Renal Nuclear Medicine

John Buscombe

Why bother? CT can do it

Why bother? MR can do it.

- To visualise an organ needs a contrast with the surrounding tissue.
- Radiography/CT needs difference in density.
- MRI needs difference in protons.
- Ultrasound needs difference in reflectivity.
- Nuclear Medicine needs difference in function.

Tracers

- Tracer is substance added to a physiological pathway, which is handled by that pathway but does not disturb it.
- •Requires small chemical amount of material, but high contrast with tissue which does not contain pathway.
 - Tc-99m-DTPA is a tracer for glomerular filtration
 - Intra-coronary angiographic contrast is not a tracer for coronary flow.

- FUNCTIONAL IMAGING NEEDS TRACERS
- Need to study whole organ over an appropriate time interval.

Renal Function?

Total renal function

- No pure imaging method works
- Best is to measure GFR with Cr-51-EDTA or Tc- 99m-DTPA and blood sampling.
- Single-kidney GFR from total + divided function.

Renal Blood Flow

- No good measure of absolute RBF.
- Various indices of renal blood flow.
 - Peters RBF/CO
 - Transplant perfusion index
 - (ERPF/MAG3)

Imaging Function

Which Function? Which Agent?

- Glomerular Filtration
 - Tc-99m-DTPA
 - Tc-99m-MDP
- Glomerular Filtration + Tubular Function
 - Tc-99m-MAG3
- Tubular Function
 - Tc-99m-DMSA

MDP (Medronate) renal imaging

Imaging divided function

- Rate of uptake of dynamic tracer
 - Integral/slope methods
 - Rutland/Patlak plot
- Degree of retention of static tracer
- NB Need to correct for background activity

Function involves time

Radiation Dose in Nuclear Medicine does not depend on time - therefore:

- Can image time-dependent changes
 - Transit
 - Ureteric peristalsis
- Can measure changes
 - Response to stimulus
 - < Frusemide
 - < Captopril
 - < Aspirin
 - < Exercise

Dynamic renal imaging

- Assess relative renal perfusion
- Estimate divided function
- Estimate parenchymal clearance and retention
- Assess drainage
- Measure response to diuresis
- Image ureteric peristalsis

Normal renal study MAG3

The renogram

Renal impairment

We can only show current, not potential, function

Response to Stress

- Frusemide-induced Diuresis
- Renal Vascular Stress
 - Captopril
 - Aspirin
 - Exercise
- Prostaglandin Inhibitors
 - Diclofenac (Voltarol)

Stress Response

Diuresis

- Definition of obstruction
 Inability to cope with urine flow
- Need adequate diuresis
 - Adequate hydration
 - Lasix 15 min before (F-15)
 - Measure diuresis
- Quantitate response
 - Cumulative output

F + 15

F-15

Static renal imaging

- Images localisation of function (and of loss of function)
- Estimate divided function
- Allows localisation of kidney tissue
- SPECT gives better impression of shape
- BUT is non-specific (what is a scar?)
- Does it happen in adults? If so whom?

Use of DMSA

- In children most commonly used to look for scars
- Can be used to look for acute infection (which is why 4-6 months must elapse after last UTI till DMSA)
- Use in children liver 5 and adults less clear
- But can be combined with GFR to predict GFR after nephrectomy

Patters of activity

- Convex defect
- Concave defect
- Fuzzy edge
- Will need rescanning 6 months later to see if scars

POST

2 week old only one RPO kidney seen on intrauterine ultrasound

5 year old with Hx of UTIs

Scars in right kidney

Who to scan?

- Controversy re-started
- Was any child under 6 with one episode of UTI
- Now less clear the we can justify radiation
- Now needs more than one infection unless with an organism other than e.coli
- No evidence that old or new approach WILL reduce adult hypertension

Isotope Cystography

- Direct cystography is not functional (even if it gives some functional/volume answers).
- Indirect cystography is functional.
 - Good in children with bladder control
 - Good for follow-up
 - Doesn't show anatomy
 - Needs good patient co-operation for acquisition

Reflux study

Reflux in a duplex kidney

Arrows show episodes of yo-yo reflux form lower to upper moeity

Single Kidney GFR

- Probably most useful parameter for looking at change.
- Needs total + divided function
- Proven value in RAS and UTI

Captopril renography

- To look for renovascular disease
- 2 peaks young FMD and older AthScl
- Do base line study if abnormal then do not do post captopril
- If baseline normal give 25mg captopril
- If RVD captopril will shut down ACEdrive on affected kidney
- Delayed peak, reduced divided function and delayed parenchymal transit

Renogram in RAS (on ACEI)

Parenchymal retention

Delayed peak

Reduced divided function

FIG 4—Sequential ^{99m}Tc-DTPA kidney scans in patient with unilateral renal artery stenosis (case 3; table I) before captopril, after four weeks of captopril 150 mg daily, and one week after stopping captopril. Time after radioisotope injection indicated.

