

University of Pretoria Yearbook 2020

BEng Mechanical Engineering (12130004)

Minimum duration of study

4 years

Total credits

576

NOF level

08

Programme information

All fields of study of the BEng degree have been accredited by the Engineering Council of South Africa (ECSA), and comply with the academic requirements for registration as a professional engineer. The programmes are designed in accordance with the outcomes-based model as required by the South African Qualifications Authority (SAQA). The learning outcomes and contents of the programmes have been compiled in accordance with the latest accreditation standards (PE-60 and PE-61) of ECSA, which also comply with the SAQA requirements, and which are summarised as follows:

Learning outcomes of the BEng degree:

A graduate in engineering should be able to apply the following skills on an advanced level:

- a. Engineering problem solving.
- b. Application of specialist and fundamental knowledge, with specific reference to mathematics, basic sciences and engineering sciences.
- c. Engineering design and synthesis.
- d. Investigation, experimentation and data analysis.
- e. Engineering methods, skills, tools and information technology.
- f. Professional and general communication.
- g. Awareness and knowledge of the impact of engineering activity on society and the physical environment.
- h. Work in teams and in multidisciplinary environments.
- i. An awareness and ability for lifelong learning.
- j. An awareness and knowledge of principles of professional ethics and practice.
- k. Awareness and knowledge of engineering management principles and economic decision-making.

Learning contents of the BEng programmes:

Six essential knowledge areas are included in the syllabi of the programmes. The typical representation of each knowledge area as a percentage of the total contents of an undergraduate programme is given in brackets () in the list below. This percentage varies for the different study directions, but conforms in all instances to the minimum knowledge area content as stipulated by ECSA.

Knowledge areas:

- a. Mathematics, including numerical methods and statistics (13%)
- b. Basic sciences: the natural sciences essential to the programme (15%)
- c. Engineering sciences (40%)
- d. Engineering design and synthesis (16%)

- e. Computing and information technology (5%)
- f. Complementary studies: communication, economy, management, innovation, environmental impact, ethics, engineering practice (11%).

Admission requirements

- The following persons will be considered for admission: candidates who are in possession of a certificate that is deemed by the University to be equivalent to the required Grade 12 certificate with university endorsement; candidates who are graduates from another tertiary institution or have been granted the status of a graduate of such an institution; and candidates who are graduates of another faculty at the University of Pretoria.
- Life Orientation is excluded when calculating the APS.
- Grade 11 results are used in the conditional admission of prospective students.
- A valid qualification with admission to degree studies is required.
- Minimum subject and achievement requirements, as set out below, are required.
- Conditional admission to the four-year programmes in the School of Engineering is only guaranteed if a prospective student complies with ALL the requirements below.
- Note: Candidates who do not comply with the minimum requirements, set out above, but who have obtained a
 minimum APS of 30, an achievement level of 5 for English, 6 for Mathematics and 5 for Physical Science, will be
 considered for conditional admission to either the four-year programme or the ENGAGE programme based on
 the results of the NBT.
- Admission to ENGAGE in the School of Engineering will be determined by the results of the NBT, NSC results, an
 achievement level of 5 in Mathematics and 5 in Physical Science, as well as an achievement level of 5 in
 English, together with an APS of 30.
- Students may apply directly to be considered for the ENGAGE programme.
- Tuition will be presented in English only.

Minimum requirements Achievement level English Home Language or English First M Additional

English First Additional Language		Mathematics		Physical Science		APS
NSC/IEB	AS Level	NSC/IEB	AS Level	NSC/IEB	AS Level	
5	С	6	В	6	В	35

^{*} Cambridge A level candidates who obtained at least a D in the required subjects, will be considered for admission. International Baccalaureate (IB) HL candidates who obtained at least a 4 in the required subjects, will be considered for admission.

ENGAGE Programme minimum requirements Achievement level English Home Language or **Mathematics Enalish First Physical Science** Additional **APS** Language AS NSC/IEB AS Level NSC/IEB AS Level NSC/IEB

Level

5 C 5 C 5 C **30**

Other programme-specific information

Please note: For the Aeronautical Option, the themes of both the Design and the Project must be aeronautical-related.

With a few exceptions, most modules offered at the School of Engineering are semester modules having credit values of either 8 or 16.

A student may be permitted by the Dean, on recommendation of the relevant head of department, to register for an equivalent module in an alternate semester, although the module is normally offered to the student's group in another semester, and providing that no timetable clashes occur.

Please note:

- 1. All students are required to successfully complete JCP 203, Community-based project 203, as part of the requirements for the BEng degree. A student may register for the module during any of the years of study of the programme, but preferably not during the first or the final year of study.
- 2. Students registered for Chemical Engineering who have passed CBI 311 or CBI 410, receive credit for CBI 310.
- 3. Mechanical Engineering: For the Aeronautical Option, the themes of both the Design and the Project must be aeronautical-related.
- 4. Offering of electives depends on the availability of resources and industry support.

Promotion to next study year

Promotion to the second semester of the first year and to the second year of study (Eng. 14)

- a. A new first-year student who has failed in all the prescribed modules of the programme at the end of the first semester, is excluded from studies in the School of Engineering. A student who is registered for the Engineering Augmented Degree Programme and has passed only 8 credits will also be excluded.
- b. A student who complies with all the requirements of the first year of study, is promoted to the second year of study.
- c. A student who has not passed at least 70% of the credits of the first year of study after the November examinations, must reapply for admission should he/she intend to proceed with his/her studies. Application on the prescribed form must be submitted to the Student Administration of the School of Engineering not later than 11 January. Late applications will be accepted only in exceptional circumstances after approval by the Dean. Should first-year students be readmitted, conditions of readmission will be determined by the Admissions Committee.
- d. Students who have not passed all the prescribed modules at first year level (level 100), as well as students who are readmitted in terms of Faculty Regulations must register for the outstanding first-year level (level-100) modules.
- e. A student who is repeating his or her first year, may, on recommendation of the relevant heads of department and with the approval of the Dean, be permitted to enroll for modules of the second-year of study in addition to the first-year modules which he or she failed, providing that he or she complies with the prerequisites for the second-year modules and no timetable clashes occur. Students on the ENGAGE programme may, following the same procedure, be permitted to enrol for level-200 modules in addition to the level-100 modules which he/she failed providing that he/she complies with the prerequisites for the

modules at 200-level and no timetable clashes occur. On recommendation of the relevant head of department and with special permission from the Dean, permission may be granted to exceed the prescribed number of credits. The total number of credits which may be approved may not exceed the normal number of credits per semester by more than 16 credits.

f. Students in Computer, Electrical and Electronic Engineering, who fail a first-year module for the second time, forfeit the privilege of registering for any modules of an advanced year of study.

