

University of Pretoria Yearbook 2016

BSc Applied Mathematics (02133252)

Duration of study 3 years

Total credits 428

Admission requirements

- In order to register NSC/IEB/Cambridge candidates must comply with the minimum requirements for degree studies as well as the minimum requirements for the relevant study programme.
- Life Orientation is excluded in the calculation of the Admission Point Score (APS).
- Grade 11 results are used for the provisional admission of prospective students. Final admission is based on the Grade 12 results.

Minimum requirements for 2016								
Achievement level								
Afrikaans or English			Mathematics			ΔPS		
NSC/IEB	HIGCSE	AS-Level	A-Level	NSC/IEB	HIGCSE	AS-Level	A-Level	APS
5	3	С	С	6	2	В	В	32

Candidates who do not comply with the minimum admission requirements for BSc (Actuarial and Financial Mathematics) and who obtained an APS of 30 to 33 and a minimum of 6 for Mathematics may be considered for admission to BSc (Actuarial and Financial Mathematics) or another degree in Mathematical Sciences based on the results of the NBT.

Candidates who do not comply with the minimum admission requirements of the other study programmes may be considered for admission to BSc (Mathematics) or BSc (Mathematical Statistics) or for the BSc (Four-year Programme) based on the results of the NBT.

Other programme-specific information

Students may enrol for AIM 111 and AIM 121 instead of AIM 101 (the same content presented over 2 semesters).

Elective credits: A minimum of 54 elective credits at 100- to 300-level can be chosen from any WTW and WST modules. The remainder of the electives at 100- to 300-level can be chosen from any other modules in the list of modules of this faculty.

Electives are chosen as follows:

First year - 32 credits

Second year - 60 credits Third year - 54 credits

A student must pass all the minimum prescribed and elective module credits as set out at the end of each year within a programme as well as the total required credits to comply with the particular degree programme. Please refer to the curricula of the respective programmes. At least 144 credits must be obtained at 300-/400-level, or otherwise as indicated by curriculum. The minimum module credits needed to comply with degree requirements is set out at the end of each study programme. Subject to the programmes as indicated a maximum of 150 credits will be recognised at 100-level. A student may, in consultation with the Head of Department and subject to the permission by the Dean, select or replace prescribed module credits not indicated in BSc three-year study programmes to the equivalent of a maximum of 36 module credits.

It is important that the total number of prescribed module credits is completed during the course of the study programme. The Dean may, on the recommendation of the Head of Department, approve deviations in this regard. Subject to the programmes as indicated in the respective curricula, a student may not register for more than 75 module credits per semester at first-year level subject to permission by the Dean. A student may be permitted to register for up to 80 module credits in a the first semester during the first year provided that he or she obtained a final mark of no less than 70% for grade 12 Mathematics and achieved an APS of 34 or more in the NSC.

Students who are already in possession of a bachelor's degree, will not receive credit for modules of which the content overlap with modules from the degree that was already conferred. Credits will not be considered for more than half the credits passed previously for an uncompleted degree. No credits at the final-year or 300- and 400-level will be granted.

The Dean may, on the recommendation of the programme manager, approve deviations with regard to the composition of the study programme.

Please note: Where elective modules are not specified, these may be chosen from any modules appearing in the list of modules.

It remains the student's responsibility to acertain, prior to registration, whether they comply with the prerequisites of the modules they want to register for.

The prerequisites are listed in the Alphabetical list of modules.

Transitional measures

Transitional measures for Mathematics modules for 2016

- Students who would have registered for any of the degrees BSc in Environmental Sciences, Geography, Geoinformatics, BCom, BCom in Economics/Statistics or BScIT Information and Knowledge Systems prior to 2016, and not successfully completed WTW 114, WTW 126 or WTW 128 will be allowed to register for WTW 134, WTW 146 and WTW 148, respectively.
- Students who would have registered for BSc in Geology prior to 2016, and not successfully completed WTW 114, WTW 126 or WTW 128 will be allowed to register for WTW 158, WTW 164 or WTW 124 or WTW 148, respectively.
- Students who registered prior to 2016, and who failed both WTW 126 and WTW 128 will register for WTW 124

in 2016 if they wish to continue with mathematics at 200 level, or if WTW 126 and WTW 128 are required for their respective degree programmes.

- Students who do not qualify for WTW 146 and WTW 148 in terms of their degree programmes, and failed one of WTW 126 or WTW 128, will be allowed to register for the respective module in 2016, and will attend the relevant lectures and tutorials of WTW 124. They will write separate semester tests and exams, covering just the relevant material from WTW 124.
- Students who registered prior to 2016 and passed WTW 126 but not WTW 128, will be allowed to continue with WTW 211 and COS 344 in 2016.
- Students who registered prior to 2016 and passed WTW 128 but not WTW 126, will be allowed to continue with the modules WTW 220, IAS 211 and GLY 265 in 2016, if they also meet the additional entry requirements.
- Students who registered prior to 2016, and who failed both WTW 161 and WTW 168 will register for WTW 164 in 2016.
- Students who failed one of WTW 161 or WTW 168, will be allowed to register for the respective module in 2016, and will attend the relevant lectures and tutorials of WTW 164. They will write separate semester tests and exams, covering just the relevant material from WTW 164.

Promotion to next study year

A student will be promoted to the following year of study if he or she passed 100 credits of the prescribed credits for a year of study, unless the Dean on the recommendation of the head of department decides otherwise. A student who does not comply with the requirements for promotion to the following year of study, retains the credit for the modules already passed and may be admitted by the Dean, on recommendation of the head of department, to modules of the following year of study to a maximum of 48 credits, provided that it will fit in with both the lecture and examination timetable.

General promotion requirements in the faculty

All students whose academic progress is not acceptable can be suspended from further studies.

- A student who is excluded from further studies in terms of the stipulations of the abovementioned regulations, will be notified in writing by the Dean or Admissions Committee at the end of the relevant semester.
- A student who has been excluded from further studies may apply in writing to the Admissions Committee of the Faculty of Natural and Agricultural Sciences for re-admission.
- Should the student be re-admitted by the Admissions Committee, strict conditions will be set which the student must comply with in order to proceed with his/her studies.
- Should the student not be re-admitted to further studies by the Admissions Committee, he/she will be informed in writing.
- Students who are not re-admitted by the Admissions Committee have the right to appeal to the Senior Appeals Committee.
- Any decision taken by the Senior Appeals Committee is final.

Pass with distinction

A student obtains his or her degree with distinction if all prescribed modules at 300-level (or higher) are passed in one academic year with a weighted average of at least 75%, and obtain at least a subminimum of 65% in each of the relevant modules.

Curriculum: Year 1

Minimum credits: 140

Fundamental modules

Academic information management 111 (AIM 111)

Module credits 4.00

Faculty of Engineering, Built Environment and Information Technology

Faculty of Education

Faculty of Economic and Management Sciences

Service modules Faculty of Humanities

Faculty of Law

Faculty of Health Sciences

Faculty of Natural and Agricultural Sciences

Faculty of Theology

Prerequisites No prerequisites.

Contact time MAMELODI, 2 lectures per week

Language of tuition Both Afr and Eng

Academic organisation Information Science

Period of presentation Semester 1

Module content

Find, evaluate, process, manage and present information resources for academic purposes using appropriate technology.

Academic information management 121 (AIM 121)

Module credits 4.00

Faculty of Engineering, Built Environment and Information Technology

Faculty of Education

Faculty of Economic and Management Sciences

Faculty of Humanities

Service modules Faculty of Law

Faculty of Health Sciences

Faculty of Natural and Agricultural Sciences

Faculty of Theology

Faculty of Veterinary Science

Prerequisites No prerequisites.

Contact time 2 lectures per week, MAMELODI

Language of tuition Both Afr and Eng

Academic organisation Information Science

Period of presentation Semester 2

Apply effective search strategies in different technological environments. Demonstrate the ethical and fair use of information resources. Integrate 21st-century communications into the management of academic information.

