Yearbooks

Programme: BScHons Applied Science Mechanics

Kindly take note of the disclaimer regarding qualifications and degree names.
Code Faculty
12243006 Faculty of Engineering, Built Environment and Information Technology
Credits Duration
Minimum duration of study: 1 year Total credits: 128

Programme information

The BScHons (Applied Science) degree is conferred by the following academic departments:

  • Chemical Engineering
  • Civil Engineering
  • Industrial and Systems Engineering
  • Materials Science and Metallurgical Engineering
  • Mechanical and Aeronautical Engineering
  • Mining Engineering

Any specific module is offered on the condition that a minimum number of students are registered for the module, as determined by the head of department and the Dean. Students must consult the relevant head of department in order to compile a meaningful programme, as well as on the syllabi of the modules. The relevant departmental postgraduate brochures must also be consulted.

Admission requirements

An appropriate bachelor's degree, a BTech degree or equivalent qualification.

 

Minimum credits: 128

Core modules

  • Module content:

    Failure characteristics and analysis. Maintenance economics – Budgeting and cost control. Life cycle partnering and maintenance contracting. Legal aspects and case study. Performance measurement and benchmarking. Maintenance programming – Network analysis. Variability analysis. Maintenance strategy, plan, and protocol design – a new look at RCM. Maintenance tactic selection techniques. Introduction to condition-based maintenance. Tribology and contamination control presented with case studies. Maintenance Maturity Indexing and Variable Relationships development.

    View more

  • Module content:

    Introduction to probabilistic distributions, computation of system reliability, building reliability models and optimisation of system reliability; Fault Tree Analysis; Failure Modes, Effects and Criticality Analysis (FMECA), Monte Carlo Simulation; probability-based design.

    View more

  • Module content:

    Review of the fundamentals of thermodynamics. Introduction to compressible flows. Advanced topics in compressible flows: transonic flow and supersonic flow. Oblique shock waves, expansion waves, shock-expansion theory, wave interactions and wave drag. Linearized compressible-flow theory. Effects of heat and friction on gas flow. Design aspects of high speed aeroplanes and viscous effects. Fundamentals of hypersonic flow and high temperature gas dynamics. On completion of this module the student will be able to understand the fundamental phenomena associated with compressible flow and competently apply analytical theory to compressible flow problems

     

     

    View more

  • Module content:

    Drag: friction, pressure, induced, interference, cooling, trim, drag estimation and reduction, piston engines, propellers, gas turbines, turbojet, turboprop and turbofan engines, propfan engines, aircraft performance, take off, climb, level flight, range, flight and manoeuvre envelopes, landing, energy methods, static stability and control: stick fixed, stick free, lateral stability and control, dihedral effect, coupling, dynamic longitudinal stability, short period oscillations, phugoid oscillations, dynamic damping, flight characteristics.

     

    View more

  • Module content:

    Fluid Mechanics refresher (governing equations, boundary conditions, application of inviscid, laminar and turbulent flow). Methods of weighted residuals (finite element, finite volume and difference methods). Mesh generation and boundary conditions: Types of mesh structured and unstructured mesh generation and application (inviscid flow, heat conduction etc.). Heat conductions: Governing equations, discretisation, finite approximation, solution methods (Gauss-Seidel, Tri-diagonal matrix algorithm) etc. This module is suited to postgraduate students doing research in thermofluids and who wants to use available CFD codes or who wants to write their own codes to solve fluid mechanics, heat and mass transfer problems.

    View more

  • Module content:

    Fatigue principles addressing both elasticity and plasticity; notch effects; variable amplitude loading conditions; multi-axial fatigue and weld fatigue.

    View more

  • Module content:

    Mathematical preliminaries: historical overview, scalar, vector and tensor algebra (in context of partial differential equations), Green's lemma and the Divergence theorem, Eularian/Lagrangian representations, derivative of a function, Reynolds transport theorem. Governing equations: viscous compressible and incompressible flow, derivation of conservation of mass, derivation of conservation of momentum, boundary conditions, mathematical characteristics, non-dimensionalisation. Viscous compressible and incompressible flow: derivation of conservation of mass, derivation of conservation of momentum, boundary conditions, mathematical characteristics, non-dimensionalisation.

