FDG-PET/CT in Head & Neck Cancer

IAEA PET/CT Workshop: Improving Patient Care
Midrand, November 2010

Ora Israel, MD
Department of Nuclear Medicine
Rambam Health Care Campus
Haifa, Israel
Head & Neck Malignancies
Overview

• 5% of all malignant tumors
• ~550,000 new cases/year, >300,000 deaths/year
• Greatest burden: low- and medium-income countries
• Western world: >90% squamous cell (larynx, oropharynx, oral)
• Survival: poor, little improvement over last 3 decades
• Etiology: tobacco & alcohol account for >75%
• Open issues:
 • Genetic susceptibility
 • Tumors in young patients
 • Relationship to HPV
Head & Neck Malignancies
Overview

Staging – early and accurate is critical
• selection of appropriate treatment strategy
• prognostic significance – high
 5-yr DFS from 55% to 35% with LN involvement

Treatment – challenging multidisciplinary approach

After therapy
• ~ 1/3 of cases: late/inadequate dg. of recurrence
• early dg. recurrence - critical for better outcome
H & N Tumors
Tools for Diagnosis

• Histology
• Extension to bone and vessels – MRI & CT
• FDG imaging: benign vs. malignant (old studies 1994)
• PET/CT: small, highly metabolic tumor
 – prognostic value of high FDG uptake
 – correlates with high proliferation index
Specific Role of Imaging in H&N Tumors

- Depth of primary tumor invasion
- Lymph node status
- Synchronous 2nd primary lesions

Surgical interventions
- following concomitant chemo/radiotherapy
- repeated direct biopsy for susp. local failure
- planned neck dissection for advanced nodal disease
- possible tracheostomy - for compromised edematous airways post-laryngeal biopsy
FDG-PET/CT in H&N Tumors
Patient Preparation & Imaging Protocol

- Fast 4 - 6 hrs; Good hydration; low glucose levels <150
- FDG – injected dose: 15 mCi
- Uptake phase: 60-90 min
- No talk, drink & chew
- Imaging:
 - Head fixation
 - Head (top-of-the-ear) to mid-thigh
 - Both PET & CT are Head-to-Thigh or 2 separate acquisitions
- i.v. contrast
 - easier definition of vessels & separation from nodes
 - care for PET attenuation correction artifacts
Head & Neck Malignancies
Anatomic Localization
FDG – PET : Normal biodistribution
Normal FDG Anatomy of the Head & Neck
Areas of Physiologic FDG Uptake

- Neural tissue: brain, cerebellum, spinal cord
- Active striate muscles: ocular, genio-glossus, cricoarytenoid, vocal cords
- Normal lymphoid tissue: Waldeyer’s ring, tonsils, base of tongue
- Activated brown fat (neck & shoulder girdle)
- Low uptake: salivary glands [submandibular & sublingual] - due to physiologic secretion
- Minimal uptake: normal thyroid
Physiologic FDG Uptake in Head & Neck

Parotis
Base of tongue
Soft palate

Submandibular glands

Longus Capitis

Vocal cords
FDG Imaging of H&N Tumors
Limitations, False Negative

- Lesion size < 6 mm
- Metabolic rate
- Not tumor specific
 (quantitation attempts – SUV measurements)
FDG Imaging of the Head & Neck
Pitfalls & Artifacts

- Movement between PET and CT
- Metal artefacts (dental)
- Asymmetric physiologic uptake
 - Paralysis of one vocal cord & relative increased uptake in the other cord
 - Focal uptake in mastication & sternocleidomastoid muscles (strain or excessive use)
- FDG-avid benign lesions
e.g. Warthin’s tumor with FDG-avidity 78%
FDG-PET/CT – Pitfalls in H&N Region

NSC Lung Ca – Staging, Equiv. upper neck uptake

Primary

Mets in colon

Physiologic asymmetric uptake in rt. vocal cord (due to paralysis of lt. vocal cord)
Patterns of Physiologic FDG Uptake in Neck

In Muscles

In Brown Fat
FDG Imaging of the Head & Neck Pitfalls & Artifacts after Treatment

• Assessing response - facilitated if pre- and post-treatment FDG-PET/CT studies are available for comparison

• Timing of post-treatment study
 – After radiotherapy: delay of at least 8-12 weeks to decrease the potential for false positive inflammatory radiation-related reactions.
 – After chemotherapy: delay of at least 2 weeks to avoid false negative study results
M, 67, advanced parotis ca, s/a total parotidectomy & post-op radiotherapy (1y).