Language and study skills 110 (LST 110)

Module credits 6.00

Service modules Faculty of Natural and Agricultural Sciences

Faculty of Veterinary Science

Prerequisites No prerequisites.

Contact time 2 lectures per week

Language of tuition English

Academic organisation Unit for Academic Literacy

Period of presentation Semester 1

Module content

The module aims to equip students with the ability to cope with the reading and writing demands of scientific disciplines.

Academic orientation 102 (UPO 102)

Module credits 0.00

Language of tuition Double Medium

Academic organisation Natural + Agric Sciences Dean

Period of presentation Year

Academic information management 102 (AIM 102)

Module credits 6.00

Faculty of Education

Faculty of Economic and Management Sciences

Faculty of Humanities

Service modules Faculty of Law

Faculty of Health Sciences

Faculty of Natural and Agricultural Sciences

Faculty of Theology

Faculty of Veterinary Science

Contact time 2 lectures per week

Language of tuition Both Afr and Eng

Academic organisation Information Science

Period of presentation Semester 2

Find, evaluate, process, manage and present information resources for academic purposes using appropriate technology. Apply effective search strategies in different technological environments. Demonstrate the ethical and fair use of information resources. Integrate 21st-century communications into the management of academic information.

Core modules

Mathematical statistics 111 (WST 111)

Module credits	16.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Economic and Management Sciences Faculty of Natural and Agricultural Sciences
Prerequisites	At least 5 (60-69%) in Mathematics in the Grade 12 examination
Contact time	4 lectures per week, 1 practical per week
Language of tuition	Both Afr and Eng
Academic organisation	Statistics
Period of presentation	Semester 1

Module content

Characterisation of a set of measurements: Graphical and numerical methods. Random sampling. Probability theory. Discrete and continuous random variables. Probability distributions. Generating functions and moments.

Mathematical statistics 121 (WST 121)

Module credits	16.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Economic and Management Sciences Faculty of Natural and Agricultural Sciences
Prerequisites	WST 111 GS or WST 133, 143 and 153
Contact time	1 practical per week, 4 lectures per week
Language of tuition	Both Afr and Eng
Academic organisation	Statistics
Period of presentation	Semester 2

Module content

Sampling distributions and the central limit theorem. Statistical inference: Point and interval estimation. Hypothesis testing with applications in one and two-sample cases. Introductory methods for: Linear regression and correlation, analysis of variance, categorical data analysis and non-parametric statistics. Identification, use, evaluation and interpretation of statistical computer packages and statistical techniques.

Calculus 114 (WTW 114)

Module credits	16.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Education Faculty of Economic and Management Sciences Faculty of Humanities
Prerequisites	Refer to Regulation 1.2. Mathematics 60% Grade 12.
Contact time	1 tutorial per week, 4 lectures per week
Language of tuition	Both Afr and Eng
Academic organisation	Mathematics and Applied Maths
Period of presentation	Semester 1

Functions, limits and continuity. Differential calculus of single variable functions, rate of change, graph sketching, applications. The mean value theorem, the rule of L'Hospital. Definite and indefinite integrals, evaluating definite integrals using anti-derivatives, the substitution rule.

Discrete structures 115 (WTW 115)

Module credits	8.00		
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Education Faculty of Economic and Management Sciences		
Prerequisites	Refer to Regulation 1.2: A candidate must have passed Mathematics with at least 50% in the Grade 12 examination		
Contact time	1 tutorial per week, 2 lectures per week		
Language of tuition	Both Afr and Eng		
Academic organisation	Mathematics and Applied Maths		
Period of presentation	Semester 1		
Mandada and bank			

Module content

Propositional logic: truth tables, logical equivalence, implication, arguments. Mathematical induction and well-ordering principle. Introduction to set theory. Counting techniques: elementary probability, multiplication and addition rules, permutations and combinations, binomial theorem, inclusion-exclusion rule.

Numerical analysis 123 (WTW 123)

Module credits	8.00
Service modules	Faculty of Engineering, Built Environment and Information Technology
Prerequisites	WTW 114 GS
Contact time	1 tutorial per week, 2 lectures per week

^{*}This module serves as preparation for students majoring in Mathematics (including all students who intend to enrol for WTW 218 and WTW 220). Students will not be credited for more than one of the following modules for their degree: WTW 114, WTW 158, WTW 134, WTW 165.

Language of tuition Both Afr and Eng

Academic organisation Mathematics and Applied Maths

Period of presentation Semester 2

Module content

Non-linear equations, numerical integration, initial value problems for differential equations, systems of linear equations. Algorithms for elementary numerical techniques are derived and implemented in computer programmes. Error estimates and convergence results are treated.

Mathematical modelling 152 (WTW 152)

Module credits 8.00

Service modules Faculty of Engineering, Built Environment and Information Technology

Prerequisites Refer to Regulation 1.2

Contact time 1 tutorial per week, 2 lectures per week

Language of tuition English

Academic organisation Mathematics and Applied Maths

Period of presentation Semester 1

Module content

Introduction to the modelling of dynamical processes using difference equations. Curve fitting. Introduction to linear programming. Matlab programming. Applications to real-life situations in, among others, finance, economics and ecology.

Dynamical processes 162 (WTW 162)

Module credits 8.00

Prerequisites WTW 114 GS

Contact time 2 lectures per week, 1 tutorial per week

Language of tuition English

Academic organisation Mathematics and Applied Maths

Period of presentation Semester 2

Module content

*Students will not be credited for more than one of the following modules for their degree: WTW 162 and WTW 264.

Introduction to the modelling of dynamical processes using elementary differential equations. Solution methods for first order differential equations and analysis of properties of solutions (graphs). Applications to real life situations.

Mathematics 124 (WTW 124)

Module credits 16.00

Prerequisites WTW 114

Contact time 4 lectures per week, 1 tutorial per week

Language of tuition Both Afr and Eng

Academic organisation Mathematics and Applied Maths

Period of presentation Semester 2

Module content

*Students will not be credited for more than one of the following modules for their degree: WTW 124, WTW 146, WTW 148 and WTW 164. This module serves as preparation for students majoring in Mathematics (including all students who intend to enrol for WTW 218, WTW 211 and WTW 220).

The vector space Rn, vector algebra with applications to lines and planes, matrix algebra, systems of linear equations, determinants. Complex numbers and factorisation of polynomials. Integration techniques and applications of integration. The formal definition of a limit. The fundamental theorem of Calculus and applications. Vector functions, polar curves and quadratic curves.

Elective modules

Economics 113 (EKN 113)

Module credits 15.00

Service modules Faculty of Natural and Agricultural Sciences

Prerequisites Reg. 1.2 (e)

Contact time 3 lectures per week

Language of tuition Both Afr and Eng

Academic organisation Economics

Period of presentation Semester 1

Module content

Introduction to economics and principles of microeconomics

The scope of economics; the basic theory of demand and supply; price, income and cross elasticity of demand; consumer utility, the utility function and case studies in terms of the utility function; the theory of the firm in the short and long run; market structures, namely the perfect market, monopoly, oligopoly and monopolistic competition; public sector finances; microeconomics versus macroeconomics and economic statistics.

Economics 123 (EKN 123)

Service modules Faculty of Natural and Agricultural Sciences

Prerequisites Reg. 1.2 (e); EKN 113 GS

Contact time 3 lectures per week

Language of tuition Both Afr and Eng

Academic organisation Economics

Period of presentation Semester 2

Module content

National income and principles of macroeconomics

The mechanics of national income accounts, the Keynesian macroeconomic model, the money market, demand for money and money supply, money and credit creation and the role of the monetary authorities. The IS-LM model of macroeconomic equilibrium and monetary and fiscal policy applications. The aggregate demand and supply models with the debate between the classical school, the monetarists and the Keynesian school. The problems of inflation and unemployment. Macroeconomic issues, namely macroeconomic policy, international trade, the balance of payments and economic growth.