Please note:

- i. From the second year of study each student should be in possession of an approved calculator. It is assumed that each student will have easy access to a laptop computer.
- ii. Students who intend transferring to Mining Engineering, must familiarise themselves with the stipulations set out in the syllabi of PWP 121 Workshop practice 121.

Promotion to the third year of study of the Four-year Programme, as well as to the third and the fourth years of study of the ENGAGE Programme. In case of the fourth year of study of the ENGAGE Programme, the words "first", "second" and "third" must be substituted with the words "second", "third" and "fourth" respectively. (Eng. 15)

- a. A student who complies with all the requirements of the second year of study, is promoted to the third year of study.
- b. A student must pass all the prescribed modules at first year level (level 100) before he or she is admitted to any module at third year level (level 300).
- c. A student who is repeating his or her second year must register for all the second-year modules still outstanding. Such a student may, on recommendation of the relevant head of department and with the approval of the Dean, be permitted to enroll for modules of the third year of study in addition to the second-year modules which he or she failed, providing that he or she complies with the prerequisites for the third-year modules and no timetable clashes occur. On recommendation of the relevant head of department, and with special permission from the Dean, permission may be granted to exceed the prescribed number of credits. The total number of credits which may be approved may not exceed the normal number of credits per semester by more than 16 credits.
- d. Students in Computer, Electrical and Electronic Engineering who fail a second-year module for the second time forfeit the privilege of registering for any modules of the third year of study.
- e. Students who intend transferring to Mining Engineering must familiarise themselves with the stipulations set out in the syllabi of PWP 120 Workshop practice 120, as well as PPY 317 Practical training 317.

Promotion to the fourth year of study of the Four-year Programme, as well as to the fifth year of study of the ENGAGE Programme. In case of the fifth year of study of the ENGAGE Programme, the words "second", "third" and "fourth" must be substituted with the words "third", "fourth" and "fifth" respectively. (Eng. 16)

- a. A student who complies with all the requirements of the third year of study is promoted to the fourth year of study. A student who does not comply with all the requirements but who is able to register for all outstanding modules in order to complete the degree programme, may at registration be promoted to the fourth year of study.
- b. A student must pass all the prescribed modules of the second year of study, before he or she is admitted to any module of the fourth year of study.

- c. A student who has not passed all the prescribed modules of the third year of study, must register for the outstanding modules. A student may be admitted by the Dean, on the recommendation of the relevant head of department, to modules of the fourth year of study, in addition to the outstanding third-year modules, provided that he or she complies with the prerequisites of the fourth-year modules and no timetable clashes occur. The total number of credits per semester for which a student registers may not exceed the normal number of credits per semester by more than 16 credits. In exceptional cases, the Dean may, on recommendation of the relevant head of department, permit a student to exceed the above limit.
- d. Students in Computer, Electrical and Electronic Engineering who fail a third-year module for the second time, forfeit the privilege of registering for any modules of the fourth year of study.

Pass with distinction

- a. A student graduates with distinction if:
- i. no module of the third or fourth year of study of the four year programme or of the fourth or fifth year of the ENGAGE programme was repeated and a weighted average of at least 75% was obtained in one year in all the modules of the final year of study; and
- ii. the degree programme was completed within the prescribed four years for the four year programme and within the prescribed five years of the ENGAGE programme.
- b. Exceptional cases to the above will be considered by the Dean.

Curriculum: Year 1

Minimum credits: 150

Fundamental modules

Academic orientation 112 (UPO 112)

Module credits 0.00

Language of tuition Module is presented in English

Department EBIT Deans Office

Period of presentation Year

Core modules

General chemistry 172 (CHM 172)

Module credits 16.00

Service modules Faculty of Engineering, Built Environment and Information Technology

Prerequisites No prerequisites.

Contact time 1 discussion class per week, 1 practical per week, 1 web-based period per week,

4 lectures per week

Language of tuition Module is presented in English

Department Chemistry

Period of presentation Semester 2

Module content

General introduction to inorganic, analytical and physical chemistry. Nomenclature of inorganic ions and compounds, stoichiometric calculations concerning chemical reactions, redox reactions, solubilities and solutions, atomic structure, periodicity. Molecular structure and chemical bonding using the VSEPR model. Principles of reactivity, electrochemistry, energy and chemical reactions, entropy and free energy. Appropriate tutorial classes and practicals.

Electricity and electronics 111 (EBN 111)

Module credits 16.00

Prerequisites No prerequisites.

Contact time 1 practical per week, 1 tutorial per week, 3 lectures per week

Language of tuition Module is presented in English

Department Electrical, Electronic and Computer Engineering

Period of presentation Semester 1

Electrical quantities, units, definitions, conventions. Electrical symbols, ideal and practical current and voltage sources, controlled sources. Ohm's law in resistive circuits, Kirchoff's current and voltage laws, resistors in series and parallel circuits, voltage and current division, mesh current and node voltage methods. Circuit theorems: Linearity, superposition, Thevenin and Norton equivalent circuits, sources transformation, power calculation, maximum power transfer. Energy storage elements: current, voltage, power and energy in inductors and capacitors, inductors and capacitors in series and parallel. Ideal operational amplifiers and applications: inverting and noninverting amplifiers, summing amplifiers, current sources, integrators.

Physics 116 (FSK 116)

Module credits	16.00
Service modules	Faculty of Engineering, Built Environment and Information Technology
Prerequisites	No prerequisites.
Contact time	1 discussion class per week, 1 practical per week, 4 lectures per week
Language of tuition	Module is presented in English
Department	Physics

Module content

Period of presentation

Introductory mathematics: Symbols, exponents, logarithms, angles in degrees, radial measure, goniometry, differentiation, and integration. Motion along a straight line: position and displacement, acceleration. Vectors: adding vectors, components, multiplying vectors. Motion in two and three dimensions: projectile motion, circular motion. Force and motion: Newton's Law, force, friction. Kinetic energy and work: work, power. Potential energy: Centre of mass, linear momentum. Collisions: impulse and linear momentum, elastic collisions, inelastic collisions. Rotation: kinetic energy of rotation, torque. Oscillations and waves: Simple harmonic motion, types of waves, wavelength and frequency, interference of waves, standing waves, the Doppler effect. Temperature, heat and the first law of thermodynamics.

