PET/CT in Lymphoma

Stroobants Sigrid, MD, PhD Departement of Nuclear Medicine University Hospital ,Antwerp

PET-CT in Lymphoma

- Staging
- Response Evaluation
 - During treatment
 - End of treatment
- Surveillance

FDG PET (-CT) in Lymphoma

- PET= whole body imaging
- Sensitivity depends on
 - FDG avidity
 - Size
 - Background activity surrounding tissue

Specificity

- Inflammatory tissue
- Physiological uptake in brown fat, gut, urinary system

- PET-CT
 - Combination of metabolism and anatomy
 - Increase in sensitivity and specificity

FDG avidity of lymphomas according to WHO classification

Weiler-Sagie et al. JNM Jan 2001

TABLE 1. ¹⁸ F-FDG Avidity of Lymphoma Ac	cording to World	Health Organization	n Histopathologi	c Classification
Histology	п	18F-FDG-avid	Negative	% ¹⁸ F-FDG avidity
Hodgkin disease	233	233	0	100
Burkitt lymphoma	18	18	0	100
Mantle cell lymphoma	14	14	0	100
Anaplastic large T-cell lymphoma	14	14	0	100
Marginal zone lymphoma, nodal	8	8	0	100
Lymphoblastic lymphoma	6	6	0	100
Angioimmunoblastic T-cell lymphoma	4	4	0	100
Plasmacytoma	3	3	0	100
Natural killer/T-cell lymphoma	2	2	0	100
Diffuse large B-cell lymphoma	222	216	6	97
Follicular lymphoma	140	133	7	95
Peripheral T-cell lymphoma	10	9	1	90
Small lymphocytic lymphoma	29	24	5	83
Enteropathy-type T-cell lymphoma	3	2	1	67
Marginal zone lymphoma, splenic	3	2	1	67
MALT marginal zone lymphoma	50	27	23	54
Lymphomatoid papulosis	2	1	1	50
Primary cutaneous anaplastic large T-cell lymph	oma 5	2	3	40
All	766	718	48	94

FDG uptake and grading

Fig 3. Box plots showing distribution of standard uptake value (SUV) among patients with aggressive and indolent lymphoma. The box represents the lower and upper quartiles and the median is marked with a horizontal line inside the box. The whiskers are the 10th and 90th percentiles with outlying observations individually plotted by squares outside the whiskers.

Schöder et al. JCO 2005

Aggressive N=63	
DLBCL	55
FL gr III	7
PTCL	1

Indolent N=28	
FL gr I	11
FL gr II	4
MZL	4
small cell	8
IyPI	1

FDG avidity

Variability within same histological subtype: example DLBCL

PET for Staging of Lymphomas

Meta-analysis (Isasi et al. Cancer 2005, 104:1066-1074) 20 studies – 854 patients – 3658 lesions

TABLE 4

Summary True-Positive Rate, False-Positive Rate, and Maximum Joint Sensitivity and Specificity of FDG-PET in the Staging of Patients with Lymphoma (January 1995–June 2004)

	No. of studies	TPR (95% CI)	FPR (95% CI)	Maximum joint sens and specificity (95%
Patient-based data				
All	14	90.9 (88.0-93.4)	10.3 (7.4-13.8)	87.8 (85.0-90.7)
Excluding studies with lowest sensitivity and lowest specificity	12	91.8 (88.8-94.3)	9.5 (6.6-13.1)	89.6 (87.5-91.6)
Hodgkin disease	6	92.6 (88.4-95.6)	13.4 (8.0-20.6)	89.4 (84.5-94.3)
Non-Hodgkin lymphoma	5	89.4 (82.8-94.1)	11.4 (5.6-19.9)	85.0 (78.2-82.0)
Lesion-based data				
All	7	95.6 (93.9-97.0)	1.0 (0.6-1.3)	95.6 (93.1-98.1)
Excluding study with lowest specificity	6	95.1 (93.0-96.7)	1.0 (0.5–1.3)	95.8 (92.0-99.6)

upstaging : median 13.2% (7.7-17.4) downstaging: median 7.5% (2.3-23.4)

PET for Staging of Lymphomas

Schiepers C, Eur J Nucl Med Mol Imaging. 2003 Jun;30 Suppl 1:S82-8.