Financial management 110 (FBS 110)

Module credits	10.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Natural and Agricultural Sciences
Prerequisites	No prerequisites.
Contact time	3 lectures per week
Language of tuition	English

Academic organisation Financial Management

Period of presentation Semester 1

Module content

*Only for BSc (Mathematical Statistics. Construction Management, Real Estate and Quantity Surveying) and BEng (Industrial Engineering) students.

Purpose and functioning of financial management. Basic financial management concepts. Accounting concepts and the use of the basic accounting equation to describe the financial position of a business. Recording of financial transactions. Relationship between cash and accounting profit. Internal control and the management of cash. Debtors and short-term investments. Stock valuation models. Depreciation. Financial statements of a business. Distinguishing characteristics of the different forms of businesses. Overview of financial markets and the role of financial institutions. Risk and return characteristics of various financial instruments. Issuing ordinary shares and debt instruments.

Financial management 120 (FBS 120)

Module credits	10.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Natural and Agricultural Sciences
Prerequisites	No prerequisites.
Contact time	3 lectures per week
Language of tuition	English
Academic organisation	Financial Management
Period of presentation	Semester 2

*Only for BSc (Mathematical Statistics, Construction Management, Real Estate and Quantity Surveying) students. Analysis of financial statements. Budgeting and budgetary control. Tax principles and normal income tax for individuals. Time value of money and its use for financial and investment decisions. Calculating the cost of capital and the financing of a business to maintain the optimal capital structure. Capital investment decisions and a study of the financial selection criteria in the evaluation of capital investment projects. The dividend decision and an overview of financial risk management.

Aspects of human geography 156 (GGY 156)

Module credits	8.00	
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Education Faculty of Humanities Faculty of Health Sciences	
Prerequisites	No prerequisites.	
Contact time	1 tutorial per week, 3 lectures per week	
Language of tuition	English	
Academic organisation	Geography, Geoinf + Meteor	
Period of presentation	Quarter 2	

Module content

This module begins by fostering an understanding of human geography. Then follows with the political ordering of space; cultural diversity as well as ethnic geography globally and locally; population geography of the world and South Africa: and four economic levels of development. The purpose is to place South Africa in a world setting and to understand the future of the country.

Southern African geomorphology 166 (GGY 166)

Module credits	8.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Education Faculty of Humanities Faculty of Health Sciences
Prerequisites	No prerequisites.
Contact time	4 lectures per week
Language of tuition	English
Academic organisation	Geography, Geoinf + Meteor
Period of presentation	Quarter 3

Investigating southern African landscapes and placing them in a theoretical and global context. The geomorphological evolution of southern Africa. Introduction to the concepts of Geomorphology and its relationships with other physical sciences (e.g. meteorology, climatology, geology, hydrology and biology). The processes and controls of landform and landscape evolution. Tutorial exercises cover basic techniques of geomorphological analysis, and topical issues in Geomorphology.

Cartography 110 (GMC 110)

Module credits	12.00
Service modules	Faculty of Engineering, Built Environment and Information Technology
Prerequisites	No prerequisites.
Contact time	3 lectures per week, 1 practical per week
Language of tuition	Double Medium
Academic organisation	Geography, Geoinf + Meteor
Period of presentation	Semester 1

Module content

History, present and future of cartography. Introductory geodesy: shape of the earth, graticule and grids, datum definition, elementary map projection theory, spherical calculations. Representation of geographical data on maps: Cartographic design, cartographic abstraction, levels of measurement and visual variables. Semiotics for cartography: signs, sign systems, map semantics and syntactics, explicit and implicit meaning of maps (map pragmatics).

Statistics 110 (STK 110)

	•
Module credits	13.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Education Faculty of Humanities Faculty of Natural and Agricultural Sciences
Prerequisites	At least 5 (60-69%) in Mathematics in the Grade 12 examination. Candidates who do not qualify for STK 110 must register for STK 113 and STK 123
Contact time	1 tutorial per week, 1 practical per week, 3 lectures per week
Language of tuition	Both Afr and Eng
Academic organisation	Statistics
Period of presentation	Semester 1

Descriptive statistics:

Sampling and the collection of data; frequency distributions and graphical representations. Descriptive measures of location and dispersion.

Probability and inference:

Introductory probability theory and theoretical distributions. Sampling distributions. Estimation theory and hypothesis testing of sampling averages and proportions (one and two-sample cases). Identification, use, evaluation and interpretation of statistical computer packages and statistical techniques.

Statistics 120 (STK 120)

Module credits	13.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Education Faculty of Humanities Faculty of Natural and Agricultural Sciences
Prerequisites	STK 110 GS or both STK 113 GS and STK 123 GS or both WST 133 and WST 143 or STK 133 and STK 143 or STK 133 and STK 143
Contact time	1 practical per week, 3 lectures per week, 1 tutorial per week
Language of tuition	Both Afr and Eng
Academic organisation	Statistics
Period of presentation	Semester 2

Module content

Multivariate statistics:

Analysis of variance, categorical data analysis, distribution-free methods, curve fitting, regression and correlation, the analysis of time series and indices.

Statistical and economic applications of quantitative techniques:

Systems of linear equations: drafting, matrices, solving and application. Optimisation; linear functions (two and more independent variables), non-linear functions (one and two independent variables). Marginal and total functions. Stochastic and deterministic variables in statistical and economic context: producers' and consumers' surplus, distribution functions, probability distributions, probability density functions. Identification, use, evaluation, interpretation of statistical computer packages and statistical techniques.

This module is also presented as an anti-semester bilingual module.

Climate and weather of Southern Africa 164 (WKD 164)

Module credits	8.00
Service modules	Faculty of Education Faculty of Humanities
Prerequisites	No prerequisites.
Contact time	4 lectures per week
Language of tuition	English
Academic organisation	Geography, Geoinf + Meteor

Period of presentation Quarter 4

Module content

An introduction to the climate and general seasonal climatic circulation patterns of Southern Africa. Basic weather types and weather processes within the Southern African context. Interpretation of synoptic maps and synoptic station reports. Impacts of climate change and extreme climate events on society.

*BSc (Geography) and BSc (Environmental Sciences) students may register for WKD 155. Students are not allowed to earn credits for both WKD 155 and WKD 164.

Geoinformatics 120 (GIS 120)

Module credits	12.00
Prerequisites	GMC110

Language of tuition Both Afr and Eng

Academic organisation Geography, Geoinf + Meteor

Period of presentation Semester 2

Module content

The importance of geographical data and an overview of geoinformatics. Cartographic analysis to geoinformatics – a historical perspective. Application fields of geoinformatics. Introduction to geographical information systems (GIS): Components, structure and functionality, GIS visualisation and cartography. Data sources and evaluation: fitness for purpose, factors affecting suitability, quality and uncertainty, sources of analogue and digital data. Map projection choice. Analysis of GIS output.

Introduction to environmental sciences 101 (ENV 101)

Module credits	8.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Education Faculty of Humanities
Prerequisites	No prerequisites.
Contact time	3 lectures per week
Language of tuition	English
Academic organisation	Geography, Geoinf + Meteor
Period of presentation	Ouarter 1

Module content

Introducing the basic concepts and interrelationships required to understand the complexity of natural environmental problems, physical and human environment, human induced environmental problems, the ways in which the natural environment affects human society and biodiversity, an introduction to major environmental issues in Southern Africa and sustainable development in the context of environmental issues.

First course in physics 114 (PHY 114)

Module credits 16.00

Service modules Faculty of Engineering, Built Environment and Information Technology

Faculty of Education

Prerequisites

Refer to Regulation 1.2: A candidate must have passed Mathematics and Physical

Science with at least 60% in the Grade 12 examination

Contact time 4 lectures per week, 1 discussion class per week, 1 practical per week

Language of tuition Both Afr and Eng

Academic organisation Physics

Period of presentation Semester 1

Module content

SI-units. Significant figures. Waves: intensity, superposition, interference, standing waves, resonance, beats, Doppler. Geometrical optics: Reflection, refraction, mirrors, thin lenses, instruments. Physical optics: Young-interference, coherence, diffraction, polarisation. Hydrostatics and dynamics: density, pressure, Archimedes' principle, continuity, Bernoulli. Heat: temperature, specific heat, expansion, heat transfer. Vectors. Kinematics of a point: Relative, projectile, and circular motion. Dynamics: Newton's laws, friction. Work: point masses, gasses (ideal gas law), gravitation, spring, power. Kinetic energy: Conservative forces, gravitation, spring. Conservation of energy. Conservation of momentum. Impulse and collisions. System of particles: Centre of mass, Newton's laws. Rotation: torque, conservation of angular momentum, equilibrium, centre of gravity.