Humanities and social sciences 110 (HAS 110)

Semester 1

Module credits	8.00
Service modules	Faculty of Engineering, Built Environment and Information Technology
Prerequisites	No prerequisites.
Contact time	2 lectures per week
Language of tuition	Module is presented in English
Department	Anthropology and Archaeology
Period of presentation	Semester 1

Social sciences: Perspectives on contemporary society

An introduction to long-standing questions about the nature of human societies and contemporary challenges. Topics to be discussed include globalisation and increasing connectedness; rising unemployment, inequality and poverty; rapid urbanisation and the modern city form; transformations in the nature of work; environmental degradation and tensions between sustainability and growth; shifts in global power relations; the future of the nation-state and supra-national governance structures; and possibilities for extending human rights and democracy. Critical questions are posed about modern selfhood, sociality, culture and identity against the background of new communications technologies, ever more multicultural societies, enduring gender, class and race inequities, and the emergence of new and the resurgence of older forms of social and political identity. These issues are approached from the vantage of our location in southern Africa and the continent, drawing on social science perspectives.

Humanities and social sciences 120 (HAS 120)

Module credits 8.00

Service modules Faculty of Engineering, Built Environment and Information Technology

Prerequisites No prerequisites.

Contact time 2 lectures per week

Language of tuition Module is presented in English

Department Afrikaans

Period of presentation Semester 2

Module content

Humanities: Text, culture and communication

Successful communication of ideas, values and traditions depends on understanding both the literal and implied meanings of texts. In this module students are introduced to a variety of texts, including original literary and visual texts, with a view to developing an understanding of how textual meanings have been constructed and negotiated over time. Students are encouraged to understand themselves as products of – and participants in – these traditions, ideas and values. Appropriate examples will be drawn from, among others, the Enlightenment, Modernism, Existentialism, Postmodernism and Post-colonialism.

Graphical communication 110 (MGC 110)

Module credits 16.00

Prerequisites No prerequisites.

Contact time 3 lectures per week, 3 tutorials per week

Language of tuition Module is presented in English

Department Mechanical and Aeronautical Engineering

Period of presentation Semester 1

Freehand sketching covering the following: perspective, isometric and orthographic drawings. Drawing conventions, graphical techniques and assembly drawings. Evaluation of drawings and error detection. True lengths of lines, projections and intersections. Practical applications of these techniques. Introduction to computer-aided drawings, including dimensioning, crosshatching and detailing. Introduction to basic manufacturing processes including primary (casting, forging and extrusion) and secondary (drilling, turning, milling, grinding, broaching and sawing) manufacturing procedures.

Materials science 123 (NMC 123)

Module credits 16.00

Prerequisites No prerequisites.

Contact time 1 practical per week, 1 tutorial per week, 4 lectures per week

Language of tuition Module is presented in English

Department Materials Science and Metallurgical Engineering

Period of presentation Semester 2

Module content

Introduction to materials: the family of materials, atomic structure and types of bonding, crystal types and space arrangement of atoms, directions and planes in crystals, defects in crystals, diffusion in solids. Mechanical properties of materials: stress and strain, mechanical testing (strength, ductility, hardness, toughness, fatigue, creep), plastic deformation, solid-solution hardening, recrystallisation.

Polymeric materials: polymerisation and industrial methods, types of polymeric materials and their properties. Corrosion of metals: mechanisms and types of corrosion, corrosion rates, corrosion control. The heat treatment of steel: Fe-C phase diagram, equilibrium cooling, hardening and tempering of steel, stainless steel. Composite materials: Introduction, fibre reinforced polymeric composites, concrete, asphalt, wood.

Mechanics 122 (SWK 122)

Module credits 16.00

Service modules Faculty of Natural and Agricultural Sciences

Prerequisites WTW 158

Contact time 2 tutorials per week, 4 lectures per week

Language of tuition Module is presented in English

Department Civil Engineering

Period of presentation Semester 2

Module content

Equivalent force systems, resultants. Newton's laws, units. Forces acting on particles. Rigid bodies: principle of transmissibility, resultant of parallel forces. Vector moments and scalar moments. Relationship between scalar-and vector moments. Couples. Equivalent force systems on rigid bodies. Resultants of forces on rigid bodies. Equilibrium in two and three dimensions. Hooke's law. Trusses and frameworks. Centroids and second moments of area. Beams: distributed forces, shear force, bending moment, method of sections, relationship between load, shear force and bending moment.

Calculus 158 (WTW 158)

Module credits 16.00

Service modules Faculty of Engineering, Built Environment and Information Technology

Prerequisites 60% for Mathematics in Grade 12

Contact time 1 tutorial per week, 4 lectures per week

Language of tuition Module is presented in English

Department Mathematics and Applied Mathematics

Period of presentation Semester 1

Module content

Introduction to vector algebra. Functions, limits and continuity. Differential calculus of single variable functions, rate of change, graph sketching, applications. The mean value theorem, the rule of L'Hospital. Indefinite integrals, integration.

Mathematics 164 (WTW 164)

Module credits	16.00
----------------	-------

Service modules Faculty of Engineering, Built Environment and Information Technology

Prerequisites WTW 114 or WTW 158

Contact time 1 tutorial per week, 4 lectures per week

Language of tuition Module is presented in English

Department Mathematics and Applied Mathematics

Period of presentation Semester 2

Module content

Vector algebra with applications to lines and planes in space, matrix algebra, systems of linear equations, determinants, complex numbers, factorisation of polynomials and conic sections. Integration techniques, improper integrals. The definite integral, fundamental theorem of Calculus. Applications of integration. Elementary power series and Taylor's theorem. Vector functions, space curves and arc lengths. Quadratic surfaces and multivariable functions.

Workshop practice 121 (WWP 121)

M	alubal	credits	6	00
•	IUUUIE	CIEUILS	().	w

Prerequisites No prerequisites.

Contact time 1 other contact session per week

Language of tuition Module is presented in English

^{*}This module is designed for first-year engineering students. Students will not be credited for more than one of the following modules for their degree: WTW 158, WTW 114, WTW 134, WTW 165.

^{*}This module is designed for first-year engineering students. Students will not be credited for more than one of the following modules for their degree: WTW 146, WTW 148 and WTW 124,

Department Mechanical and Aeronautical Engineering

Period of presentation Semester 2

Module content

*Attendance module only

The module is offered at the end of the first year of study and lasts at least eight days, during which training is given in the following workshops: electronic projects, panel wiring, electrical motors and switch gear, general machines, welding, turning and sheet metal work. Each student's progress is assessed after each workshop.