Focal FDG uptake in the left maxilla localized by PET/CT to a further diagnosed dental abscess
FDG-PET/CT in Newly Diagnosed H＆N Tumors

Accurate staging - essential for Rx planning

T: Limited PET/CT use (less anatomical details than MRI – mainly for planning of surgery & radiotherapy)

N: LN+ important prognostic factor, cure rate declines by ~ 50% in regional LN+ tumors

- FDG-PET/CT: improved nodal staging
- Challenge: clinical negative neck (N0) 10-45% LN+ at surgery
- FDG-PET/CT: sensitivity 67%, specificity 95% for LN+
 Mainly in squamous cell tumors (pharynx & larynx)
 > CT/MR sparing neck dissection (not for anatomic delineation)

M: advanced H＆N tumors benefit from preRx PET/CT
 25% distant mets & 10% synchronous malignancy
Staging of H&N Tumors

• T: size & subsite involvement
 T1-3: increasing size
 T4: invasion of surrounding structures
• N: size & number of LN, & relationship to primary (ipsi- or contralateral)
• M: distant mets (25%)
• Attention: 10% synchronous mets.
SCC of base of tongue & cervical LN mets
Advanced Ca of the Mandible
Loco-regional & Distant Involvement

LN, liver & bone metastases
Ca of Larynx, Susp. lung lesions by CT
Exclusion of distant metastases

FDG+ primary in lt. vocal cord & anterior comissure

FDG+ focus in LLL

Plaque in aortic wall

10 mo follow up NED of pulmonary metastases
FDG Imaging Improves Staging & Management in H&N Squamous Cell Ca

Lonneux et al, JCO 2010, Multicenter prospective, 233 pts

- Discordant FDG & conventional imaging: 43% pts
 - FDG accurate stage change: 20%
 - FDG error rate: 6% (FDG+ inflammatory LN & pneumonia)
- Accuracy: conventional +FDG > conventional only
- FDG impact on management:
 - Low: 81%
 - Medium: 5% (intramodality changes)
 - High: 9% (intermodality; curative to palliation; pallation to cure)
FDG-PET/CT for treatment planning

Multimodality treatment strategies
Induction of:
- More aggressive chemotherapeutic regimens
- Radiation treatment planning
- Planning of the surgical procedure

Radiation Tx planning based on metabolic & biologic features
- Increase in gross tumor volume >25% in 17% patients
- Decreased risk of geographic misses
- Decrease in gross tumor volume in 33% patients
- Minimize dose to non-target organs
SCC of Sinuses - Staging

Whole extent of primary tumor
Head & Neck Malignancies
Lymph Node Regions Levels I-VI

Courtesy, EORTC Task Force
FDG-PET/CT in H&N Malignancies
Monitoring Response to Treatment

• Rx options: surgery, radiotherapy, chemo-radiation
• Early assessment of response to chemo- radiotherapy: salvage surgery with improved local disease control.
• FDG PET/CT (& ΔSUV changes): sens 90%, spec 83%
 – 4 mo post-Rx > 1 mo post-Rx
 – > CT/MRI for detecting residual tumor after chemoradiation
 – Negative FDG-PET/CT: highly reliable
 – Positive FDG-PET/CT: residual disease vs. inflammation

• Main Indications for FDG-PET/CT after treatment:
 – Detection of residual tumor
 – Guiding invasive biopsy at edematous /fibrotic site
Nasopharynx Ca, End of treatment
Equivocal MRI
FDG-PET/CT Residual Tumor
Advanced supraglottic tumor, end of chemo-radiation. FDG-PET/CT Residual Mass - no Residual Tumor

CT - diffuse supraglottic edema
PET/CT - no uptake in the edematous region.

Negative clinical & radiological follow-up: 24 mo
FDG-PET/CT in H&N Tumors
Diagnosis of Recurrence & Restaging

Early dg: salvage surgery - improved outcome & prognosis

Biopsy of irradiated tissue: high morbidity, necrosis, failure to heal

CT & MRI: impaired by post-surgery/radiation distorted anatomy, loss of landmarks and symmetry

FDG-PET/CT

• High sensitivity 78-96%, vs. CT/MRI: 38-80%
• High accuracy (scar vs. recurrence): 81% vs. CT/MRI: 45%
• Higher specificity for dg. of loco-regional recurrence

Potential 1st study for early dg. of recurrence in larynx Ca
Advanced Nasopharynx CA, s/a chemo-radiation (2 y)

Normal size (8 mm) right jugulo-digastric lymph node on CT with increased FDG uptake

FNA from node – negative

Neck dissection: Metastatic Nasopharynx Ca
FDG-PET/CT in H&N Tumors
Diagnosis of Recurrence & Restaging