First course in physics 124 (PHY 124)

Module credits 16.00

Service modules Faculty of Engineering, Built Environment and Information Technology

Faculty of Education

Prerequisites WTW 114 GS and PHY 114 GS

Contact time 4 lectures per week, 1 discussion class per week, 1 practical per week

Language of tuitionBoth Afr and Eng

Academic organisation Physics

Period of presentation Semester 2

Module content

Simple harmonic motion and pendulums. Coulomb's law. Electric field: dipoles, Gauss' law. Electric potential. Capacitance. Electric currents: resistance, resistivity, Ohm's law, energy, power, emf, RC-circuits. Magnetic Field: Hall-effect, Bio-Savart. Faraday's and Lenz's laws. Oscillations: LR-circuits. Alternating current: RLC-circuits, power, transformers. Introductory concepts to modern physics. Nuclear physics: Radioactivity.

Atmospheric structure and processes 155 (WKD 155)

Module credits 16.00

Prerequisites At least 50% for mathematics in grade 12.

Contact time 1 practical per week, 4 lectures per week

Language of tuition English

Academic organisation Geography, Geoinf + Meteor

Period of presentation Semester 1

Module content

*Students are not allowed to earn credits for WKD 155 and WKD 164

Introduction to weather and climate. Climate of South Africa. Urban and rural climate. Meteorological instruments. Motion of the earth. Atmospheric mass and pressure. Energy and heat budget. Moisture in the atmosphere. Cloud development. Climate change. ENSO. Electromagnetic spectrum and remote sensing in meteorology. Synoptic weather systems of South Africa.

Curriculum: Year 2

Minimum credits: 144

Core modules

Linear algebra 211 (WTW 211)

Module credits 12.00

Faculty of Engineering, Built Environment and Information Technology

Service modules Faculty of Education

Faculty of Economic and Management Sciences

Prerequisites WTW 124

Contact time 1 tutorial per week, 2 lectures per week

Language of tuition Both Afr and Eng

Academic organisation Mathematics and Applied Maths

Period of presentation Semester 1

Module content

This is an introduction to linear algebra on Rn. Matrices and linear equations, linear combinations and spans, linear independence, subspaces, basis and dimension, eigenvalues, eigenvectors, similarity and diagonalisation of matrices, linear transformations.

Calculus 218 (WTW 218)

Module credits 12.00

Faculty of Engineering, Built Environment and Information Technology

Service modules Faculty of Education

Faculty of Economic and Management Sciences

Prerequisites WTW 114 and WTW 124

Contact time 1 tutorial per week, 2 lectures per week

Language of tuition Both Afr and Eng

Academic organisation Mathematics and Applied Maths

Period of presentation Semester 1

Module content

Calculus of multivariable functions, directional derivatives. Extrema and Lagrange multipliers. Multiple integrals, polar, cylindrical and spherical coordinates.

Analysis 220 (WTW 220)

Module credits 12.00

Service modules Faculty of Education

Faculty of Economic and Management Sciences

Prerequisites WTW 114 and WTW 124

Contact time 1 tutorial per week, 2 lectures per week

Language of tuition Both Afr and Eng

Academic organisation Mathematics and Applied Maths

Period of presentation Semester 2

Module content

Properties of real numbers. Analysis of sequences and series of real numbers. Power series and theorems of convergence. The Bolzano-Weierstrass theorem. The intermediate value theorem and analysis of real-valued functions on an interval. The Riemann integral: Existence and properties of the interval.

Linear algebra 221 (WTW 221)

Module credits 12.00

Service modules Faculty of Education

Faculty of Economic and Management Sciences

Prerequisites WTW 211

Contact time 1 tutorial per week, 2 lectures per week

Language of tuition Both Afr and Eng

Academic organisation Mathematics and Applied Maths

Period of presentation Semester 2

Module content

Abstract vector spaces, change of basis, matrix representation of linear transformations, orthogonality, diagonalisability of symmetric matrices, some applications.

Discrete structures 285 (WTW 285)

Module credits 12.00

Service modules Faculty of Engineering, Built Environment and Information Technology

Faculty of Education

Prerequisites WTW 115

Contact time 1 tutorial per week, 2 lectures per week

Language of tuition English

Academic organisation Mathematics and Applied Maths

Period of presentation Semester 2

Module content

Setting up and solving recurrence relations. Equivalence and partial order relations. Graphs: paths, cycles, trees, isomorphism. Graph algorithms: Kruskal, Prim, Fleury. Finite state automata.

Differential equations 286 (WTW 286)

Module credits 12.00

Service modules Faculty of Economic and Management Sciences

Prerequisites WTW 114, WTW 124 and WTW 162

Contact time 1 tutorial per week, 2 lectures per week

Language of tuition English

Academic organisation Mathematics and Applied Maths

Period of presentation Semester 1

Module content

Vector analysis 248 (WTW 248)

Module credits 12.00

Service modules Faculty of Education

Prerequisites WTW 218

Contact time 1 discussion class per week, 2 lectures per week

Language of tuition Double Medium

Academic organisation Mathematics and Applied Maths

Period of presentation Semester 2

Module content

Vectors and geometry. Calculus of vector functions with applications to differential geometry, kinematics and dynamics. Vector analysis, including vector fields, line integrals of scalar and vector fields, conservative vector fields, surfaces and surface integrals, the Theorems of Green, Gauss and Stokes with applications.

Elective modules

Economics 214 (EKN 214)

Module credits 16.00

Faculty of Engineering, Built Environment and Information Technology

Service modules Faculty of Education

Faculty of Humanities

Faculty of Natural and Agricultural Sciences

Prerequisites EKN 110 GS and EKN 120 or EKN 113 GS and EKN 123 and STK 110 GS and STK

120 GS

Contact time 3 lectures per week

^{*}Students will not be credited for more than one of the modules for their degree: WTW 264, WTW 286 Theory and solution methods for ordinary differential equations and initial value problems: separable and linear first-order equations, linear equations of higher order, systems of linear equations. Application to mathematical models. Numerical methods applied to nonlinear systems. Qualitative analysis of linear systems.

Language of tuition Both Afr and Eng

Academic organisation Economics

Period of presentation Semester 1

Module content

Macroeconomics

From Wall and Bay Street to Diagonal Street: a thorough understanding of the mechanisms and theories explaining the workings of the economy is essential. Macroeconomic insight is provided on the real market, the money market, two market equilibrium, monetarism, growth theory, cyclical analysis, inflation, Keynesian general equilibrium analysis and fiscal and monetary policy issues.

Economics 224 (EKN 224)

Module	credits	16.00

Faculty of Education
Service modules
Faculty of Humanities

Faculty of Natural and Agricultural Sciences

Prerequisites EKN 110 GS and EKN 120 or EKN 113 GS and EKN 123; and STK 110 GS and 120

GS

Contact time 3 lectures per week

Language of tuition Both Afr and Eng

Academic organisation Economics

Period of presentation Semester 1

Module content

Microeconomics

Microeconomic insight is provided into: consumer and producer theory, general microeconomic equilibrium, Pareto-optimality and optimality of the price mechanism, welfare economics, market forms and the production structure of South Africa. Statistic and econometric analysis of microeconomic issues.

Process geomorphology 252 (GGY 252)

Module credits	12.00
Service modules	Faculty of Education Faculty of Humanities
Prerequisites	GGY 166 or GLY 155
Contact time	4 lectures per week, 2 practicals per week
Language of tuition	English
Academic organisation	Geography, Geoinf + Meteor
Period of presentation	Quarter 2

Physical processes that influence the earth's surface and management. Specific processes and their interaction in themes such as weathering; soil erosion; slope, mass movement and fluvial processes. Practical laboratory exercises are based on the themes covered in the module theory component.