Curriculum: Year 2

Minimum credits: 144

Core modules

Engineering statistics 220 (BES 220)

Module credits 8.00

Prerequisites WTW 158 GS, WTW 164 GS

Contact time 3 lectures per week

Language of tuition Module is presented in English

Department Industrial and Systems Engineering

Period of presentation Semester 2

Module content

Engineering systems are often subjected to variation, uncertainty and incomplete information. Mathematical statistics provides the basis for effectively handling and quantifying the effect of these factors. This module provides an introduction to the concepts of mathematical statistics and will include the following syllabus themes: data analysis, probability theory, stochastic modelling, statistical inference and regression analysis.

Community-based project 203 (JCP 203)

Module credits 8.00

Prerequisites No prerequisites.

Contact time 1 lecture per week

Language of tuition Module is presented in English

Department Informatics

Period of presentation Year

Module content

This module is integrated into all undergraduate academic programmes offered by the Faculty. Main objectives: execution of a community project aimed at achieving a beneficial impact on a section of society; awareness of personal, social and cultural values and an understanding of social issues; and development of life skills. Assessment: project proposal, written progress reports, peer assessment, assessment by community, presentation, report presented in the form of a blog.

Professional and technical communication 210 (MJJ 210)

Module credits 8.00

Prerequisites No prerequisites.

Contact time 2 lectures per week, 2 other contact sessions per week

Language of tuition Module is presented in English

Department Mechanical and Aeronautical Engineering

Period of presentation Semester 1

Module content

Effective communication by engineers. Verbal, written and visual communication are all covered, with a focus on presentations and technical reports as the medium of communication. Effective communication in all three aspects is achieved with an understanding of the audience influence, the structure of information, the structuring of an argument and the effective use of language. Topics covered: Plagiarism, paraphrasing, correct referencing practices and distinguishing between information sources. Business emails and meetings. Body language. Graphical display of data in graphs and slides.

Manufacturing and design 217 (MOW 217)

Module credits 16.00

Prerequisites MGC 110

Contact time 3 lectures per week, 4 tutorials per week

Language of tuition Module is presented in English

Department Mechanical and Aeronautical Engineering

Period of presentation Semester 1

Module content

Detailed exposure to manufacturing processes, and appropriate selection of manufacturing processes. Detailed exposure to machine elements, including belts, chains and bearings. Selection of standard components. Conceptual framework for design process including life cycle, ergonomics, component and material selection, manufacturing considerations, and evaluation of alternatives.

Structural design 227 (MOW 227)

Module credits 16.00

Prerequisites SWK 122

Contact time 3 lectures per week, 4 tutorials per week

Language of tuition Module is presented in English

Department Mechanical and Aeronautical Engineering

Period of presentation Semester 2

Module content

Analyse statically determinate structures to obtain section forces and moments and stress distributions. Axial loading, pure shear, torsion and bending. Stress and strain transformations. Derivation of stress transformation equations. Mohr's circle. Failure criteria. Fatigue strength design. Introduction to code design, safety factors. All analysis techniques are applied to the open-ended design of hoisting systems and ropes, symmetric beams, shafts, springs, bolts and welds.

Programming and information technology 213 (MPR 213)

Module credits 16.00

Prerequisites No prerequisites.

Contact time 2 practicals per week, 4 lectures per week

Language of tuition Module is presented in English

Department Mechanical and Aeronautical Engineering

Period of presentation Semester 1

Module content

Spreadsheet applications: Formulas and calculations, named ranges, plotting and trend lines, goal seek, linear programming, importing and exporting data, data navigation and filtering. Programming fundamentals: Names and objects, conditional and unconditional looping, branching, functions, modules, packages, reading and writing data files, graphical output (plotting). Solving simple problems using a high level programming language to develop, code and debug programs. Solving complex problems by breaking it down into a number of simple problems using concepts such as functions, modules and available packages. Programming principles are developed through solving mathematics and physics problems.

Dynamics 210 (MSD 210)

Module credits	16.00
Prerequisites	FSK 116 or FSK 176 and SWK 122 and WTW 256 #
Contact time	2 tutorials per week, 3 lectures per week
Language of tuition	Module is presented in English
Department	Mechanical and Aeronautical Engineering
Period of presentation	Semester 1

Module content

Kinetics of systems of particles, Newton's 2nd law generalised for a system of particles, rate of change of momentum and angular momentum relations, work-energy relations, conservation laws, steady mass flow. Plane kinematics of rigid bodies, rotation, translation, general 2D motion, relative motion analysis. Moments and products of inertia. Plane kinetics of rigid bodies, equations of motion, rotation, translation, general 2D motion, work-energy relations. Vibration and time response.

Inermodynamics 221 (MIX 221)		
Module credits	16.00	
Prerequisites	FSK 116 or FSK 176	
Contact time	1 practical per week, 1 tutorial per week, 3 lectures per week	
Language of tuition	Module is presented in English	
Department	Mechanical and Aeronautical Engineering	
Period of presentation	Semester 2	

Application overview. Concepts: system, control mass, control volume, property, state, process, cycles, mass, volume, density, pressure, pure substances, property tables, ideal gases, work and heat, internal energy, enthalpy, specific heat capacity. First law of thermodynamics for control masses and control volumes. Conservation of mass. Processes: isothermal, polytropic, adiabatic, isentropic. Second law of thermodynamics and entropy for control masses and control volumes. Introduction to power cycles. Experimental techniques in thermodynamics.

Mathematics 238 (WTW 238)

Module credits 16.00

Service modules Faculty of Engineering, Built Environment and Information Technology

Prerequisites WTW 256 and WTW 258 GS

Contact time 1 tutorial per week, 4 lectures per week

Language of tuition Module is presented in English

Department Mathematics and Applied Mathematics

Period of presentation Semester 2

Module content

Linear algebra, eigenvalues and eigenvectors with applications to first and second order systems of differential equations. Sequences and series, convergence tests. Power series with applications to ordinary differential equations with variable coefficients. Fourier series with applications to partial differential equations such as potential, heat and wave equations.

Differential equations 256 (WTW 256)

Module credits 8.00

Service modules Faculty of Engineering, Built Environment and Information Technology

Prerequisites WTW 158 and WTW 164

Contact time 1 tutorial per week, 2 lectures per week

Language of tuition Module is presented in English

Department Mathematics and Applied Mathematics

Period of presentation Semester 1

Module content

Theory and solution methods for linear differential equations as well as for systems of linear differential equations. Theory and solution methods for first order non-linear differential equations. The Laplace transform with application to differential equations. Application of differential equations to modelling problems.