    View more

Elective modules

  • Module content:

    Review of thermodynamic cycles applicable to aircraft propulsion with emphasis on turbocharged piston cycles and gas turbine cycles. Optimisation of gas turbine cycles, 2D and 3D turbomachinery design and fluid mechanics and loss mechanisms in gas turbines.

    View more

  • Module content:

    Introduction to state space methods, full state feedback design, disturbances and tracking systems, linear observers, compensator design by the separation principle, linear quadratic optimum control, Kalman filter, linear quadratic Gaussian compensator.

    View more

  • Module content:

    Probabilty, design and management in non-destructive testing (NDT). Fundamental theory of commonly used NDT methods: Ultrasonic testing, Electromagnetic testing (MT and ACFM). Radiographic testing, Penetrant testing, Eddy current testing. Other NDT technologies, including phased array UT, time-of flight diffraction. Digital (RT and Acoustic emission. Monitoring.

    View more

  • Module content:

    Non-linear statics: Overview of non-linear effects: geometric, material and boundary conditions. Continuum mechanics: tensors, indicial notation, deformation gradients, stress and strain measures, transformations and rotations, stress-strain relationships, constitutive models. Principles of virtual work. Solution methods: direct iteration, Newton methods, incremental/iterative procedures. Lagrange engineering strains. Large displacement finite element analysis of continua: total Lagrangian formulation. Small strain plasticity: Additive decomposition, flow rule, hardening laws, continuum and consistent tangents.

    View more

  • Module content:

    Sensors: mechanical and optical limit switches, encoders, thermocouples, strain gauges, CCD cameras, IR sensors, piezo-electric sensors, capacitive sensors, torque sensors, tactile sensors, gyroscope and ultrasonic sensors. Actuators: DC motors, stepper motors, AC motors, pneumatic actuators, hydraulic actuators, memory shape alloys. Signal conditioning: component interconnection, amplifiers, analogue filters, modulators and demodulators, analogue-digital conversion, sample-and-hold circuitry, multiplexers, software and hardware implementation of digital filters and Wheatstone bridge. Control: H-Bridge motor control, PWM motor control, control of stepper motors, non-linear control of hydraulic and pneumatic actuators, PLCs, SCADA systems, industrial Fieldbus, micro-processor control.

    View more

  • Module content:

    Vibration measurement: conventional and optical technique, digital signal processing in vibrations, vibration monitoring: diagnostics and prognostics, artificial intelligence in vibration monitoring, human vibration.

    View more

  • Module content:

    Convection correlations: high speed flows, boundary layers, similarity, conservation equations, scale analysis. Thermal radiation: physics, exchange between surfaces, solar, directional characteristics, spectral characteristics, radiation through gasses. Convection, evaporation and boiling: film condensation, film evaporation, pool boiling, forced-convection boiling and condensation, flow regime maps, phase change at low pressures, heatpipes. Heat exchangers: types, regenerators, heat exchanger design. Mass transfer: Fick’s Law, mass diffusion, mass convection, simultaneous heat and mass transfer, porous catalysts. High mass transfer rate theory. Mass exchangers.

    View more

  • Module content:

    Theory and practical applications of condition based maintenance techniques. Pitfalls of the various condition based maintenance techniques. Acoustic emission, wear debris monitoring, oil analysis, thermography and non-destructive testing.

    View more

  • Module content:

    Introduction to Logistics, RAM (Reliability, Maintainability, and Availability), Measures of Logistics, Inventory Systems,
    Systems Engineering and Supportability Analysis: Systems Engineering Process, Supportability Analysis,
    Aspects of Logistical Design: Logistics in the Design and Development Phase, Just-in-Time Systems, Facility Layout, Job Design and Work Measurement,
    Logistics from the Development to the Retirement Phase: Logistics in the Production/Construction Phase, Logistics in the Utilisation and Support Phase,
    Planning and Scheduling: Forecasting, Planning, Maintenance Scheduling, Project Management, Theory of Constraints,
    Logistics Management: Quality Management, Supply Chain Management, Logistics Management.