Geomorphology of the built environment 265 (GGY 265)

Module credits 12.00

Service modules Faculty of Engineering, Built Environment and Information Technology

Prerequisites No prerequisites.

Contact time 4 lectures per week

Language of tuition Double Medium

Academic organisation Geography, Geoinf + Meteor

Period of presentation Quarter 3

Module content

The theory component covers geomorphological aspects of the built environment including landscape identification; weathering or deterioration of natural stone and application to design and preservation of buildings and monuments; slope hydrology and stability conditions; soil erosion processes and construction impacts; drainage modification in urban areas; wetland identification, human impacts and rehabilitation; recreational impacts and management. In addition to the theory a field-based project is undertaken.

Geographic data analysis 220 (GIS 220)

Module credits 12.00

Service modules Faculty of Engineering, Built Environment and Information Technology

Prerequisites No prerequisites.

Contact time 2 lectures per week, 1 practical per week

Language of tuition English

Academic organisation Geography, Geoinf + Meteor

Period of presentation Semester 2

Module content

The nature of geographical data and measurement. Probability, probability distributions and densities, expected values and variances, Central Limit theorem. Sampling techniques. Exploratory data analysis, descriptive statistics, statistical estimation, hypothesis testing, correlation analysis and regression analysis.

Geographic information systems introduction 221 (GIS 221)

Module credits 12.00

Prerequisites Prohibited combination GGY 283

Contact time 1 practical per week, 2 lectures per week

^{*}This module is for Architecture and Landscape Architecture students only.

Language of tuition English

Academic organisation Geography, Geoinf + Meteor

Period of presentation Semester 2

Module content

*The content of this module is the same as GGY 283 and students are not allowed to earn credits for both GGY 283 and GIS 221.

Introduction to Geographic Information Systems (GIS), theoretical concepts and applications of GIS. The focus will be on the GIS process of data input, data analysis, data output and associated technologies.

Actuarial mathematics 211 (IAS 211)

Module credits 12.00

Service modules Faculty of Economic and Management Sciences

Prerequisites WTW 114, WTW 128, WTW 126, WTW 123, WST 111, WST 121

Contact time 1 practical per week, 3 lectures per week

Language of tuition Both Afr and Eng

Academic organisation Actuarial Science

Period of presentation Semester 1

Module content

Accumulation functions, interest, time value of money, compounding periods, cash flow models, equations of value, annuities certain, continuous time application, life tables, derivation of contingent probabilities from life tables, contingent payments, loan schedules, performance measurement, valuation of fixed interest securities...

Actuarial mathematics 221 (IAS 221)

Module credits 12.00

Prerequisites IAS 211

Contact time 3 lectures per week, 1 practical per week

Language of tuition Both Afr and Eng

Academic organisation Actuarial Science

Period of presentation Semester 2

Module content

Fundamentals of survival models, simple laws of mortality, expectation of life, elementary survival contracts, commutation functions, select and ultimate life tables, life annuities, accumulation and discounting, life insurance, net and gross premiums, reserves, statistical considerations.

Financial mathematics 282 (IAS 282)

Module credits 12.00

Service modules Faculty of Economic and Management Sciences

IAS 211 60% **Prerequisites**

Contact time 3 lectures per week, 1 practical per week

Language of tuition English

Academic organisation Actuarial Science

Semester 2 Period of presentation

Module content

Generalised cash-flow model. The time value of money. Interest rates. Discounting and accumulating. Compound interest functions. Equations of value. Loan schedules. Project appraisal. Investments. Simple compound interest problems. The "No Arbitrage" assumption and forward contracts. Term structure of interest rates. Stochastic interest rate models.

Informatics 214 (INF 214)

Module credits 14.00

Faculty of Engineering, Built Environment and Information Technology Service modules

Faculty of Education

Faculty of Natural and Agricultural Sciences

Prerequisites AIM 101 or AIM 111 and AIM 121

Contact time 2 practicals per week, 2 lectures per week

Language of tuition Both Afr and Eng

Informatics Academic organisation

Semester 1 Period of presentation

Module content

Database design: the relational model, structured query language (SQL), entity relationship modelling, normalisation, database development life cycle; practical introduction to database design. Databases: advanced entity relationship modelling and normalisation, object-oriented databases, database development life cycle, advanced practical database design.

General physics 263 (PHY 263)

Module credits 24.00

Service modules Faculty of Education

PHY 255 GS and WTW 218 GS and WTW 220# and WTW 248# **Prerequisites**

Contact time 1 practical per week, 4 lectures per week, 2 discussion classes per week

Language of tuition **English**

Academic organisation **Physics**

Period of presentation Semester 2

Classical mechanics (28 lectures)

Fundamental concepts, energy and angular momentum, calculus of variations and Lagrangian mechanics, conservative central forces and two body problems, scattering, mechanics in rotating reference frames, many body systems.

Physical Optics (14 lectures)

Maxwell's equations, wave equation and plane wave solution, coherence, interference,

diffraction, polarisation.

Physics of Materials (14 lectures)

Classification of materials. Atomic bonding. Crystallography. Defects. Material strength.

Phase diagram's, Ceramics. Polymers. Composites. Fracture. Electrical and

magnetic properties. Semiconductors. Smart materials Nanotechnology.

Experiments (14 sessions)

Physical meteorology 261 (WKD 261)

Module credits	12.00
Prerequisites	WTW 114
Contact time	4 lectures per week, 1 tutorial per week
Language of tuition	English
Academic organisation	Geography, Geoinf + Meteor

Period of presentation Quarter 1

Module content

Conservative forces and conservation laws. Basic thermodynamic laws for dry and humid air. The equation of state. Adiabatic processes and temperature lapse rates. The Clausuis-Claperon equation. Calculation of the wet adiabat.

Mathematical statistics 211 (WST 211)

Module credits	24.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Economic and Management Sciences Faculty of Natural and Agricultural Sciences
Prerequisites	WST 111, WST 121, WTW 114 GS and WTW 124 GS
Contact time	2 practicals per week, 4 lectures per week
Language of tuition	Double Medium
Academic organisation	Statistics
Period of presentation	Semester 1

Set theory. Probability measure functions. Random variables. Distribution functions. Probability mass functions. Density functions. Expected values. Moments. Moment generating functions. Special probability distributions: Bernoulli, binomial, hypergeometric, geometric, negative binomial, Poisson, Poisson process, discrete uniform, uniform, gamma, exponential, Weibull, Pareto, normal. Joint distributions: Multinomial, extended hypergeometric, joint continuous distributions. Marginal distributions. Independent random variables. Conditional distributions. Covariance, correlation. Conditional expected values. Transformation of random variables: Convolution formula. Order statistics. Stochastic convergence: Convergence in distribution. Central limit theorem. Practical applications. Practical statistical modelling and analysis using statistical computer packages and the interpretation of the output.

Mathematical statistics 221 (WST 221)

Module credits	24.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Natural and Agricultural Sciences
Prerequisites	WST 211 GS
Contact time	2 practicals per week, 4 lectures per week
Language of tuition	Double Medium
Academic organisation	Statistics
Period of presentation	Semester 2

Module content

Stochastic convergence: Asymptotic normal distributions, convergence in probability. Statistics and sampling distributions: Chi-squared distribution. Distribution of the sample mean and sample variance for random samples from a normal population. T-distribution. F-distribution. Beta distribution. Point estimation: Method of moments. Maximum likelihood estimation. Unbiased estimators. Uniform minimum variance unbiased estimators. Cramer-Rao inequality. Efficiency. Consistency. Asymptotic relative efficiency.

Bayes estimators. Sufficient statistics. Completeness. The exponential class. Confidence intervals. Test of statistical hypotheses. Reliability and survival distributions. Practical applications. Practical statistical modelling and analysis using statistical computer packages and the interpretation of the output.

