# Yearbooks 2016 2017 2018 2020 2021 2022 2023

## Calculus 143

 Modulekode WTW 143 Kwalifikasie Undergraduate Fakulteit Faculty of Natural and Agricultural Sciences Module-inhoud Functions: exponential and logarithmic functions, natural exponential and logarithmic functions, exponential and logarithmic laws, exponential and logarithmic equations, compound interest. Limits: concept of a limit, finding limits numerically and graphically, finding limits algebraically, limit laws without proofs, squeeze theorem without proof, one-sided limits, infinite limits, limits at infinity, vertical, horizontal and slant asymptotes, substitution rule, continuity, laws for continuity without proofs. Differentiation: average and instantaneous change, definition of derivative, differentiation rules without proofs, derivatives of polynomials, chain rule for differentiation, derivatives of trigonometric, exponential and logarithmic functions, applications of differentiation: extreme values, critical numbers, monotone functions, first derivative test, optimisation. Modulekrediete 8.00 Programme Service modules Faculty of Engineering, Built Environment and Information TechnologyFaculty of EducationFaculty of Economic and Management Sciences Prerequisites BSc Extended programme and BEd programmes: WTW 133 BCom Extended programme: Students with WST 133 concurrently with WTW 143: WTW 133. Students with STK 133 concurrently with WTW 143: at least 65% for WTW 133. Contact time 3 lectures per week, Foundation Course, 1 tutorial per week Language of tuition Module is presented in English Department Mathematics and Applied Mathematics Period of presentation Semester 2

Die inligting wat hier verskyn, is onderhewig aan verandering en kan na die publikasie van hierdie inligting gewysig word.. Die Algemene Regulasies (G Regulasies) is op alle fakulteite van die Universiteit van Pretoria van toepassing. Dit word vereis dat elke student volkome vertroud met hierdie regulasies sowel as met die inligting vervat in die Algemene Reëls sal wees. Onkunde betrefffende hierdie regulasies en reels sal nie as ‘n verskoning by oortreding daarvan aangebied kan word nie.