First author	Year	Ref.	Patients	Р	R	Positive lesions	Туре	Sensitivity, CT	Sensitivity, PET	Specificity, CT	Specificity, PET	Biopsy
Buchmann	2001	[30]	52	52	_	124 regions	Mixed	84	99	100	100	30%
Jerusalem	2001	[35]	33	29	4	-	HD	73	79	-	-	-
Najjar	2001	[18]	36	21	15	31 sites	HD	90	87	100	100	All 31
Weihrauch	2002	[40]	22	22	_	77 sites	HD	74	88	100	100	-
Wirth	2002	[41]	50	50	_	117 sites	Mixed	68	82	-	-	_
Sasaki	2002	[22]	46	43	3	152 sites	Mixed	65	92	99	99	-

Table 1. Overview of recent studies comparing CT and PET for the staging of lymphoma

Three studies evaluated patients with Hodgkin's disease (HD), the other 3 had a mix of HD and NHL. When available, the number of sites biopsied is provided Ref, Reference number; P, number of patients for primary staging; R, number of patients for re-staging

PET/CT for staging HD

Raanani, Annals of Oncology 2006 Comparison of CE-CT with low-dose CT+PET

Table 3. Comparison of staging algorithms based on CT or PET/CT in35 patients with HD

PET/CT	CT				
	Ι	II	Ш	IV	NE
Ι	-	2	-	_	_
II	1	14	1	2	_
III	_	5	2	_	_
IV	_	3	2	2	_
NE	_	1	_	_	_

Discordant in 45%

32% upstaging (non-enlarged LN, liver, spleen, bone, thymus) 13% downstaging

PET for staging of Lymphomas

DD lymphoma vs brown fat tissue

PET for DD enlarged lymph nodes

Toxoplasmosis

DLBCL

PET for staging of Lymphomas

"reactive BM"

BMB+

ZA

PET for Staging of Lymphomas Conclusions

- Higher sensitivity and specificity for nodal and extra-nodal disease but false negatives do occur!!!!!!
- Improved accuracy and "certainty of diagnosis" with PET-CT
- Complementary to contrast-enhanced CT
- Complementary to bone marrow aspiration
- Better than gallium scintigraphy
- Change in therapy management in 10%-20%, especially Stage I-II effect on outcome?

Initial staging = CE-CT + BMB + (PET)

UNIVERSITAIR ZIEKENHUIS ANTV

PET-CT in lymphoma

Low dose PET-CT <30 mAs , no contrast 2 mSv "diagnostic" PET-CT 85 mAs, 120 ml contrast 8 mSv Dedicated CT 140 mAs, 200 ml contrast 15-20 mSv

FDG and Brown Fat Uptake

White fat

Brown fat

BAT regulates the body temperature by non-shivering thermogenesis

BAT is activated by stimulation of the β Adrenergic receptors and will induce oxidation of free fatty acids. The energy generated in this process is completely converted to heat.

Pattern

Methods

- Prospective study from January to March 2008
- Inclusion criteria
 - Patient scheduled for a FDG PET-CT examination (Siemens Biograph 2) were randomly assigned to the pre-treatment group or not.
- Exclusion criteria
 - Astma
 - Patients already on beta suppression
- Pre-treatment group received 20 mg Propranolol (Inderal[°]) 30 min prior to FDG injection.
 - No administration of Diazepam.
 - Patients were kept warm during uptake phase.
- Control of blood pressure and heart rate in all patient
 - on arrival, prior to FDG injection, prior to scan

Data analysis

- Visual scoring (- or +) for different regions
- Statistical analysis of 3 groups (Fisher exact)
 - Control group
 - Pre-treatment with Inderal 20 mg
 - Home medication

