacking of the sustainable development goals in plant pathology.

    View more

  • Module content:

    Impact of insects on economies, human health and well-being. Protection of crops from insect herbivores through monitoring, forecasting and application of the principles of integrated pest management; epidemiology and modern developments in the control of insect vectors of human and animal diseases; insects as a tool in forensic investigations; ecological and economic significance of insect pollinators and current threats to their survival and health. Lectures will be complemented by practical experiences that provide students with skills in the design, analysis, interpretation and reporting of applied entomological research. Examples used in this module are directly relevant to the sustainable development goals of Life on Land, No Poverty, Zero Hunger and Good Health and Well-being.

    View more


The information published here is subject to change and may be amended after the publication of this information. The General Regulations (G Regulations) apply to all faculties of the University of Pretoria. It is expected of students to familiarise themselves well with these regulations as well as with the information contained in the General Rules section. Ignorance concerning these regulations and rules will not be accepted as an excuse for any transgression.

Copyright © University of Pretoria 2024. All rights reserved.

COVID-19 Corona Virus South African Resource Portal

To contact the University during the COVID-19 lockdown, please send an email to [email protected]

FAQ's Email Us Virtual Campus Share Cookie Preferences