    View more

  • Module content:

    The aerodynamic discipline of missiles or slender bodies and general configuration design concepts, submarine, airship and munition development.  Slender body theory, aerodynamics of bodies, aerodynamics of low aspect ratio wings, vortices, wing body interference, downwash, the wake and wing tail interference, aerodynamic controls, drag, stability derivatives, design considerations, performance, manoeuvering flight, store carriage and separation.  Prerequisites for the course are aircraft design, subsonic and supersonic aerodynamics (including the concepts of potential flow, vortex theory, thin aerofoil theory, finite wing theory, compressible gas dynamics and shock wave theory) and flight dynamics.

     

    View more

  • Module content:

    Terminology, Data analysis, Uncertainty, Displacement, Strain, Pressure, Flow measurements Temperature measurements.  Emphasis will be placed on the experimental process from calibration through to analyses. Different experimental techniques will be covered to showcase the process.

     

    View more

  • Module content:

    Introduction to Unmanned Aerial Systems, applications and examples. System breakdown and major components. Airframe and systems. Core avionics, architecture, flight control, navigation, health monitoring. Mission systems, sensors, weapons and stores, electronic warfare. Aircraft installation and integration. Ground segment, control station, take off / launch support system, landing and recovery. Command and Control, data and video link. Logistic support system. Safety and regulatory elements.

     

    View more

  • Module content:

    Introduction to the functions performed by the avionics system in modern aircraft; the way in which these functions are mapped to the avionics components, starting from a presentation of the major avionics function, and the associated equipment and technologies: Human / Machine Interface, Flight Sensing (attitude, altitude, airspeed), Navigation (INS, SATNAV, Radio Nav), Flight Control and Guidance (autopilot), Radio Communication, Engine Management, Mission Sensors (radar, optronics), Health and Usage Monitoring. The main engineering challenges in Avionics System design, system integration, flight testing, safety justification and certification.

    View more

  • Module content:

    Comfort and indoor air quality. Psychometrics. System types and selection. Cooling and heating load calculations: conduction, radiation, convection, internal loads and thermal storage. Design of air handling unit, ducts, plant and reticulation. Control systems. Introduction to integrated system simulation.

    View more

  • Module content:

    Introduction to design and elements of computer aided design. Optimum design problem formulation. Optimum design concepts. Linear programming methods. Integer programming. Numerical methods for unconstrained and constrained optimum design. Model reduction. Interactive and practical design optimisation.

    View more

  • Module content:

    Historical development; Linear Elastic Fracture Mechanics (LEFM): Stress concentrations and singularities, stress intensity factor, stability of crack propagation; Elasto-plastic fracture mechanics: crack tip plasticity, small scale yielding, measurement of Kic, J-integral; Fatigue crack growth: Paris Law; life prediction; combined mode fracture, strain energy density methods.

    View more

  • Module content:

    The Efficient Solvers: Background, muligrid theory and detailed description of the algorithm. Finite Volume method: Understand the governing equations, general form of the transport equations, Gauss's theorem and the finite volume discretisation. Iterative solution algorithm: Pressure-velocity coupling, types of grids, unsteady flows, multiple phases. Finite Volume Discretisation: Diffusion term, convection term and source term for steady flows. Convection-diffusion problems: Boundary conditions, higher order discretisation, accuracy / stability. Solution Algorithm for Pressure-Velocity coupling: SIMPLE, SIMPLER, SIMPLEC and PISO. Laminar, transitional and turbulent flow: Background and theory. Turbulence modelling and examples: Definition of turbulence, turbulence modelling approaches, turbulence models ( zero-equation models, one equation, two equation, Reynolds Stress Model (RSM), Large Eddy Simulation, wall function approach), turbulence modelling guidelines. Recent CS developments: Current state of the art in turbulence modelling etc. Viscous boundary meshes: Background and objectives, internal and external flow, turbulence modelling considerations.