Results

330 FDG - PET – CT

- 190 males 140 females
- mean age 58 (range 4-89)
- no significant differences between groups with regard to age, gender, diagnosis and BMI
- No effect of low dose inderal on heart rate and BP

Results

No patients

Brown fat

No brown fat

Pre-treated group (propanolol 20mg)	99	3 (3%)	96 (97%)	P<0.001
Control group	160	26 (16.3%)	134 (83.7%)	
Beta-blocker (home medication)	71	1 (1.4%)	70 (98.6%)	P<0.001
Total	330	30 (9%)	300 (91%)	

Effect on one patientwith Inderalwithout Inderal

PET for response assessment

- Literature data
 - Impact of histology, treatment, timing
- How to analyse
 - New cheson criteria vs other methods

UNIVERSITAIR ZIERENHUUS AN I WERPEN

PET at the end of therapy

Systematic review Zijlstra et al, Heamatologica 2006

Systematic review Terasawa, JNM 2008, accuracy independent of residual mass

JOURNAL OF CLINICAL ONCOLOGY

Revised Response Criteria for Malignant Lymphoma

Bruce D. Cheson, Beate Pfistner, Malik E. Juweid, Randy D. Gascoyne, Lena Specht, Sandra J. Horning, Bertrand Coiffier, Richard I. Fisher, Anton Hagenbeek, Emanuele Zucca, Steven T. Rosen, Sigrid Stroobants, T. Andrew Lister, Richard T. Hoppe, Martin Dreyling, Kensei Tobinai, Julie M. Vose, Joseph M. Connors, Massimo Federico, and Volker Diehl

Use of Positron Emission Tomography for Response Assessment of Lymphoma: Consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma

Malik E. Juweid, Sigrid Stroobants, Otto S. Hoekstra, Felix M. Mottaghy, Markus Dietlein, Ali Guermazi, Gregory A. Wiseman, Lale Kostakoglu, Klemens Scheidhauer, Andreas Buck, Ralph Naumann, Karoline Spaepen, Rodney J. Hicks, Wolfgang A. Weber, Sven N. Reske, Markus Schwaiger, Lawrence H. Schwartz, Josee M. Zijlstra, Barry A. Siegel, and Bruce D. Cheson

New Cheson Guidelines for end of treatment evaluation

Cheson et al, JCO 1999 and Cheson et al, JCO 2007

IWG criteria → IWC+PET criteria

Complete remission (CR): No more lesions visible

Complete remission unconfirmed (CRu): reduction >75%

Partial remission (PR): reduction >50%

Stable disease (SD): reduction <50%

Progressive disease (PD): new lesion or >50% increase

Exception New lesion < 1.5 cm and PET – is also PD

Guidelines on procedure and interpretation

Juweid et al, JCO 2007

- For HD and aggressive NHL at the end of treatment
 - > 3 weeks after last chemotherapy
 - > 12 weeks after end of radiotherapy
- Standardization of acquisition procedure
 - NCI guidelines Shanker et al. JNM 2006
- Visual analysis
 - − Residual mass < 2cm → higher than local background</p>
 - − Residual mass > 2cm → higher than mediastinal blood pool
 - Special criteria for high background regions like spleen, liver, BM
- EXCLUDE increased FDG uptake in
 - Normal tissue (brown fat, Thymic rebound)
 - Inflammation

PET-CT, baseline scan, clinical history
 EXPERIENCE

New PET-CT response criteria

Courtesy of Juweid Malik

PET negative

VERS

Baseline HL, Stage III

After 6x ABVD

Relapse 6 months FU

R ZIEKENHUIS

PET for detection of residual disease Thymus Hyperplasia

FL, stage III PET after 6x CHOP

inflammatory inguinal LN due to erysipelas

Are new Cheson criteria a better predictor of outcome?

