Yearbooks

Programme: BScHons Meteorology

Kindly take note of the disclaimer regarding qualifications and degree names.
Code Faculty
02240074 Faculty of Natural and Agricultural Sciences
Credits Duration
Duration of study: 1 year Total credits: 135

Programme information

Renewal of registration

  1. Subject to exceptions approved by the Dean, on the recommendation of the head of department, and in the case of distance education where the Dean formulates the stipulations that will apply, a student may not sit for an examination for the honours degree more than twice in the same module.
  2. A student for an honours degree must complete his or her study, in the case of full-time students, within two years and, in the case of after-hours students, within three years of first registering for the degree and, in the case of distance education students, within the period stipulated by the Dean. Under special circumstances, the Dean, on the recommendation of the head of department, may give approval for a limited extension of this period.

In calculating marks, General Regulation G.12.2 applies.

Apart from the prescribed coursework, a research project is an integral part of the study.

Admission requirements

In addition to the requirements of General Regulations G.1.3 and G.62 an appropriate bachelor's degree is a prerequisite: a candidate with an average of less than 60% in the major subjects in the final year of the bachelor’s degree will only be admitted with the approval of the Dean on the recommendation of the head of department. Additional conditions may be prescribed by the head of department.

A BSc in Meteorology degree  
 
OR
 
An appropriate bachelor’s degree with second-year mathematics and first-year physics.
 
WKD 155  Atmospheric structure and processes
WKD 164  Climate and weather of Southern Africa
WKD 261  Physical meteorology
GMA 220  Remote sensing
WKD 263  Introduction to dynamical meteorology
WKD 352  Atmospheric vorticity and divergence
WKD 361  Quasi-geostrophic analysis
WKD 366  Fundamentals of weather forecasting
WTW 114 Calculus*
WTW 128 Calculus* AND WTW 126 Linear algebra* OR WTW 124
WTW 218 Calculus*
WTW 248 Vector Analysis *
PHY 171   First course in physics* or PHY 114 and PHY 124
(*or an equivalent qualification as approved by the head of the department.)
 

 

Pass with distinction

The BScHons degree is awarded with distinction to a candidate who obtains a weighted average of at least 75% in all the prescribed modules and a minimum of 65% in any one module.

Minimum credits: 135

Minimum credits:  135

Core credits:          99

Elective credits:     36

Other programme-specific information:

Appropriate honours modules from the other disciplines in the Department or Faculty may be taken on approval by the Honours coordinator or Head of Department.

Core modules

  • Module content:

    Initial atmospheric state, observation network, data assimilation, initialization, parameterisation, post-processing.  Ensemble methods, probability forecasting, forecast verification.  Global circulation models, limited-area and mesoscale models, variable resolution models, dispersion models.  Seamless prediction.  Practical applications.

    View more

  • Module content:

    Atmospheric oscillations:  Linear perturbation theory (shallow water gravity waves, inertia gravity waves, Rossby waves).  Baroclinic instability.  Two-layer model.  Energetics of Baroclinic waves.  Zonally averaged circulation.  Angular momentum budget.  Lorenz energy cycle. Programming in metereology.

    View more

  • Module content:

    An overview of the weather and climate of the tropics and the mid-latitudes.  Air masses.  Instability and cloud formation. Weather systems of the tropics and mid-latitudes.  Analysis of weather systems by utilising remote sensed data.

    View more

  • Module content:

    Introduction to the philosophy of scientific research.  Hypothesis testing.  Reporting of scientific research.  Identification of an appropriate research project.  Compilation of a research proposal.  Literature survey.  Acquisition and manipulation of information.  Introduction to innovative strategy and research management.  Preparation of a research report (or paper).  Presentation of research findings.

    View more

  • Module content:

    Basic principles and characteristics of the weather radar. The influence of the atmosphere on the propogation of electro-magnetic waves. Weather radar equation. The influence of attenuation on observations. The measurement of precipation with a radar. Doppler Radar. Convective storm analysis with radar.

    View more

  • Module content:

    Overview of the basic principles of satellite imagery. Types of meteorological satellites. Basic principles of radiation. The different images available, their resolution and the advantages and limitations of each image. Image interpretation.

    View more

Elective modules

  • Module content:

    Fundamentals of seasonal forecasting.  The El Niño/Southern Oscillation.  Empirical orthogonal functions.  Canonical correlation analysis.  Empirical forecast models practical.  Sea-surface temperature models.  Fully coupled and two-tiered general circulation modelling.  Dynamical and empherical downscaling techniques.   Significance testing using Monte Carlo techniques.  Modelling pitfalls.  User application forecasting.  Projections of decadal and multi dacadal climate anomalies.

    View more

  • Module content:

    Introduction to, and the importance of the boundary layer.  Structure of the boundary layer.  Transfer of heat (molecular and turbulent).  Impacts of the turbulent nature of the boundary layer on the dynamics of atmospheric motions.  Closure and boundary layer parameterisation.  Applications to air pollution dispersion.

    View more

  • Module content:

    Scaling and interpretation of equations of motion for mesoscale processes.  The role of stability and other trigger actions on initial cloud formation and the evolution of clouds.  Shallow and deep convective processes. Tropical and mid-latitude cloud generation processes and characteristics. Cloud splitting. Parameterisation of radiation and heat in atmospheric models. Microphysics parameterisations in numerical models.

    View more

  • Module content:

    An introduction to mesoscale meteorology. Surface mesoscale features, instability, severe storm classification and thunderstorms, flooding and flash flooding events.

    View more

  • Module content:

    A module on an aspect or aspects of meteorology not covered in the existing options with special emphasis in Cloud microphysics and Basic concepts of numberical modelling.

    View more


The information published here is subject to change and may be amended after the publication of this information. The General Regulations (G Regulations) apply to all faculties of the University of Pretoria. It is expected of students to familiarise themselves well with these regulations as well as with the information contained in the General Rules section. Ignorance concerning these regulations and rules will not be accepted as an excuse for any transgression.

Copyright © University of Pretoria 2024. All rights reserved.

COVID-19 Corona Virus South African Resource Portal

To contact the University during the COVID-19 lockdown, please send an email to [email protected]

FAQ's Email Us Virtual Campus Share Cookie Preferences