    View more

  • Module content:

    *This is a compulsory research module.

    This module allows a student to do research on a certain topic in mechanical or aeronautical engineering, as specified by a lecturer in the Department of Mechanical and Aeronautical Engineering, on an individual basis, under the supervision of that lecturer. The study should be seen as a precursor to the master’s degree research that may follow the honours degree. The total volume of work that is to be invested in this module by an average student must be 320 hours. The body of knowledge studied must be of an advanced nature, at the level of the other postgraduate modules offered by the Department. Normal requirements for assessment that include the use of an external examiner apply to this module also.

    View more

  • Module content:

    Exact solutions: potential flow, Couette flow, Poiseuille flow and combined Couette-Poiseuille flow, laminar boundary layers (similarity solutions for flat plate flow). Stability of laminar flows: introduction, linearised stability, transition to turbulence, approximate prediction of transition. Turbulent flow: Reynolds averaged equations, two-dimensional turbulent-boundary-layer equations, velocity profiles, turbulent flow in ducts, flat plate flow, turbulence modelling.

    View more

  • Module content:

    Spatial, modal and response models of structures, frequency response functions and the relationships between spatial, modal and response models for single degree of freedom systems and multi-degree of freedom systems, modal analysis, operational modal analysis, updating finite element models.

    View more

  • Module content:

    Fundamental concepts of thermodynamics, total flow exergy, restricted dead state and unconstrained equilibrium state, heat transfer, fluid flow and chemical irreversibilities, thermodynamic optimisation, irreversibility distribution ratio, lost exergy, application of entropy generation minimisation (EGM) technique to the fundamentals of power generation, solar power, wind power, and low temperature refrigeration.

    View more

  • Module content:

    This module contains a comprehensive study of all mechanical systems and processes of a fossil fuel power station. The module will include the analysis of steam cycles, combined cycle power generation, fuels and combustion, combustion mechanisms, combustion equipment and firing methods, the draught group, steam generators, steam turbines, condenser, feed water and circulating water systems, coal handling, ash handling, compressor plant, water treatment, the importance of HVAC, control and instrumentation, control philosophies and environmental considerations.

    View more

  • Module content:

    Tyres: Characteristics and tyre models used in simulation of ride comfort and handling. Road inputs: Classification of roads. Road profiles. Road roughness. Suspension components: springs, dampers. Controllable suspension systems. Modelling aspects. Human reaction: Human response to vibration. Driver models. Human reaction times. Vertical vehicle dynamics (ride comfort): Vibration levels in a vehicle. Simulation of ride comfort. Effect of seat characteristics on vibration levels. Test and evaluation procedures. Lateral vehicle dynamics (handling): Simulation of steady state and dynamic handling. Rollover propensity. Test procedures. Computer applications: Application of computer codes in the analysis of vehicle dynamics.

    View more

  • Module content:

    Solving systems of linear algebraic equations using direct and iterative methods from small to large scale systems. Numerical solutions of nonlinear systems of equations. Solving eigenvalue problems. Numerical approximation strategies. Numerical differentiation. Numerical Integration. Numerical solutions to initial-value problems for ordinary differential equations. Numerical solutions to boundary-value problems for ordinary differential equations. Numerical solutions to partial-differential equations.

    View more


The information published here is subject to change and may be amended after the publication of this information. The General Regulations (G Regulations) apply to all faculties of the University of Pretoria. It is expected of students to familiarise themselves well with these regulations as well as with the information contained in the General Rules section. Ignorance concerning these regulations and rules will not be accepted as an excuse for any transgression.

Copyright © University of Pretoria 2024. All rights reserved.

COVID-19 Corona Virus South African Resource Portal

To contact the University during the COVID-19 lockdown, please send an email to [email protected]

FAQ's Email Us Virtual Campus Share Cookie Preferences