Waves, thermodynamics and modern physics 255 (PHY 255)

Module credits	24.00
Service modules	Faculty of Education
Prerequisites	[PHY114 and PHY124] or [PHY171] or [PHY143 and PHY153 and PHY163] and [WTW211#] and [WTW218#]
Contact time	4 lectures per week, 1 practical per week, 2 discussion classes per week
Language of tuition	English
Academic organisation	Physics
Period of presentation	Semester 1

Vibrating systems and waves (14 lectures)

Simple harmonic motion (SHM). Superposition (different frequencies, equal frequencies). Perpendicular vibrations (Lissajous figures). Damped SHM. Forced oscillations. Resonance. Q-value. Transverse wave motion. Plane wave solution using method of separation of variables. Reflection and transmission at a boundary. Normal and eigenmodes. Wave packets. Group velocity.

Modern physics (30 lectures)

Special relativity: Galilean and Lorentz transformations. Postulates. Momentum and energy. 4 vectors and tensors. General relativity. Quantum physics. Failure of classical physics. Bohr model. Particle-wave duality. Schrödinger equation. Piece-wise constant potentials. Tunneling. X-rays. Laser. Nuclear physics: Fission. Fusion. Radioactivity.

Heat and thermodynamics (12 lectures)

Heat. First Law. Kinetic theory of gases. Mean free path. Ideal, Clausius, Van der Waals and virial gases. Entropy. Second Law. Engines and refrigerators. Third Law. Thermodynamic potentials: Enthalpy Helmholtz and Gibbs free energies, Chemical potential. Legendre transformations (Maxwell relations). Phase equilibrium. Gibbs phase rule.

Modelling and simulation (7 practical sessions)

Introduction to programming in a high level system: Concept of an algorithm and the basic logic of a computer programme. Symbolic manipulations, graphics, numerical computations. Applications: Selected illustrative examples.

Error Analysis (7 practical sessions)

Experimental uncertainties. Propagation of uncertainties. Statistical analysis of random uncertainties. Normal distribution. Rejection of data. Least-squares fitting. Covariance and correlation.

City structure, environment and society 266 (GGY 266)

Module credits	24.00
Service modules	Faculty of Education Faculty of Humanities
Prerequisites	No prerequisites.
Contact time	1 practical per week, 3 lectures per week
Language of tuition	English
Academic organisation	Geography, Geoinf + Meteor
Period of presentation	Semester 2

Module content

An urbanising world. Urban structure and land use. Urban processes. The urban environment. Social structure and change in cities. Living in the city. Economy, society and politics in the city. Third-world cities and South African cities. Urban futures.

Introduction to dynamic meteorology 263 (WKD 263)

Module credits	12.00
Prerequisites	WTW 126 and WTW 128 (students should simultaneously be enrolled for WTW 218).

Contact time 1 tutorial per week, 4 lectures per week

Language of tuition English

Academic organisation Geography, Geoinf + Meteor

Period of presentation Quarter 2

Module content

Vector algebra, curl of a vector, total and partial derivatives, second law of motion. Spherical coordinates Acceleration in rotating co-ordinates, fundamental forces, momentum equation. Three dimensional flow balance, conservation of mass, heat equation, thermodynamic energy equation. Introduction to finite difference methods. Numerical estimation of the geostrophic wind, vorticity and divergence. Advection of temperature. Development of a two-dimensional temperature advection model.

Differential equations 264 (WTW 264)

Module credits 12.00

Service modules Faculty of Education

Faculty of Economic and Management Sciences

Prerequisites WTW 114 and WTW 124

Contact time 1 tutorial per week, 2 lectures per week

Language of tuition English

Academic organisation Mathematics and Applied Maths

Period of presentation Semester 2

Module content

Theory and solution methods for ordinary differential equations and initial value problems: separable and linear first order equations, linear equations of higher order, systems of linear equations. Laplace transform.

Economics 234 (EKN 234)

М	odula	e credits	16.00
141	ouui	= CIEUILS	10.00

Faculty of Engineering, Built Environment and Information Technology

Service modules Faculty of Education

Faculty of Humanities

Faculty of Natural and Agricultural Sciences

Prerequisites EKN 214, STK 120

Contact time 3 lectures per week

Language of tuition English

Academic organisation Economics

Period of presentation Semester 2

^{*}Students will not be credited for both WTW 162 and WTW 264 or both WTW 264 and WTW 286 for their degree.

Macroeconomics

Application of the principles learned in EKN 214 on the world we live in. We look at international markets and dynamic macroeconomic models, and familiarise the students with the current macroeconomic policy debates. We also take a look at the latest macroeconomic research in the world. The course includes topics of the mathematical and econometric analysis of macroeconomic issues.

Economics 244 (EKN 244)

Module credits	16.00
Service modules	Faculty of Humanities Faculty of Natural and Agricultural Sciences
Prerequisites	EKN 224, STK 120
Contact time	3 lectures per week

Language of tuition **English**

Economics Academic organisation

Period of presentation Semester 2

Module content

Microeconomics

From general equilibrium and economic welfare to uncertainty and asymmetric information. In this module we apply the principles learned in EKN 224 on the world around us by looking at the microeconomic principles of labour and capital markets, as well as reasons why the free market system could fail. We touch on the government's role in market failures. The course includes topics of the mathematical and econometric analysis of microeconomic issues.

Curriculum: Final year

Minimum credits: 144

Core modules

Analysis 310 (WTW 310)

Module credits 18.00

Faculty of Education

Service modules Faculty of Economic and Management Sciences

Faculty of Humanities

Prerequisites WTW 220

Contact time 2 lectures per week, 1 tutorial per week

Language of tuition Double Medium

Academic organisation Mathematics and Applied Maths

Period of presentation Semester 1

Module content

Topology of finite dimensional spaces: Open and closed sets, compactness, connectedness and completeness. Theorems of Bolzano-Weierstrass and Heine-Borel. Properties of continuous functions and applications. Integration theory for functions of one real variable. Sequences of functions.

Dynamical systems 382 (WTW 382)

Module credits 18.00

Service modules Faculty of Education

Faculty of Economic and Management Sciences

Prerequisites WTW 218 and WTW 286 or WTW 264

Contact time 1 tutorial per week, 2 lectures per week

Language of tuition Double Medium

Academic organisation Mathematics and Applied Maths

Period of presentation Semester 1

Module content

Matrix exponential function: homogeneous and non-homogeneous linear systems of differential equations. Qualitative analysis of systems: phase portraits, stability, linearisation, energy method and Liapunov's method. Introduction to chaotic systems. Application to real life problems.

Numerical analysis 383 (WTW 383)

Module credits 18.00

Faculty of Engineering, Built Environment and Information Technology

Service modules Faculty of Economic and Management Sciences

Faculty of Humanities

Prerequisites WTW 114, WTW 124 and WTW 211

Contact time 2 lectures per week, 1 practical per week

Language of tuition Double Medium

Academic organisation Mathematics and Applied Maths

Period of presentation Semester 2

Module content

Direct methods for the numerical solution of systems of linear equations, pivoting strategies. Iterative methods for solving systems of linear equations and eigenvalue problems. Iterative methods for solving systems of nonlinear equations. Introduction to optimization. Algorithms for the considered numerical methods are derived and implemented in computer programmes. Complexity of computation is investigated. Error estimates and convergence results are proved.

Partial differential equations 386 (WTW 386)

Module credits 18.00

Service modules Faculty of Education

Prerequisites WTW 248 and WTW 286 or WTW 264

Contact time 1 tutorial per week, 2 lectures per week

Language of tuition Double Medium

Academic organisation Mathematics and Applied Maths

Period of presentation Semester 1

Module content

Conservation laws and modelling. Fourier analysis. Heat equation, wave equation and Laplace's equation. Solution methods including Fourier series. Energy and other qualitative methods.