DD: scar vs. recurrent tumor [in distorted anatomy]

- Accuracy PET – 81%; CT/MRI – 45%
- Recurrent tumor in primary site:
 - FDG-PET/CT: sens: 88-100; spec: 75-100
 - CT/MRI: sens: 70-92; spec: 50-57
- Planning of total salvage laryngectomy:
 accuracy: CT - 42%; PET - 85%
PET/CT Guiding Diagnosis of Recurrence
Advanced retromolar tumor, s/a resection & reconstruction (9m)

CT - flap & edema in oral cavity, with focal FDG uptake localized by PET/CT to retro-molar region, underneath the flap

Guided biopsy - positive for recurrence
PET/CT Guide for Biopsy
Larynx Ca, new edema, 3 mo s/p radiotherapy

FDG+ focus in neck: SUVmax 4.4
CT: laryngeal edema (rt. vocal cord & anterior commissure)

FDG uptake only in edematous changes at anterior commissure

PET/CT guided biopsy:
Squamous Cell Carcinoma
FDG-PET/CT Diagnosis & Extent of Recurrence
Nasopharynx Ca, equivocal MRI

Local recurrence & LN involvement
2nd Primary Tumors (Synchronous or Metachronous)

- Risk: 4%/year
 >20% within 5 years
- Location:
 - 40% larynx or pharynx
 - 31% lung
 - 9% esophagus
FDG-PET/CT Dg. of 2nd Primary Tumor
Larynx Ca, NED 18 mo, New hoarseness & swelling of rt. vocal
cord (CT) Susp. recurrence

FDG+ focus anterior neck
PET/CT:
• no FDG uptake in vocal cord
• FDG+ lesion in mass in proximal esophagus

Biopsy: Carcinoma of esophagus
Performance of FDG-PET/CT in H&N Tumors

![Bar chart showing the performance of FDG-PET/CT in different head and neck tumors.](#)
Larynx Ca
FDG-PET/CT Impact on Patient Care

PET/CT altered management in 30% patients
• Cancelled planned biopsy in FDG-negative lesions
• Guide for tissue sampling biopsy from metabolically active area in edematous larynx
• Modified treatment planning:
 – from chemotherapy to surgery
 – surgery cancelled
 – radiotherapy cancelled

Gordin et al, Laryngoscope, 2006
Recurrent/residual Nasopharynx Ca
Impact of FDG-PET/CT

• Radiology 2001, 36 pts - best dg. tool
 FDG: sens 100, spec 96, acc 97
 CT: 73, 88, 83

• Cancer 2003, 67 pts
 FDG: sens 100, spec 93, acc 96, PPV 88, NPV 100
 MRI: 62, 44, 49, 33, 70
Metastatic Cancer of Unknown Origin

- <10% of squamous cell tumors present with neck mets and no primary
- Diagnostic and therapeutic challenge
- Debilitating blind treatment
- FDG-PET/CT sensitivity for detection of primary 40-65% vs. CT/MRI & random biopsy: 10-20%.
PET/CT in Metastatic Cancer of Unknown Origin
Cervical Lymph Node Positive for SCC

Metastatic lymph node & primary in base of tongue
Value of FDG PET/CT in Management of H&N Malignancies

• Guide and facilitates targeted biopsy (less sampling error)
• Optimized definition of extent of disease
• Exclusion of disease in sites of physiologic FDG uptake

• From “watch-only” expectative policy to therapy (determining the need and type of treatment)
• Intra-modality and inter-modality treatment changes
M, 46, Ca of Floor of Mouth
s/a Chemo (cisplatin) & Radiation (2-dimensional)
FDG-PET/CT 3 month after treatment

Focal FDG uptake - It floor of mouth, center of radiation field
Report: probably inflammatory post-radiation
Clinical examination – normal
Clinical follow up - normal
F, 61, SCC Base of Tongue & Cervical LN Mets s/a Chemo & Radiation (IMRT 70 Gy Primary & 50Gy Neck)
FDG-PET/CT 4 month after treatment

Focal FDG uptake – Lt. hard palate (border of radiation field)
PET/CT guided biopsy: Recurrent SCC
Additional chemo-radiotherapy
FDG-PET/CT 10 weeks after treatment – Negative
FDG-PET/CT in H&N Tumors
Guidelines & Recommendations
(NCCN 2007, multidisciplinary panel – JNM 2008)

Recommended for routine:
• Search for occult primary malignancies not identified by other tests
• For nodal and distant staging
• In suspected recurrence

Not recommended:
• Diagnostic work-up of primary tumor
Thank You