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Abstract

Using a machine-learning technique known as random forests, we analyze the role of investor
confidence in forecasting monthly aggregate realized stock-market volatility of the United
States (US), over and above a wide-array of macroeconomic and financial variables. We
estimate random forests on data for a period from 2001 to 2020, and study horizons up to
one year by computing forecasts for recursive and a rolling estimation window. We find
that investor confidence, and especially investor confidence uncertainty has out-of-sample
predictive value for overall realized volatility, as well as its “good” and “bad” variants. Our
results have important implications for investors and policymakers.
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1 Introduction

As market agents tend to make overly optimistic or pessimistic judgments and choices, following

the seminal contributions of Baker and Wurgler (2006, 2007), many other studies (see for exam-

ple, Bathia and Bredin (2013), Gebka (2014), Da et al., (2015), Huang et al. (2015), Jiang et

al. (2019), Chen et al. (forthcoming)) have highlighted the role of investor sentiment in predict-

ing (in- and out-of-sample) aggregate and firm-level (excess) stock returns of the United States

(US). Building on this area of behavioral finance, recent works (see for example, Gupta and Kyei

(2016), Balcilar et al. (2018), Gupta (2019), Olson and Nowak (2019)) have also highlighted the

role of investor sentiment in driving US stock market volatility. This second-moment effect is

not surprising due to the existence of so-called “noise traders" in the market, who in turn, are

investors whose trading decisions are based on what they perceive to be an informative signal

but which, to a rational agent, does not convey any information (Black (1986)). In the presence

of such noise trading, equity prices tend to drift further from the fundamentals (Zhang (2006)),

which then results in higher liquidity in terms of trading volume (Greene and Smart (1999))

and consequently higher risk, i.e., volatility, via the Mixture of Distribution Hypothesis (MDH)

introduced by Clark (1973), or Sequential Information Arrival Hypothesis (SIAH) developed

by Copeland (1976). Recall that, the MDH postulates that the innovation on returns is a linear

combination of the intraday return movements. The intraday return increment incorporates the

number of information flows arrived into the market in a given day. Since the intraday price

movement is random, daily returns follow a mixture of normally distributed random variables

with the information flow into the market as a mixing variable. To sum up, daily price changes

are driven by a set of information flow and the arrival of unexpected news is accompanied by

the above average trading activity. On the other hand, the SIAH questions the instantaneous re-

lationship as predicted by MDH and provides a different explanation. It argues that each trader

observes the information signal differently at times and may not receive the information simul-

taneously, thereby generating a series of incomplete equilibria. Market equilibrium can be es-

tablished provided that all traders receive the same set of information simultaneously. Thus, the

shift of new information is not immediate as considered in the MDH. Nevertheless, both MDH

and SIAH believe that the price volatility of the market can be potentially predictable through
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the knowledge of trading volume, and that the relationship of volume and volatility is positive.

While the studies showing a causal impact of investor sentiment on stock market volatility are

indeed insightful, they are based on models of in-sample predictability, which provides no guar-

antee of out-of-sample forecasting gains, and the ultimate test of any predictive model (in terms

of the econometric methodologies and the predictors used) is in its forecasting performance

(Campbell (2008)). This is precisely what we aim to do in this paper by forecasting stock market

volatility of the US, using five (survey-based) measures of (individual and institutional) investor

sentiment and confidence, over and above a wide-array of macroeconomic and financial variables

(the importance of which for volatility has been highlighted by Engle and Rangel (2008), Rangel

and Engle (2011), Asgharian et al. (2013), Engle et al. (2013), Conrad and Loch (2015) among

others) summarized by (eight) latent factors (derived from a large data set), (six) metrics of as-

sociated uncertainties of these variables (as suggested to have predictive content for volatility,

for example, by Bekaert and Hoerova (2014), Liu and Zhang (2015), Kaminska and Roberts-

Sklar (2018), Baker et al. (2020)). Notably, we not only look at the mean values of the investor

sentiment and confidence indexes, but also their corresponding time-varying volatility capturing

investors’ uncertainty, which in turn, can also lead to noise and stock market risk by stimulating

investors’ psychological biases (Escobari and Jafarinejad (2019), Liu and Gupta (2021)). One

must realize that forecasting of volatility is of importance due to several reasons (as outlined

in Poon and Granger (2003), and Rapach et al. (2008)): Firstly, when volatility is interpreted

as uncertainty, it becomes a key input to investment decisions and portfolio choices. Secondly,

volatility is the most important variable in the pricing of derivative securities. To price an op-

tion, one needs reliable estimates of the volatility of the underlying assets. Thirdly, financial

risk management according to the Basle Accord as established in 1996 also requires modeling

and forecasting of volatility as a compulsory input to risk-management for financial institutions

around the world. Finally, financial market volatility, as witnessed during the Global Financial

Crisis of 2007-2008 and more recently during the outbreak of the COVID-19 pandemic, can have

wide repercussions on the economy as a whole. Hence, forecasts of market volatility can serve as

a measure for the vulnerability of financial markets and the economy, and can help policymakers

design appropriate policies. Evidently, accurate forecasting of the process of volatility has ample

2



implications for portfolio selection, the pricing of derivative securities, risk management, and

policy decisions.