Continuum mechanics 387 (WTW 387)

Module credits 18.00

Service modules Faculty of Education

Prerequisites WTW 248 and WTW 286 or WTW 264

Contact time 2 lectures per week, 1 tutorial per week

Language of tuition Double Medium

Academic organisation Mathematics and Applied Maths

Period of presentation Semester 2

Module content

Kinematics of a continuum: Configurations, spatial and material description of motion. Conservation laws. Analysis of stress, strain and rate of deformation. Linear constitutive equations. Applications: Vibration of beams, equilibrium problems in elasticity and special cases of fluid motion.

Elective modules

Economics 310 (EKN 310)

Module credits 20.00

Faculty of Engineering, Built Environment and Information Technology

Faculty of Education Service modules Faculty of Humanities

Faculty of Natural and Agricultural Sciences

EKN 214, EKN 234 or EKN 224, EKN 244 **Prerequisites**

Contact time 2 lectures per week, 1 discussion class per week

Language of tuition Double Medium

Academic organisation Economics

Semester 1 Period of presentation

Module content

Public finance

Role of government in the economy. Welfare economics and theory of optimality. Ways of correcting market failures. Government expenditure theories, models and programmes. Government revenue. Models on taxation, effects of taxation on the economy. Assessment of taxation from an optimality and efficiency point of view. South African perspective on public finance.

Economics 314 (EKN 314)

Module credits 20.00

Service modules Faculty of Natural and Agricultural Sciences

Prerequisites EKN 234, EKN 244

Contact time 3 lectures per week

Language of tuition English

Academic organisation Economics

Semester 1 Period of presentation

Module content

International trade/finance

International economic insight is provided into international economic relations and history, theory of international trade, international capital movements, international trade politics, economic and customs unions and other forms or regional cooperation and integration, international monetary relations, foreign exchange markets, exchange rate issues and the balance of payments, as well as open economy macroeconomic issues.

Economics 320 (EKN 320)

Module credits 20.00

Faculty of Engineering, Built Environment and Information Technology

Faculty of Education

Faculty of Humanities

Faculty of Natural and Agricultural Sciences

Prerequisites EKN 310 GS

Contact time 1 discussion class per week, 2 lectures per week

Language of tuition Double Medium

Academic organisation Economics

Period of presentation Semester 2

Module content

Service modules

Economic analyses

Identification, collection and interpretation process of relevant economic data; the national accounts (i.e. income and production accounts, the national financial account, the balance of payments and input-output tables); economic growth; inflation; employment, unemployment, wages, productivity and income distribution; business cycles; financial indicators; fiscal indicators; social indicators; international comparisons; relationships between economic time series - regression analysis; long-term future studies and scenario analysis; overall assessment of the South African economy from 1994 onwards.

Economics 325 (EKN 325)

Module credits 20.00

Service modules Faculty of Humanities

Faculty of Natural and Agricultural Sciences

Prerequisites EKN 214, EKN 234

Contact time 2 lectures per week, 1 discussion class per week

Language of tuition English

Academic organisation Economics

Period of presentation Semester 2

Module content

Economic policy and development: Capita select

The course provides an introduction to growth economics and also to some topics on development economics. Firstly, historical evidence is covered and then the canonical Solow growth model and some of its empirical applications (human capital and convergence). Secondly, the new growth theory (the AK and the Romer models of endogenous growth) are covered. Some of the development topics to be covered include technology transfer, social infrastructure and natural resources.

Environmental geomorphology 361 (GGY 361)

Module credits 18.00

Service modules Faculty of Humanities

Prerequisites GGY 252 and only for students studying BSc (Geography) or BSc (Environmental

Sciences).

Contact time 4 lectures per week, 2 practicals per week

Language of tuition English

Academic organisation Geography, Geoinf + Meteor

Period of presentation Quarter 4

Module content

*Note: The module is available for BSc (Geography) and BSc (Environmental Sciences) students only. The theory content of this module is the same as GGY 363 and students are not allowed to earn credits for both GGY 361 and GGY 363.

Interactions of geomorphic processes within the physical and built environments; themes such as geomorphology and environmental change, slope processes and the environment, geomorphic risks and hazards, soil erosion and conservation, geomorphology in environmental management, applied weathering. Practicals involve fieldwork including sampling and mapping and subsequent laboratory analysis.

Applied geomorphology 363 (GGY 363)

Module credits	12.00
----------------	-------

Service modules Faculty of Education

Prerequisites GGY 252

Contact time 4 lectures per week

Language of tuition English

Academic organisation Geography, Geoinf + Meteor

Period of presentation Quarter 4

Module content

*Note: The content of this module is the same as GGY 361 and students are not allowed to earn credits for both GGY 361 and GGY 363.

Interactions of geomorphic processes within the physical and built environments; themes such as geomorphology and environmental change, slope processes and the environment, geomorphic risks and hazards, soil erosion and conservation, geomorphology in environmental management, applied weathering.

Geographic information systems 310 (GIS 310)

Module	cradita	24.00
Module	creatis	74.00

Service modules Faculty of Engineering, Built Environment and Information Technology

Prerequisites GGY 283 or GIS 221

Contact time 1 practical per week, 2 lectures per week

Language of tuition English

Academic organisation Geography, Geoinf + Meteor

Period of presentation Semester 1

Module content

Advanced theory and practice of Geographic Information Systems; GIS applications; design and implementation of GIS applications.

Spatial analysis 320 (GIS 320)

Module credits 24.00

Service modules Faculty of Engineering, Built Environment and Information Technology

Prerequisites GIS 310 or TDH

Contact time 2 lectures per week, 1 practical per week

Language of tuition English

Academic organisation Geography, Geoinf + Meteor

Period of presentation Semester 2

Module content

Construction of Raster Geovisualisations, spatial model construction and use, multi-criteria decision analysis. Factor analysis: Principle component analysis. Geostatistics: Spatial dependence modelling, ordinary kriging. Markov chains and cellular Automata, combined models.

Insurance and actuarial applications 361 (IAS 361)

Module credits 18.00

Prerequisites IAS 211 and IAS 221

Contact time 3 lectures per week

Language of tuition English

Academic organisation Actuarial Science

Period of presentation Semester 1

Module content

Risk and insurance. Stakeholders and the external environment. Professionalism. Actuaries and the regulatory environment. Insurance products and their providers. Pricing of insurance products. Wider fields of actuarial practice. Reinsurance. New developments in the industry.

Actuarial modelling 382 (IAS 382)

Module credits 20.00

Service modules Faculty of Economic and Management Sciences

Prerequisites WST 312 60%

Contact time 1 practical per week, 2 lectures per week

Language of tuition English

Academic organisation Actuarial Science

Period of presentation Semester 2

Module content

Principles of actuarial modelling and stochastic processes. Markov chains and continuous-time Markov jump processes. Simulation of stochastic processes. Survival models and the life table. Estimating the lifetime distribution Fx(t). The Cox regression model. The two-state Markov model. The general Markov model. Binomial and Poisson models. Graduation and statistical tests. Methods of graduation. Exposed to risk. The evaluation of assurances and annuities. Premiums and reserves.

Atmospheric vorticity and divergence 352 (WKD 352)

Prerequisites WKD 263 GS and WTW 248 GS

Contact time 1 tutorial per week, 4 lectures per week

Language of tuition English

Academic organisation Geography, Geoinf + Meteor

Period of presentation Quarter 3

Module content

Scale analyses and simplification of the basic equations. The geostrophic, thermal and gradient wind. The vorticity equation and divergence.

Quasi-geostrophic analysis 361 (WKD 361)

Mod	ule c	redits	18.00

Prerequisites WKD 352 GS and WKD 254

Contact time 4 lectures per week, 1 practical per week

Language of tuition English

Academic organisation Geography, Geoinf + Meteor

Period of presentation Quarter 4

Module content

Tendency and Omega equations. Model of a boroclinic system. Introduction to numerical models. Application in meteorological display and analysis software.