Calculus 258 (WTW 258)

Module credits 8.00

Service modules Faculty of Engineering, Built Environment and Information Technology

Prerequisites WTW 158 and WTW 164

Contact time 1 tutorial per week, 2 lectures per week

Language of tuition Module is presented in English

Department Mathematics and Applied Mathematics

Period of presentation Semester 1

Module content

Calculus of multivariable functions, directional derivatives. Extrema. Multiple integrals, polar, cylindrical and spherical coordinates. Line integrals and the theorem of Green. Surface integrals and the theorems of Gauss and Stokes.

Numerical methods 263 (WTW 263)

Module credits 8.00

Service modules Faculty of Engineering, Built Environment and Information Technology

Prerequisites WTW 164

Contact time 1 tutorial per week, 2 lectures per week

Language of tuition Module is presented in English

Department Mathematics and Applied Mathematics

Period of presentation Semester 2

Module content

Numerical integration. Numerical methods to approximate the solution of non-linear equations, systems of equations (linear and non-linear), differential equations and systems of differential equations. Direct methods to solve linear systems of equations.

Curriculum: Year 3

Minimum credits: 160

Core modules

Engineering management 310 (BSS 310)

Module credits 8.00

Prerequisites No prerequisites.

Contact time 3 lectures per week

Language of tuition Module is presented in English

Department Industrial and Systems Engineering

Period of presentation Semester 1

Module content

The purpose of this module is to develop knowledge and understanding of engineering management principles and economic decision-making so that students can design, manage, evaluate and participate in engineering projects in the workplace. As such elements from engineering economics, project management and systems engineering are combined.

This module develops and assesses the students' competence in terms of ECSA Exit Level Outcome 11 relating to Engineering Management.

Electrical engineering 221 (EIR 221)

Module credits 16.00

Prerequisites EBN 111 or EBN 122 and WTW 161/164

Contact time 1 practical per week, 1 tutorial per week, 3 lectures per week

Language of tuition Module is presented in English

Department Electrical, Electronic and Computer Engineering

Period of presentation Semester 2

Module content

Transient response phenomena in RC, RL and RLC circuits: Natural response and step response. Alternating current (AC) circuits: Phasors, impedances, and power in AC circuits. The application of Ohm's law, Kirchoff's circuit theorems, matrix methods, and Thevenin and Norton equivalents to sinusoidal steady-state analysis. Three-phase circuits: Balanced three-phase circuits, star/delta configurations, and three-phase power transfer calculations. Magnetically coupled circuits: Mutual inductance, coupling factor, transformers, ideal transformers and autotransformers. Application of circuit theory to induction motors: basic principles of induction motors, equivalent circuit and analysis thereof, calculation of power and torque through application of Thevenin's theorem. Synoptic introduction to other types of motors.

Engineering activity and group work 320 (MIA 320)

Module credits 8.00

Prerequisites (BSS 310), (CJJ 310) or (EJJ 210) or (BJJ 210) or (MJJ 210) or (NJJ 210) or (PJJ 210)

Contact time 1 other contact session per week, 2 lectures per week

Language of tuition Module is presented in English

Department Mechanical and Aeronautical Engineering

Period of presentation Semester 2

Module content

Two exit learning outcomes (ELO) of ECSA are addressed and each must be passed in the same semester. ELO7: Demonstrate critical awareness of the impact of engineering activity on the social, industrial and physical environment. The history of engineering globally and in South Africa. Most important engineering projects globally and in South Africa. The impact of technology on society. Occupational and public health and safety. Occupational Health and Safety Act. Impacts on the physical environment. The personal, social, cultural values and requirements of those affected by engineering activity. The combination of social, workplace (industrial) and physical environmental factors are appropriate to the discipline of the qualification. ELO8: Demonstrate competence to work effectively on a small project as an individual, in teams and in multidisciplinary environments. Identifies and focuses on objectives. Works strategically. Executes tasks effectively. Delivers completed work on time. Effective team work: Makes individual contribution to team activity; performs critical functions; enhances work of fellow team members; benefits from support of team members; communicates effectively with team members; delivers completed work on time. Multidisciplinary work by the following: Acquires a working knowledge of co-workers' discipline; uses a systems engineering approach; communicates across disciplinary boundaries. Report and presentation on team project. Tasks require co-operation across at least one disciplinary boundary. Students acquire a working knowledge of co-workers discipline. Students communicate between disciplinary boundaries.

Solid mechanics 321 (MKM 321)

Module credits	16.00
Prerequisites	MOW 227
Contact time	1 practical per week, 3 lectures per week
Language of tuition	Module is presented in English

Department Mechanical and Aeronautical Engineering

Period of presentation Semester 2

Module content

Solid mechanics, kinematics of deformation, strain tensor, traction vector, stress tensor and stress resultants. Macroscopic and infinitesimal equilibrium equations. Hooke's law for isotropic media. Strong form of Boundary Value Problem (BVP) of solid mechanics. Weak form of BVP of solid mechanics. Derivation of finite element equations using weighted residuals. Detail development of 1D elements with concepts extended to 2D and 3D. Manipulation of continuum and discrete equations using a high level programming language. Finite element modelling concepts that include Saint Venant's principle, linear superposition, symmetry, anti-symmetry, verification and validation.

Machine design 312 (MOW 312)

Module credits16.00PrerequisitesMOW 217, (MOW 227)Contact time3 lectures per week, 3 tutorials per weekLanguage of tuitionModule is presented in EnglishDepartmentMechanical and Aeronautical Engineering

Module content

Period of presentation

Within the framework of system engineering the following themes are introduced: Ergonomics, pressure vessels (introduction to code design), structural design, welding and bonding, heat treatment, non-destructive testing, couplings, clutches, brakes, gears, contact stresses and lubrication. Safety factors are considered through all themes. Open-ended subsystem design using the following elements: welds, gears and gear systems.

Simulation-based design 323 (MOW 323)

Semester 1

Module credits	16.00
Prerequisites	(MSD 210), MOW 227
Contact time	3 lectures per week, 5 tutorials per week
Language of tuition	Module is presented in English
Department	Mechanical and Aeronautical Engineering
Period of presentation	Semester 2

Module content

Computational dynamics analysis of mechanisms, linkages and cams. Structural computational analysis using finite element software. Systems engineering and functional analysis. Open-ended multidisciplinary design and design improvement of products and systems.