New Cheson Criteria in NHL

Brepoels, Stroobants et al., Leuk Lymphoma 2007;48:1522-1530

Materials and methods

- Data Spaepen, JCO 2000,
 69 pts with NHL after CHOP like therapy
- → Revision of PET and CT images following IWG and new Cheson criteria
- → Correlation with updated outcome

2 analyses

- > Potentially curable lymphoma
- Considered incurable
 lymphoma

Table III.1. I	Patient Characteristics	
Characteristic	No. of patients	Percentage
Age of diagnosis (years)		
Mean	52	
Range	15-72	
Ann-Arbor clinical stage		
I/II	26	38
III/IV	43	62
Histology		
Group A		
Diffuse large B-cell	41	59
Anaplastic large cell	12	17
Burkitt's lymphoma	2	3
Group B		
Follicle-center lymphoma	8	12
Mantle-cell lymphoma	4	6
Marginal-zone B-cell	2	3
International Prognostic Index (IPI)		
Low	33	48
Low intermediate	19	28
High intermediate	13	19
High	4	6

New Cheson criteria in Aggressive NHL

Brepoels, Stroobants et al., Leuk Lymphoma 2007;48:1522-1530

Data Spaepen, JCO 2000, PET after first line R/

Updated and IWC + PET response

in 55 pts with routinely FDG-avid and potentially curable (aggressive) NHL

New Cheson criteria in Indolent NHL

Brepoels, Stroobants et al., Leuk Lymphoma 2007;48:1522-1530

Data Spaepen, JCO 2000, PET after first line R/

Updated and IWC + PET response

in 14 pts with not-routinely

FDG-avid and incurable NHL (8 FL, 4 MCL, 2 MZL)

New Cheson criteria in Hodgkin

Brepoels, Stroobants et al. Leuk Lymphoma 2007:1539-1547

Data Spaepen, Br J Haematol. 2001 Updated and IWC + PET response in 56 HD PET at the end of first line R/ (after RT)

Table II.1. Patient Characteristics

		No. of		immediately
Characteristic		patients	relapse	second line
		(n=56)	(n=5)	(n=4)
Age of diagnosis	Median	32	25	36
	Range	9-70	15-44	35-39
Follow-up (months)	Median	107	13	
	Range	24-138	2-20	
Sex	Men	30	2	2
	Women	30	3	2
Ann-Arbor clinical stage	I/II	24		
	III/IV	32	5	4
B-symptoms	no	30		2
	yes	26	5	2
Bulky disease	no	34	1	1
	yes	22	4	3
Histology	Nodular sclerosis	42	3	4
	Mixed cellularity	9	2	
	Lymphocyte predominance	3		
	Unclassifiable	2		
Chemotherapy	Stanford V	19	3	3
	MOPP/ABV	37	2	1

Can RT be omitted in PET negative patients?

Kobe te al. Blood. 2008 November: 3989–3994.

Patients included in HD15 trial: PET after 6 or 8 x BEACOPP in advanced HD, RT in PET+ only

Interim analysis on patient with FU >12m (n=275)

Use of PET for during treatment for outcome prediction

PET during first-line therapy

Brepoels L, Stroobants S, Verhoef G. Leuk Lymphoma. 2007;48:270-282. Review.

Author	Number	Histology	Timing PET (cycles)	Sensitivity	Specificity	Accuracy	PPV	NPV]
Autior	of patients	Histology	FET (cycles)	70	70	70	70	70	
Jerusalem et al. [47]	28	NHL	2 - 5	42	100	73	100	67	
Mikhaeel et al. [11]	23	NHL	2 - 4	100	94	96	88	100	
Mikhaeel et al. [48]	32	HD	2-3	75	100	94	100	92	
Kostakoglu et al. [49]	30	HD/NHL	1	87	87	87	87	87	
Spaepen et al. [50]	70	NHL	3 - 4	85	100	91	100	84	
Zijlstra et al. [51]	26	NHL	2	64	75	69	75	75	
Torizuka et al. [52]	20	HD/NHL	1 - 2	87	50	80	87	50	
Friedberg et al. [24]	22	HD	3	80	94	91	80	94	
Haioun et al. [53]	90	NHL	2	63	71	68	55	77	
Mikhaeel et al. [54]	121	NHL	2-3	5-year PFS of	16.2% when PET	+, 88.8% when PI	∑_, 59.3%	f r MRU	
Hutchings et al. [55]	85	HD	2-3	5-year PFS of	38.5% when PET	+, 91.5% when PI	E−, MRU	considered l	ET-
Hutchings et al. [56]	77	HD	2	79	92	90	69	95	
Gallamini et al. [57]	108	HD	2	86	98	95	90	97	

Table III. Prognostic value of PET for early response assessment during first-line or induction treatment.

