Posted on June 21, 2022
Traditional combustion devices and fuels such as charcoal, wood and biomass, are widely utilised in rural and urban households in Africa. Incomplete combustion can generate air pollutants which are of human toxicological importance, including polycyclic aromatic hydrocarbons (PAHs). In this study, portable multi-channel polydimethylsiloxane rubber traps were used to sample gas phase emissions from cooking devices used in urban and rural households in Bomet and Narok counties of Kenya. A wide range of total PAH concentrations was found in samples collected (0.82 – 173.69 µg/m3), which could be attributed to the differences in fuel type, combustion device, climate, and nature of households. Wood combustion using the 3-stone device had the highest average total PAH concentration of ~71 µg/m3. Narok had higher indoor total gas phase PAH concentrations averaging 35.88 µg/m3 in urban and 70.84 µg/m3 in rural households, compared to Bomet county (2.91 µg/m3 in urban and 9.09 µg/m3 in rural households). Ambient total gas phase PAH concentrations were more similar (Narok: 1.26 – 6.28 µg/m3 and Bomet: 2.44 – 6.30 µg/m3). Although the 3-stone device and burning of wood accounted for higher PAH emissions, the charcoal burning jiko stove produced the highest toxic equivalence quotient. Monitoring of PAHs emitted by these cooking devices and fuels is critical to public health and sustainable pollution mitigation.
Read more: https://t.co/Gil1OAqmjA
Environmental Monitoring and Sensing
Copyright © University of Pretoria 2023. All rights reserved.
COVID-19 Corona Virus South African Resource Portal
To contact the University during the COVID-19 lockdown, please send an email to [email protected]
Get Social With Us
Download the UP Mobile App