Practical training 315 (MPY 315)

Module credits	16.00
Prerequisites	No prerequisites.
Contact time	1 other contact session per week
Language of tuition	Separate classes for Afrikaans and English
Department	Mechanical and Aeronautical Engineering
Period of presentation	Semester 1

Prescribed practical training in the industry during or at the end of the second year. The aim is exposure to engineering equipment and processes, working environment of craftsmen and personnel relations. Duration at least 240 hours of work. Perform case study on personnel management and submit together with a satisfactory report on the practical training, to the Faculty Administration within one week of registration. Attend two (2) industry visits in the first semester and two (2) industry visits in the second semester. Attend at least six (6) guest lectures through the year.

Structural mechanics 310 (MSY 310)

Module credits 16.00

Prerequisites MOW 227, (WTW 256)

Contact time 1 practical per week, 3 lectures per week

Language of tuition Module is presented in English

Department Mechanical and Aeronautical Engineering

Period of presentation Semester 1

Module content

Introduction of stress tensor. 3D stress and strain transformation. Eigenvalue/vector analysis for principal stresses and strains. Experimental strain measurements. Stress-strain relations. Strain energy. Thin-walled cylinders. Statically indeterminate stress systems. Bending stress, slope and deflection of beams, shear center, non-symmetric beams, composite beams, Castigliano's theorem. Statically indeterminate beams. Buckling instability. Yield criteria. Elementary plasticity. Structural street design SANS code. Fracture mechanics. Fatigue.

Fluid mechanics 310 (MTV 310)

Module credits 16.00

Prerequisites No prerequisites.

Contact time 1 practical per week, 3 lectures per week

Language of tuition Module is presented in English

Department Mechanical and Aeronautical Engineering

Period of presentation Semester 1

Module content

Introduction: Liquids and gases, pressure, viscosity, temperature. Fluid statics and pressure measurement. Introduction to control volume method for mass, momentum and energy conservation. Bernoulli equation. Differential approach: Navier-Stokes and continuity equations. Similarity and dimensional analysis. Flow in pipes and channels: friction coefficients and Reynolds number, pressure drop; laminar, turbulent and transitional flow. Flow over bodies: drag and lift. Experimental techniques in fluid mechanics.

Thermodynamics 311 (MTX 311)

Module credits 16.00

Prerequisites MTX 221

Contact time 1 practical per week, 3 lectures per week

Language of tuition Module is presented in English

Department Mechanical and Aeronautical Engineering

Period of presentation Semester 1

Module content

Third Law of Thermodynamics, availability and useful work. Ideal and real gases. Compressible flow: conservation laws, characteristics of compressible flow, normal shock waves, nozzles and diffusers. Power cycles: classification, internal combustion engine cycles (Otto and Diesel), vapour power cycles (Brayton, Rankine), refrigeration cycles (Reversed Carnot cycle, Reversed Brayton cycle, ammonia absorption cycle) and heat pump cycles. Mixtures of gases: perfect gas mixture, water/air mixtures and processes (psychrometry). Heating and cooling load calculations, basic refrigeration and air-conditioning systems. Combustion: fuels, airfuel ratios, heat of formation, combustion in internal combustion engines.

Vibration and noise 320 (MVR 320)

Module credits 16.00

Prerequisites (MSD 210)

Contact time 1 practical per week, 3 lectures per week

Language of tuition Module is presented in English

Department Mechanical and Aeronautical Engineering

Period of presentation Semester 2

Module content

Introduction to vibration: basic concepts, classification, modelling elements. Single degree of freedom systems: undamped and damped free vibration, undamped and damped harmonic motion, non-periodic excitation, numerical integration. Multidegree of freedom systems: discretisation, eigenproblem, co-ordinate coupling. Vibration control: balancing, isolation, absorbers. Vibration and sound measurement: signal analysis, modal testing, vibration monitoring. Continuum systems: string, bar, rod. Sound and noise: metrics, measurement, legislation.

Curriculum: Final year

Minimum credits: 160

Core modules

Engineering professionalism 410 (IPI 410)

Module credits 8.00

Prerequisites No prerequisites.

Contact time 1 other contact session per week, 2 lectures per week

Language of tuition Module is presented in English

Department Engineering and Technology Management

Period of presentation Semester 1

Module content

Requirements to maintain continued competence and to keep abreast of up-to date tools and techniques. ECSA code of conduct, Continuing Professional Development, ECSA outcomes, ECSA process and reasons for registration as CEng and PrEng. Displays understanding of the system of professional development. Accepts responsibility for own actions. Displays judgment in decision making during problem solving and design. Limits decision making to area of current competence. Reason about and make judgment on ethical aspects in case study context. Discerns boundaries of competence in problem solving and design. Case studies typical of engineering practice situations in which the graduate is likely to participate.

Control systems 410 (MBB 410)

Module credits 16.00

Prerequisites MVR 320 GS

Contact time 2 practicals per week, 3 lectures per week

Language of tuition Module is presented in English

Department Mechanical and Aeronautical Engineering

Period of presentation Semester 2

Module content

Introduction to control systems. Modelling of dynamic systems. Transfer functions. Block diagrams and block diagram algebra. Linearisation of non-linear systems. Disturbance signals. Steady-state accuracy. Control systems characteristics. Analysis of control systems using Laplace transformations. Root loci. Bode diagrams. Design of compensators using bode diagram and root locus design techniques. Introduction to sampled data control systems. The Z-transsorm. Implementation of controllers on a computer. Controls laboratory.

Computational fluid dynamics 411 (MKM 411)

Module credits 16.00

Prerequisites (MTV 310), (MKM 321)

Contact time 1 practical per week, 3 lectures per week

Language of tuition Module is presented in English

Department Mechanical and Aeronautical Engineering

Period of presentation Semester 1

Module content

A fast review of partial differential equations, introduction to continuum mechanics, continuity equation, momentum equation, Navier- Stokes equation, energy equation, boundary conditions in thermal fluid systems, finite difference method, linear and non-linear partial differential equations, introduction to finite volume method (FVM), FVM for diffusion problems, FVM for convection-diffusion problems, introduction to pressure-velocity coupling in FVM, SIMPLE algorithm, introduction to computational fluid dynamics (CFD) software packages and their abilities, using CFD commercial software packages to solve thermal-fluid engineering problems.

Design project 410 (MOX 410)

Module credits 16.00

Prerequisites MOW 312 GS and MOW 323 GS

Contact time 8 tutorials per week

Language of tuition Separate classes for Afrikaans and English

Department Mechanical and Aeronautical Engineering

Period of presentation Semester 1

Module content

A comprehensive design and synthesis of components and systems relating to the mechanical engineering discipline. The design process includes aspects such as identifying and formulating the problem, functional and requirement analysis, conceptual design, detail design and analysis, ensuring that design meets applicable standards, codes of practice and legislation, techno-economic analysis (e.g. cost analysis) and considering the impacts and benefits of the design (e.g. social, environmental, health and safety). Professional and general communication of the design through written and oral communication.