PPV: positive predictivive predictive value, HD: Hodgkin's disease; NHL: Non-Hodgkin's lymphoma; PFS: progression-free survival; PET+: PET positive; PE' negative; MRU: minim

PET at during first line therapy

Meta analysis Terasawa et al, J Clin Oncology 2009

PET at during first line therapy

Meta analysis Terasawa et al, J Clin Oncology 2009

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Early Interim 2-[¹⁸F]Fluoro-2-Deoxy-D-Glucose Positron Emission Tomography Is Prognostically Superior to International Prognostic Score in Advanced-Stage Hodgkin's Lymphoma: A Report From a Joint Italian-Danish Study N=260

Andrea Gallamini, Martin Hutchings, Caterina Patti, Annika Loft, Francesco Caterina Stelitano, Rosario Sancetta, I Ivana Pierri, and Alessandro Levis

PET in DLBCL after more intensified treatment or in combination with Retuximab

Haioun et al, Blood 2005

Poor Predictive Value of FDG-PET/CT Performed after 2 Cycles of R-CHOP standard in Patients with Diffuse Large B-Cell Lymphoma (DLCL) Amanda Cashen, M.D., Farrokh Dehdashti, M.D.*, Jinggin Luo, Ph.D.* and Nancy L. Bartlett, MD

Washington University School of Medicine, Saint Louis, MO, USA

ASH 2008, abstract 371

PET response based on new Cheson guidelines

How to evaluate early PET

Lin, Itti, Haioun et al, JNM 2007

PET prior to stem cell transplantation

Meta analysis Poulou et al, EJNMMI 2010

PET for surveillance

- Limited data
- Jerusalem et al. (Annals of Oncology 2003)
 - 36 HD
 - PET every 4-6 months during 3y
 - 11 positive PETs 5 relapses (FPR 55%)
- Mocikova et al. (Abstract Int. Symposium on HL, Cologne, 2007)
 - 82 HD, 301 PETs, mean FU 39 months
 - 70 patients were PET- after treatment
 - 31/70 became PET+ but transient non-specific in 19 pts (61,3%)
 - 12 patients were PET+ after treatment
 - 5 primary resistant HD
 - 7 non-specific and transient (1 biopsy: reactive changes)

PET for surveillance

- Goldschmidt et al, Ann Hematology 2010
 - Retrospective analysis of 125 patients who relapsed > 1m after end of therapy

	Clinical (%)	Image (%)
Histology**		
HL	20 (16.0)	22 (17.6)
A-NHL	58 (46.4)	25 (20.0)
Period of diagnosis ^b		
HL*		
1993-2000	15 (35.7)	9 (21.4)
2001-2009	5 (11.9)	13 (31.0)
A-NHL		
1993-2000	28 (33.7)	11 (13.3)
2001-2009	30 (36.1)	14 (16.9)
All		
1993-2000	43 (34.4)	20 (16.0)
2001-2009	35 (28.0)	27 (21.6)

Table 2 Pretreatment characteristics versus the modality of relapse detection

PET and PET-CT in lymphoma When and how to use?

Baseline PET

- PET/CT most accurate test
- Strongly encouraged if PET response assessment will be done
- ? Outcome

PET during treatment

- Promising but only on in trials (impact on outcome?)
- Optimal Timing? What is PET positive?

• End of treatment PET

- − Routine use in aggressive NHL and HD → new response criteria
- No detection of MRD; Sensitive enough to omit radiotherapy?
- Exclude false positive uptake!

• PET for surveillance

- − Limited data, high false positive rate → no routine use, histology!
- Better than clinical FU?