Multivariate analysis 311 (WST 311)

M	lodule	credits	18.00

Service modules

Faculty of Economic and Management Sciences
Faculty of Natural and Agricultural Sciences

Prerequisites WST 211, WST 221, WTW 211 GS and WTW 218 GS

Contact time 1 practical per week, 2 lectures per week

Language of tuition Double Medium

Academic organisation Statistics

Period of presentation Semester 1

Module content

Multivariate statistical distributions: Moments of a distribution, moment generating functions, independence. Multivariate normal distribution: Conditional distributions, partial and multiple correlations. Multinomial and multivariate Poisson distributions: Asymptotic normality and estimation of parameters. Distribution of quadratic forms in normal variables. Multivariate normal samples: Estimation of the mean vector and covariance matrix, estimation of correlation coefficients, distribution of the sample mean, sample covariance matrix and sample correlation coefficients. The linear model: Models of full rank, least squares estimators, test of hypotheses. Practical applications: Practical statistical modelling and analysis using statistical computer packages and interpretation of the output.

Stochastic processes 312 (WST 312)

Module credits 18.00

Service modules Faculty of Economic and Management Sciences

Faculty of Natural and Agricultural Sciences

Prerequisites WST 211, WST 221, WTW 211 GS and WTW 218 GS

Contact time 1 practical per week, 2 lectures per week

Language of tuition Double Medium

Academic organisation Statistics

Period of presentation Semester 1

Module content

Definition of a stochastic process. Stationarity. Covariance stationary. Markov property. Random walk. Brownian motion. Markov chains. Chapman-Kolmogorov equations. Recurrent and transient states. First passage time. Occupation times. Markov jump processes. Poisson process. Birth and death processes. Structures of processes. Structure of the time-homogeneous Markov jump process. Applications in insurance. Practical statistical modelling, analysis and simulation using statistical computer packages and the interpretation of the output.

Time-series analysis 321 (WST 321)

Module credits	18.00
Service modules	Faculty of Economic and Management Sciences Faculty of Natural and Agricultural Sciences
Prerequisites	WST 211, WST 221, WST 311 GS, WTW 211 GS and WTW 218 GS
Contact time	1 practical per week, 2 lectures per week
Language of tuition	Double Medium
Academic organisation	Statistics
Period of presentation	Semester 2

Stationary and non-stationary univariate time-series. Properties of autoregressive moving average (ARMA) and autoregressive integrated moving average (ARIMA) processes. Identification, estimation and diagnostic testing of a time-series model. Forecasting. Multivariate time-series. Practical statistical modelling and analysis using statistical computer packages.

Actuarial statistics 322 (WST 322)

Module credits 18.00

Service modules Faculty of Economic and Management Sciences

Faculty of Natural and Agricultural Sciences

Prerequisites WST 211, WST 221, WTW 211 GS and WTW 218 GS

Contact time 1 practical per week, 2 lectures per week

Language of tuition Double Medium

Academic organisation Statistics

Period of presentation Semester 2

Module content

Decision theory. Loss distributions. Reinsurance. Risk models. Ruin theory. Credibility theory. Methods to forecast future claim numbers and amounts. The generalised linear model: Exponential family, mean and variance, link functions, deviance and residual analysis, test statistics, log-linear and logit models. Practical statistical modelling and analysis using statistical computer packages.

Complex analysis 320 (WTW 320)

Module credits 18.00

Service modules Faculty of Education

Prerequisites WTW 218 and WTW 220

Contact time 2 lectures per week, 1 tutorial per week

Language of tuition Double Medium

Academic organisation Mathematics and Applied Maths

Period of presentation Semester 2

Module content

Series of functions, power series and Taylor series. Complex functions, Cauchy- Riemann equations, Cauchy's theorem and integral formulas. Laurent series, residue theorem and calculation of real integrals using residues.

Financial engineering 354 (WTW 354)

Module credits 18.00

Service modules Faculty of Engineering, Built Environment and Information Technology

Faculty of Economic and Management Sciences

Prerequisites WST 211, WTW 211 and WTW 218

Contact time 1 tutorial per week, 2 lectures per week

Language of tuition Double Medium

Academic organisation Mathematics and Applied Maths

Period of presentation Semester 1

Module content

Mean variance portfolio theory. Market equilibrium models such as the capital asset pricing model. Factor models and arbitrage pricing theory. Measures of investment risk. Efficient market hypothesis. Stochastic models of security prices

Financial engineering 364 (WTW 364)

Module credits 18.00

Prerequisites WST 211, WTW 126, WTW 218 and WTW 286 or WTW 264

Contact time 2 lectures per week, 1 tutorial per week

Language of tuition English

Academic organisation Mathematics and Applied Maths

Period of presentation Semester 2

Module content

Discrete time financial models: Arbitrage and hedging; the binomial model. Continuous time financial models: The Black-Scholes formula; pricing of options and the other derivatives; interest rate models; numerical procedures.

Algebra 381 (WTW 381)

Module credits 18.00

Faculty of Education

Service modules Faculty of Economic and Management Sciences

Faculty of Humanities

Prerequisites WTW 114 and WTW 211

Contact time 1 tutorial per week, 2 lectures per week

Language of tuition Double Medium

Academic organisation Mathematics and Applied Maths

Period of presentation Semester 1

Module content

Group theory: Definition, examples, elementary properties, subgroups, permutation groups, isomorphism, order, cyclic groups, homomorphisms, factor groups. Ring theory: Definition, examples, elementary properties, ideals, homomorphisms, factor rings, polynomial rings, factorisation of polynomials. Field extensions, applications to straight-edge and compass constructions.

Geometry 389 (WTW 389)

Module credits 18.00

Faculty of Engineering, Built Environment and Information Technology

Service modules Faculty of Education

Faculty of Humanities

Prerequisites WTW 211

Contact time 2 lectures per week, 1 tutorial per week

Language of tuition Double Medium

Academic organisation Mathematics and Applied Maths

Period of presentation Semester 2

Module content

Axiomatic development of neutral, Euclidean and hyperbolic geometry. Using models of geometries to show that the parallel postulate is independent of the other postulates of Euclid.

Sustainable development 356 (GGY 356)

Module credits 18.00

Service modules Faculty of Education

Faculty of Humanities

Prerequisites No prerequisites.

Contact time 3 lectures per week, 1 practical per week

Language of tuition English

Academic organisation Geography, Geoinf + Meteor

Period of presentation Quarter 1

Module content

The module conceptually integrates environmental, economic, and social components of sustainable development. Other topics covered include changing perceptions on development and environment, development paradigms, challenges of sustainable development, actors and actions in sustainable development, rural and urban livelihoods, and a Third World assessment of sustainable development in the developing world.

Development frameworks 366 (GGY 366)

Module credits 18.00

Service modules

Faculty of Education
Faculty of Humanities

Prerequisites No prerequisites.

Contact time 3 lectures per week, 1 practical per week

Language of tuition English

Academic organisation Geography, Geoinf + Meteor

Period of presentation Quarter 3

Module content

Classic development frameworks. Spatial development history and legacy in South Africa. Overview of contemporary environmental legislation in South Africa. Rural development strategy. Rural and agricultural reconstruction. Land reform. Urban development and strategy. Urban spatial reconstruction. National spatial development frameworks.

Fundamentals of weather forecasting 366 (WKD 366)

Module credits	36.00	
Prerequisites	WKD 155, WKD 261, WKD 254 (students should simultaneously be enrolled for WKD 361)	
Contact time	1 practical per week, 4 lectures per week	
Language of tuition	English	
Academic organisation	tion Geography, Geoinf + Meteor	
Period of presentation	Semester 2	

Module content

Meterological observations data codes. Weather applications software and computing environments of meteorological analysis and weather forecasting techniques. Applications of remote sensing in weather forecasting. Aaerological diagrams. Applications of numerical weather prediction, and types of weather forecasts. Integration of information to describe the current state of the atmosphere and to predict a future state of the atmosphere.

The information published here is subject to change and may be amended after the publication of this information. The General Regulations (G Regulations) apply to all faculties of the University of Pretoria. It is expected of students to familiarise themselves well with these regulations as well as with the information contained in the General Rules section. Ignorance concerning these regulations and rules will not be accepted as an excuse for any transgression.