Practical training 415 (MPY 415)

Module credits	16.00
Prerequisites	No prerequisites.
Contact time	1 other contact session per week
Language of tuition	Separate classes for Afrikaans and English
Department	Mechanical and Aeronautical Engineering
Period of presentation	Semester 1

During or at the end of the third year of study, students in Mechanical Engineering undergo prescribed practical training in the industry. The purpose is the execution of small projects on engineering assistant level with exposure to the various relevant functions in the organisation. The duration is at least 240 hours of work. A case study on occupational health and safety must be done in this period and submitted to the department together with a satisfactory report on the practical training within one week of registration. Students must also attend two (2) industry visits in the first semester and two (2) industry visits in the second semester as well as attend at least six (6) guest lectures through the year.

Research project 412 (MRN 412)

resourch project the trial that		
Module credits	16.00	
Prerequisites	Finalists only	
Contact time	8 other contact sessions per week	
Language of tuition	Separate classes for Afrikaans and English	
Department	Mechanical and Aeronautical Engineering	
Period of presentation	Semester 1	

Module content

The module involves the management of the execution of a project that produces knowledge and understanding of a phenomenon, conclusions and a recommended course of action. The project is undertaken under the supervision of a staff member with the student ultimately taking responsibility for the management of and execution of the project. The student should be able to demonstrate competence in designing and conducting investigations and experiments and adherence to well defined time-lines and work breakdown structures. An acceptable process consists of but is not restricted to: (a) planning and conducting of investigations and experiments; (b) conducting of a literature search and critically evaluating material. The student should be able to demonstrate competence in engaging in independent learning through well-developed skills by: (a) reflecting on own learning and determining learning requirements and strategies; (b) sourcing and evaluating information; (c) determining learning requirements and strategies; (d) accessing, comprehending and applying knowledge acquired outside formal instruction; (e) critically challenging assumptions and embracing new thinking as well as communicating progress on a regular basis.

Research project 422 (MRN 422)

Module credits	24.00
Prerequisites	Finalist only, MRN 412
Contact time	12 other contact sessions per week
Language of tuition	Separate classes for Afrikaans and English
Department	Mechanical and Aeronautical Engineering
Period of presentation	Semester 2

The module involves the management of the execution of a project that produces knowledge and understanding of a phenomenon, conclusions and a recommended course of action. The project is undertaken under the supervision of a staff member with the student ultimately taking responsibility for the management of and execution of the project. This module follows onto MSC 412 and deals with the same topic in the same year. The student should be able to demonstrate competence in designing and conducting investigations and experiments and adherence to well defined time-lines and work breakdown structures. An acceptable process consists of but is not restricted to: (a) understanding of the stated problem, (b) developing a work breakdown structure, (c) performing the necessary analyses; (d) selecting and using appropriate equipment or software; (e) construction and instrumentation of an experimental set-up; (f) taking measurements; (g) analysing, interpreting and deriving information from data; (h) drawing conclusions based on evidence; (i) communicating the purpose, process and outcomes in a technical report, presentation and poster.

Heat transfer 410 (MTV 410)

Module credits	16.00
----------------	-------

Prerequisites No prerequisites.

Contact time 1 practical per week, 3 lectures per week

Language of tuition Module is presented in English

Department Mechanical and Aeronautical Engineering

Period of presentation Semester 1

Module content

Introduction to basic thermodynamic heat transfer concepts. Conduction (steady state and transient), heat resistance networks. Conduction in two dimensions. Convective heat transfer: forced convection (external and internal), natural convection. Boiling and condensation. Thermal radiation. Heat exchangers: classification, Parallel flow and counterflow heat exchangers; double-pass, multi-pass and cross-flow heat exchangers; LMTD method, Effectiveness-NTU method, selection of heat exchangers. Experimental techniques in heat transfer.

Thermal and fluid machines 420 (MTV 420)

Module credits	16.00
Prerequisites	MTV 310, (MTX 311)
Contact time	1 practical per week, 3 lectures per week
Language of tuition	Module is presented in English
Department	Mechanical and Aeronautical Engineering
Period of presentation	Semester 1 or Semester 2

Rotary Turbomachines: Fundamental principles of fluid dynamics and thermodynamics applicable to the rotating turbomachinery components i.e. gas and steam turbines, compressors, hydraulic turbines, and pumps. Classifications and basic components in turbomachines. Euler equations for turbines, compressors, and pumps. Estimations of work and power, and thermal energy losses and efficiencies in turbomachinery components. Basic theory for wind turbine power and Betz's method.

Power Cycles: Fundamental principles of fluid dynamics and thermodynamics applicable to the steam and gas turbine power cycles, internal combustion engine cycles, and reciprocating compressor cycles. Basic components in steam and gas turbine power plants. Power estimations in conventional power cycles, combined cycles, binary cycles, cogeneration plants, and organic Rankine cycles. Thermal energy losses and efficiencies in power cycles. Air-flow duct network and fan selection curves for duct system

Elective modules

Porous flow 420 (MAN 420)

Module credits	16.00
Prerequisites	No prerequisites.
Contact time	1 practical per week, 3 lectures per week
Language of tuition	Module is presented in English
Department	Mechanical and Aeronautical Engineering
Period of presentation	Semester 2

Module content

Flow through porous media is relevant to applications such as internal combustion engines, thermal insulation engineering, electronics cooling, filtration, water movement in geothermal reservoirs, heat pipes, underground spreading of chemical waste, nuclear waste repository, geothermal engineering, grain storage, enhanced recovery of petroleum reservoirs and biological science. Introduction to the physical models used in the study of fluid flow and heat transfer in porous materials. Understanding of the transport mechanisms.

Mechatronics 421 (MEG 421)

Module credits	16.00
Prerequisites	No prerequisites.
Contact time	1 practical per week, 3 lectures per week
Language of tuition	Module is presented in English
Department	Mechanical and Aeronautical Engineering
Period of presentation	Semester 2

Power supplies: How various voltage levels are obtained from a single source. Sensors and Actuators: Basics behind the most common actuators and sensors. Analogue: The use of MOSFETS, transistors, op-amps, diodes. Digital: Basic understanding of digital communication. Sampling theory: The effect of aliasing and the design of anti-aliasing filters. Programming: Program a PIC microcontroller using C. Control: Implementation of PID and fuzzy logic control in discrete time systems.