Effect of chronic Captopril on GFR / DTPA Wenting 1984

Effect of chronic Captopril Wenting 1984

FIG 3—Effect of long term captopril 150 mg daily on blood pressure and single kidney uptake of **3m*Tc-DTPA in 14 patients with unilateral renal artery stenosis and 17 patients with essential hypertension. Patients with renal artery stenosis divided into two groups according to change in DTPA uptake (see table III for statistics). Values in patients with essential hypertension presented as means and SEM. Mean arterial pressure calculated as diastolic pressure + 0.3 × pulse pressure. London School of Hygiene sphygmomanometer used. Three consecutive readings with patient in recumbent position were averaged. Effect of captopril on mean arterial pressure in patients with essential hypertension was not different from effect in two groups of patients with renal artery stenosis.

Selection of hypertensive patients

- Presented to hospital
- Asymmetric renal size
- Unexpected renal failure
 - especially after ACE inhibitor therapy
- Diabetes
- Difficulty in control of hypertension
- "Flash" pulmonary oedema

European Multicentre Study

- 454 patients from 19 centres
 - ALL had angiography
- 244 with renal artery stenosis
- Tc-99m-DTPA
 - 183 normal
 - 197 stenosis
 - -124 (33%) > 70% stenosis

European Multicentre Study

- Interventions:
 - 76 angioplasty
 - 39 surgical bypass
 - 6 nephrectomy
- Follow-up
 - -87 3 months
 - 57 6 months
 - -36 12 months

European Multicentre Study

- Best sensitivity:
 - -Post-Captopril DTPA 95%
- Best specificity:
 - -Change in function or transit 85%
- Correlation with blood pressure normalisation – 90%

Selection of hypertensive patients

- Presented to hospital
- Asymmetric renal size
- Unexpected renal failure
 - especially after ACE inhibitor therapy
- Diabetes
- Difficulty in control of hypertension
- "Flash" pulmonary oedema

Captopril protocol 1

- Baseline renogram (DTPA or MAG3)
- Repeat study 60-90 min after 25 mg oral Captopril
 - Stop oral ACEI / Losartan 3-5 days
 - Stop diuretics 5 days
 - Avoid sodium depletion
 - Clear fluids only for 4h

Captopril protocol 2

- On arrival, check compliance
- Put on couch
 - check veins
 - put on b/p cuff
 - check doctor present
- Give captopril (?crushed) + fluids
- Monitor blood pressure
- Give i/v saline (if necessary).

Captopril renography

- Patient voids time noted
- Supine renography with MAG3 or DTPA
- Bolus injection
- 1/sec for 40 secs; 1/20 secs for 20 min
- Erect image
- Patient voids time and volume noted

Data analysis

- Summed images, displayed on absolute scale
 - 0-2 min
 - 4-6 min
 - 12-14 min
 - 18-20 min
- Automatic renal ROIs based on 2-min image
- Peri-renal background
- Basic curve analysis

Criteria for analysis

- 5% or greater change in divided function
- >1 grade change in renogram = high probability
- 1 grade change in cortex = high probability

Consensus meeting grading of renogram curves for Captopril

It's not always so easy.....

Renal transplantation Where can imaging help?

- Donor assessment
- Acute post-operative complications
- Early post-transplant period
- Late post-transplant period

Perfusion Index Hilson 1976!

Since 1976

- •FNA/biopsy have become safer
- New drugs have slowed down rejection

Results

CHANGE Is Important

ATN – MAG3

"Black Holes"

Lymphocoele

Leaks

Figure 18a. Severe transplant rejection. (a) Duplex color Doppler US image shows a spectral waveform in which the arterial flow in diastole is reversed. Differential diagnosis for this finding includes acute tubular necrosis and renal vein thrombosis. (b) On another duplex image, the spectral waveform shows that the renal vein is patent, thus the diagnosis of renal vein thrombosis is excluded. Findings from biopsy confirmed transplant rejection.

Figure 18b. Severe transplant rejection. (a) Duplex color Doppler US image shows a spectral waveform in which the arterial flow in diastole is reversed. Differential diagnosis for this finding includes acute tubular necrosis and renal vein thrombosis. (b) On another duplex image, the spectral waveform shows that the renal vein is patent, thus the diagnosis of renal vein thrombosis is excluded. Findings from biopsy confirmed transplant rejection.

From Brown et al, RadioGraphics, 20, 607-622, 2000

MAG3 vs Doppler US

- MAG3
- Quantifiable and reporducable
- Can reliably identify infarcted kidney
- Able to find slow leaks

- Doppler US
- No radiation
- Bed side test
- Resisitve index correlates well with rejection but not reproducable

Dupont et al Transplantation 2007

TABLE 2. Comparison of 99m Tc-DMSA SPECT findings in renal allograft recipients with and without a history of recurrent urinary tract infection.

	Recurrent UTIs (%)		Controls (%)	
	Reflux	No reflux	CAN	Vascular occlusion
N	15	17	11	8
No scars	2 (13)	6 (33)	8 (73)	0 (0)
One focal defect	5 (33)	3 (18)	3 (27)	0 (0)
Two focal defects	2 (13)	3 (18)	0 (0)	0 (0)
>Two focal defects	6 (40)	5 (29)	0 (0)	0 (0)
Any focal defect	13 (87)	11 (65)	3 (27)	0 (0)
Segmental defect	0 (0)	0 (0)	0 (0)	8 (100)

Dupont et al DMSA SPECT in Tx

A=scar, B=rejection, C=vascular damage

Chinese Proverb

"It's not what a cat looks like that matters, it's how well he catches

mice"