Specifically speaking, we forecast monthly realized volatility (RV) using an extended version of

the heterogeneous autoregressive (HAR)-RV model of Corsi (2009), which incorporates the role

of the various monthly predictors over the period of 2001:06 to 2020:06. Note that measuring

volatility using RV, which in our case is captured by the sum of squared returns of the Dow Jones

Industrial Average (DJIA) over a month (following Andersen and Bollerslev (1998)), provides

us an observable and unconditional metric of volatility (unlike in the case of generalized au-

toregressive conditional heteroscedastic (GARCH) and stochastic volatility (SV) models), which

is otherwise a latent process. At the same time, the benchmark HAR-RV model, can capture

long-memory and multi-scaling properties observed for stock market volatility (e.g., Mei et al.

(2015)), despite having a simplistic structure. In this regard, the key feature of the HAR-RV

model is that it uses volatilities from different time resolutions to forecast the realized stock-

price volatility. The model, thereby, captures in a parsimonious way the key elements of the

heterogeneous market hypothesis (Müller et al. (1997)), which states that different classes of

market participants populate the stock market and differ in their sensitivity to information flows

at different time horizons.

Econometrically, for our forecasting application, we use a machine-learning technique known

as random forests (Breiman (2001)) to compute forecasts of overall RV, as well as good (sum

of squared positive returns) and bad (sum of squared negative returns) RVs, given the obser-

vation by Giot et al. (2010) that financial market participants care not only about the level of

volatility, but also of its nature, with all traders making the distinction between upside and down-

side volatilities. The use of random forests in our forecasting application has several advantages.

First, random forests render it possible to analyze the links between realized volatility and a large

number of predictors (as is the situation in our case, which involves as many as 34 predictors) in

a fully data-driven way. Second, random forests automatically capture potential nonlinear links

between realized volatility and its predictors (as depicted by the literature on investor sentiment

and stock market volatility discussed above), as well as any interaction effects among the predic-

tors. Finally, unlike the ordinary-least-squares technique commonly used to estimate HAR-RV
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models, random forests always yield forecasts of realized volatility that are non-negative.

To the best of our knowledge, this is the first attempt to analyze the role of investor sentiment

and confidence indexes, over and above a large number of macroeconomic and financial control

variables, in forecasting the RV of the DJIA using machine-learning. In the process, we add

to earlier studies using machine-learning techniques to forecast stock returns (e.g., Gu et al.

(2020)) and financial-market volatility (e.g., Mittnik et al. (2015), Bouri et al. (2020)) as well as

to the already existing large literature on the forecastability of US stock market volatility (see for

example, Ben Nasr et al. (2014, 2016), Salisu et al. (2020) for detailed reviews) by considering

the role of behavioral variables. We structure the remainder of this research as follows. In

Section 2, we briefly describe how a random forest is grown. In Section 3, we describe our data

and report our empirical results. Finally, in Section 4, we conclude with final remarks.

2 Random forests

For forecasting realized stock-market volatility, we use a popular machine-learning technique

known as random forests. Intuitively, a random forest is an ensemble of a large number of

individual regression trees (see Hastie et al., (2009) for a for a textbook exposition; see also the

exposition in Bouri et al. (2020); our exposition closely follows theirs). A regression tree, T ,

is made up of branches that subdivide the space of predictors, x = (x1,x2, ...), of realized stock-

market volatility, RV , into l non-overlapping regions, Rl . In order to compute these regions, a

recursive search-and-split algorithm is applied in a top-down way.

In order to illustrate how this search-and-split algorithm works, we start at the top level of a tree,

and then iterate over the various predictors, s, and all potential splitting points, p, that can be

formed using the data on a predictor. For every combination of a predictor and a splitting point,

the search-and-split algorithm identifies two half-planes, R1(s, p) = {xs|xs ≤ p} and R2(s, p) =

{xs|xs > p}, in such a way so as to minimize the following squared-error loss criterion:

min
s,p

{
min
R̄V 1

∑
xs∈R1(s,p)

(RVi− R̄V 1)
2 +min

R̄V 2
∑

xs∈R2(s,p)
(RVi− R̄V 2)

2

}
, (1)
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where i denotes observations on RV , that belong to a half-plane, and R̄V k = mean{RVi |xs ∈

Rk(s, p)},k = 1,2 is the half-plane-specific mean of RV . This minimization problem requires (i)

searching over all combinations of s and p, and, (ii) given a combination of s and p, minimizing

the half-plane-specific loss by an optimal choice of the half-plane-specific means of RV . Solving

the minimization problem gives the top-level (because we started at the top level of a tree) optimal

splitting predictor and optimal splitting point, and the two region-specific means, R̄V k (because

our regression tree has two terminal nodes).