Heat and mass transfer 420 (MHM 420)

Module credits	16.00
Prerequisites	No prerequisites.
Contact time	1 practical per week, 3 lectures per week
Language of tuition	Module is presented in English
Department	Mechanical and Aeronautical Engineering
Period of presentation	Semester 2

Module content

Fundamentals of Thermal Radiation; blackbody radiation, radiative properties, Kirchhoff's law. Radiation Heat Transfer; the view factor, gray surfaces, radiation shields. Boiling and condensation; pool and film boiling, film condensation, dropwise condensation. Heat exchangers; types, analysis, design, and selection. Mass transfer: Fick's Law, mass diffusion, mass convection, simultaneous heat and mass transfer, porous catalysts.

Maintenance engineering 420 (MII 420)

-	
Module credits	16.00
Prerequisites	No prerequisites.
Contact time	1 practical per week, 3 lectures per week
Language of tuition	Separate classes for Afrikaans and English
Department	Mechanical and Aeronautical Engineering
Period of presentation	Semester 2

Module content

Introduction: Definition and objectives, statistical concepts. Mathematics of failure:

Reliability concepts, fitting distribution to failure data. Maintenance management:

Investment decisions, maintenance profit impact. Maintenance structure: Preventive, time based, condition based, corrective, design out. Data analysis: Renewable, repairable systems, Laplace trend test, analysis methodology. Optimizing maintenance strategies: Replacement/overhaul age, inspection frequencies, capital replacement, simulation. Reliability-Centred Maintenance (RCM). Maintenance systems: Components, structure, computer methods. Tribology: Friction laws, lubrication theory, contamination control.

Maintenance Practice: Systems approach, management approach, modelling.

Nuclear engineering 420 (MKI 420)

Module credits 16.00

Prerequisites	No prerequisites.
Contact time	1 discussion class per week, 1 practical per week, 3 lectures per week
Language of tuition	Module is presented in English
Department	Mechanical and Aeronautical Engineering
Period of presentation	Semester 2

Basic nuclear physics: definitions and concepts (nuclear reaction, binding energy, cross-sections, moderator, reflector, etc.). Basic reactor physics: diffusion equation and boundary equations, group-diffusion methods, reactor kinetics. Reactor types: pressurised water reactors, boiling water reactors, gas-cooled reactors. Nuclear fuel cycle (including waste disposal). Reactor materials: fuels, moderators, coolants, reflectors, structures, systems or components. Reactor safety: biological effects of radiation, radiation shielding, principles of nuclear plant safety, atmospheric dispersion of radioactive contamination, event-tree and fault-tree analyses of reactor systems.

Aeronautics 420 (MLV 420)

7.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	
Module credits	16.00
Prerequisites	MTV 310
Contact time	1 practical per week, 3 lectures per week
Language of tuition	Module is presented in English
Department	Mechanical and Aeronautical Engineering
Period of presentation	Semester 2

Module content

Introduction to aerodynamics and aeronautics. Fundamental physical quantities of flowing gas. Equations of state. Anatomy of an airplane. Atmospheriology. Basic aerodynamics. Potential flow. Elementary compressible flow. The Kutta-Joukowski Theorem. Introduction to viscous flow. Laminar and Turbulent Boundary Layers. Skin friction. Transition Flow Separation. Airfoil nomenclature. Lift, drag and moment coefficients. Pressure coefficients. Airfoil data. Wing properties. Circulation, downwash, and induced drag. Span efficiency. Stall. Highlift devices. Drag. Elements of airplane and flight performance. Range, endurance and payload. Principles of static stability and control.

Optimum design 420 (MOO 420)

Module credits	16.00
Prerequisites	No prerequisites.
Contact time	1 practical per week, 3 lectures per week
Language of tuition	Module is presented in English
Department	Mechanical and Aeronautical Engineering
Period of presentation	Semester 2

Introduction to elements of computer-aided design. Formulation of the optimum design problem. Concepts used in optimum design. Linear and integer programming methods. Numerical methods used for unconstrained and constrained optimum design. Model reduction techniques. Application to interactive and practical design optimisation.

Fossil fuel power stations 420 (MUU 420)

Module credits 16.00

Prerequisites No prerequisites.

Contact time 1 practical per week, 3 lectures per week

Language of tuition Module is presented in English

Department Mechanical and Aeronautical Engineering

Period of presentation Semester 2

Module content

This module contains a comprehensive study of all mechanical systems and processes of a fossil fuel power station. Analysis of steam cycles, combined cycle power generation, fuels and combustion, the draught group, steam generators and turbines, condenser, feedwater and circulating water systems, coal and ash handling, compressor plant, water treatment, the importance of HVAC, control and instrumentation, control philosophies and environmental considerations.

Vehicle engineering 420 (MVE 420)

Module credits 16.00

Prerequisites No prerequisites.

Contact time 1 practical per week, 3 lectures per week

Language of tuition Module is presented in English

Department Mechanical and Aeronautical Engineering

Period of presentation Semester 2

Module content

Tyres: Construction, forces and moments, side force generation, rolling resistance, dynamic characteristics, tractive effort, slip, soft soil characteristics. Vehicle performance: equations of motion, supply and demand, forces acting on the vehicle, prediction of top speed, acceleration, braking, gradient ability and fuel consumption. Vehicle suspension systems: suspension concepts, kinematics, dynamic characteristics. Ride comfort: springs, dampers, suspension models, human response to vibration. Handling: steering systems, low-speed handling, steady-state handling, dynamic handling, under/oversteer, handling tests.

Numerical methods 420 (MWN 420)

Module credits 16.00

Prerequisites No prerequisites.

Contact time 1 practical per week, 3 lectures per week

Language of tuition Module is presented in English

Department Mechanical and Aeronautical Engineering

Period of presentation Semester 2

Module content

Solution of systems of linear algebraic equations. Both iterative and direct methods are treated. Solutions are applied to both small and large scale systems. Solutions of systems of nonlinear equations. Eigenvalue problems. Numerical approximation strategies. Numerical integration and differentiation. Numerical solutions to initial-value problems for ordinary differential equations, boundary-value problems for ordinary differential equations and partial-differential equations.

The information published here is subject to change and may be amended after the publication of this information. The **General Regulations** (**G Regulations**) apply to all faculties of the University of Pretoria. It is expected of students to familiarise themselves well with these regulations as well as with the information contained in the **General Rules** section. Ignorance concerning these regulations and rules will not be accepted as an excuse for any transgression.