An Engineering Challenge for Next-Generation Astronomical Research : The Square Kilometre Array

Dr. Adrian Tiplady, SKA South Africa

SQUARE KILOMETRE ARRA

Rhodes/HartRAO 2326 MHz

Traditional radio telescopes

A radio telescope array – the VLA

- VLA
 - 27 x 25m dishes
 - Array configuration expands from 1km to 35km
 - Most productive radio telescope in the world

Trans-continental interferometric observations

Radio Astronomy VLBI Arrays

The SKA

- An international `megascience project'
 - 55 institutes in 19 countries
 - 15 Funding Agencies in the "Informal Funding Agencies Workgroup"
 - 100 FTE on SKA R&D
 - 120 astronomers and engineers on committees and workgroups
- 100 times more sensitive than today's best instruments
- Proposed capital budget of 1.5 billion €/£/\$'s
- Operational circa 2021

International organisation

Square Kilometre Array

- Distributed array of some 4500 dishes, the equivalent of 1 million DSTV dishes in collecting area
- It will rely heavily on new technologies, both unique and consumer-driven.
 - The cost per unit collecting area must be less than one tenth that of current technologies
 - Take advantage of Moore's law in radio and software engineering
 - Will include COTS components
 - Will drive innovation in generic technologies

Why build it?

- Fundamental questions in physics and astronomy
 - "What are the basic properties of the fundamental particles and forces?"
 - Neutrinos, Magnetic Fields, Gravity, Gravitational Waves, Dark Energy
 - "What constitutes the missing mass of the universe?"
 - Cold Dark Matter (e.g. via lensing), Dark Energy, Hot Dark Matter (neutrinos)
 - "What is the origin of the Universe and the observed structure and how did it evolve?"
 - Atomic hydrogen, epoch of reionization, magnetic fields, starformation history.....
 - "How do planetary systems form and evolve?"
 - Movies of Planet Formation, Astrobiology, Radio flares from exoplanets.....
 - "Has life existed elsewhere in the Universe, and does it exist elsewhere now?"
 - SETI

The universe as we don't know it

75% DARK ENERGY

21% DARK MATTER

MATTER

What Is the Reionization Era?

A Schematic Outline of the Cosmic History

International R&D : Dishes+Single Pixel Feeds

ATA 6m hydroformed dish

USA

Canada 10 m composite dish

South Africa 15 m composite dish

International R&D: Dishes+Phased Array Feeds

DRAO Canada Vivaldi arrays

International R&D: Multi-beaming with a dense aperture array

SKA Design Study (Europe) EMBRACE (ASTRON)

International R&D : Sparse aperture arrays

LOFAR (Netherlands et al)

LWA (USA)

MWA (USA, Australia)

International R&D: Data transport

Status of the e-EVN

South Africa – International Hub of Astronomy

South Africa – International Hub of Astronomy

Radio Astronomy VLBI Arrays

South African SKA Participation... Why?

- We have an excellent site
 - Good RFI environment
 - Stable ionosphere
 - Dry and stable troposphere
 - Remote but accessible
 - Common sky coverage with existing telescopes
- Capacity to construct and support the SKA
 - Proven project management track record
 - World-class manufacturing and construction industry
- Government commitment
 - Astronomy Geographic Advantage Act
 - Astronomy Geographic Advantage Programme
 - Implementation of basic infrastructure

SKA South Africa Project Office, JHB

South African SKA

South African SKA

Population density, transport infrastructure and RF transmitters

South African Radio Frequency Measurement Campaign

South African Radio Frequency Measurement Campaign

South African Radio Frequency Measurement Campaign

Astronomy Geographical Advantage Act

- Empowers the Minister for Science and Technology to declare protected areas around strategic astronomy sites by publication in the Government Gazette.
- The Act empowers the Minister to prohibit over-flights
- The Act covers both radio and optical astronomy
- Three tiers of protected areas:
 - Core area the physical area of the observatory / instrument
 - Central area surrounds the core area. Minister prohibits certain activities / categories of activities in this area
 - Coordination area –Minister sets standards which activities must comply with
- Protected areas apply to existing and new activities

Radio Astronomy Reserve

Carnarvon, the town closest to SA SKA site

MeerKAT (Karoo Array Telescope)

MeerKAT

Parameter	MeerKAT
A	>80x15m=14139m ² (or area equivalent)
T _{sys}	27К
v [GHz]	0.5-10
Δν	512 MHz
Spectral channels	65536
Δv_{min}	300 Hz
Nominal baseline (max)	5 km
Spatial resolution	10″ x (1420MHz/v) x (5km/L)
Instantaneous FoV	0.73 x (1420MHz/v) ² x (15m/D) ² deg ²
Post-calibration polarisation purity	40 dB

- Includes planning for mid/low frequency aperture array
- Maximum baseline not yet settled imaging vs. point sources
- Dish diameter not yet settled cost function dependent on more than just science

MeerKAT... work in progress

MeerKAT Team, Cape Town

MeerKAT engineering team

MeerKAT timescales

Making KAT happen – risk driven concurrent design approach

Making KAT happen – implementation through prototypes

Challenges

- Geographical diversity
 - Teams based in Cape Town, Johannesburg and Grahamstown
- Very tight deadlines
 - 15 year project in 5 years, resulting in incomplete test and verification cycles
 - Over-engineered prototypes
- Experience in radio astronomy
 - Traditionally, radio telescopes built by scientists
 - Expertise held by scientists
 - Initial 'incompatability' between scientists and system engineers
- Future proofing
 - User requirements are 'unknown'
- Highly skilled team members
 - High proportion of PhD's and masters degrees

MeerKAT... work in progress

Roads and power

14 000 Ha of land purchased for MeerKAT

RFI-shielded on-site complex for MeerKAT to be built at Losberg

Support base for MeerKAT at Klerefontein, near Carnarvon

Data Transport

Site to be linked in to regional redundant loop Direct link to SANREN and peer research networks

MeerKAT Collaborations

- South Africa is part of SKA Design Study (FP6 programme) and PrepSKA (FP7 programme)
- Participating in new technology receiver development (FPA) with UK SKADS group (Cambridge, Oxford, Manchester) and ASTRON
- Existing technology partnerships
 - CONRAD (www.conradsoftware.org) South African/Australian collaboration to develop software for new generation radio astronomy array telescopes
 - CASPER(casper.berkeley.edu) Collaboration to develop new generation, generic backend digital signal processing boards for astronomy facilities
- Other collaborations
 - Caltech/Jet Propulsion Labs (USA)
 - University of Illinois (USA)
 - University of Wisconsin
 - Cornell University
 - IBM

Collaboration with Berkeley University to develop ROACH

(digital back end for MeerKAT)

Human Capital Development

- Initiated in 2004 to leverage attraction of SKA and MeerKAT
- Raise interest of careers in science and technology and grow human capital in
 - radio astronomy, fundamental physics, radio frequency engineering, digital signal processing, software engineering, high-performance computing, rapid data transport and related subjects.
- Strategy to grow science, engineering and technology at school, undergraduate, post-graduate and senior research levels
 - The SA SKA senior researchers programme
 - The SA SKA postgraduate bursay programme
 - The SA SKA undergraduate bursary and development programme
 - The SA SKA astronomy and engineering schools programme
 - The SA SKA supplementary mathematics and science teaching programme
 - The SA SKA Youth into Science programme
- Dual supervision agreements for SA SKA/KAT bursars with Cambridge, Oxford, Manchester, Caltech, Illinois

Dr. Adrian Tiplady atiplady@ska.ac.za +27 11 442 2434

Department: Science and Technology **REPUBLIC OF SOUTH AFRICA**