The region-specific means could already be used for forecasting RV , but it is clear that growing

a somewhat larger tree should give a more nuanced description of the link between realized

volatility and its predictors. In order to grow a larger tree, the natural next step is to apply the

search-and-split algorithm (and, thus, the minimization problem given in Equation (1)) to the

two top-level half-planes, R1(s, p) and R2(s, p). The result of such an application of the search-

and-split algorithm are two second-level optimal splitting predictors and optimal splitting points,

and four second-level region-specific means of RV .

Naturally, solving the minimization problem over and over again results in an increasingly com-

plex regression tree. Tree building stops when a regression tree has a preset maximum number of

terminal nodes or every terminal node has a minimum number of observations. In our empirical

application, we use a cross-validation technique to determine the optimal minimum number of

observations per terminal node (see Section 3.2 for details).

Equipped with a regression tree, we send the data on the predictors from the top level of the tree

down to its leaves along the nodes and branches of the tree, and compute the forecast of RV by

its region-specific mean. For a regression tree made up of L regions, this forecast is formed as

follows (1 denotes the indicator function):

T
(
xi,{Rl}L

1
)
=

L

∑
l=1

R̄V l1(xi ∈ Rl). (2)

A problem when using a large regression tree for forecasting RV is that its complex hierarchical

structure gives rise to an overfitting and data-sensitivity problem. A random forest stabilize

forecasting performance by solving the overfitting problem in three steps. (1) A large number of
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bootstrap samples (sampling with replacement) is drawn from the data. (2) A random regression

tree is fitted to every bootstrap sample. A random regression tree uses for every splitting step

only a random subset of the predictors and, thereby, reduces the effect of influential predictors on

tree building. In addition, growing a large number of such random trees lowers the correlation of

forecasts from the individual trees. (3) A random forecast averages the forecasts of RV obtained

from the individual random regression trees stabilizes the forecasts of RV .

3 Empirical analysis

3.1 Data and empirical models

Since the construction of the confidence indexes, details of which we will discuss below, is based

on the survey conducted on investors in the Dow Jones, we consider the daily market returns of

the DJIA to compute the realized market volatility estimates (RV ) for each month from log daily

returns (rt) as follows:

RVt=
N

∑
i=1

r2
i , (3)

where N denotes the number of data available for the month. In addition to total aggregate RV,

we examine “good” and “bad” realized volatility. The “good” and “bad” components of real-

ized volatility are defined as the upside and downside realized semi-variances (RV B and RV G),

respectively, computed from positive and negative returns (see Barndorff-Nielsen et al. (2010))

as follows (I denotes the indicator function):

RV B
t =

T

∑
i=1

r2
i I[(ri)<0], (4)

RV G
t =

T

∑
i=1

r2
i I[(ri)>0]. (5)

When studying daily realized volatility, it is common practice among researchers to consider

daily, weekly, and monthly realized volatilities as predictors of subsequent realized volatility. In

our case, because we study monthly data, in the benchmark HAR-RV framework, we forecast
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the average realized volatility, RVt+h from month t +1 to month t +h using the current realized

volatility, RVt , the quarterly realized volatility, RVt,q, computed as the average realized volatility

from month t−3 to month t−1, and the yearly realized volatility, RVt,y, computed as the average

realized volatility from month t − 12 to month t − 1. We compute these quarterly and yearly

average realized volatilities for the standard measure of realized volatility and for good and bad

realized volatilities. The baseline HAR-RV model defined in this way forms our Model 1.

Besides the current, quarterly and yearly realized volatilities, we now turn our attention to the

detailed discussion of our other predictors. In this regard, we use 8 factors derived from the 134

macroeconomic variables of Ludvigson and Ng (2009, 2011).1 Including these series gives us

the advantage of capturing broad categories of overall and regional macroeconomic time series

namely, real output and income, employment and hours, real retail, manufacturing and sales data,

international trade, consumer spending, housing starts, housing building permits, inventories and

inventory sales ratios, orders and unfilled orders, compensation and labor costs, capacity utiliza-

tion measures, price indexes, interest rates and interest rate spreads, stock market indicators, and

foreign exchange measures. In addition, we use the macroeconomic uncertainty (MU) and finan-

cial uncertainty (FU) measures of Jurado et al. (2015) and Ludvigson et al. (forthcoming), which,

in turn, is the average time-varying variance in the unpredictable component of 134 macroeco-

nomic and 148 financial time-series respectively, i.e., it attempts to capture the average volatility

in the shocks to the factors that summarize real and financial conditions.2 In other words, it

is derived based on the second approach outlined above. Note that the same 134 variables are

used in computing the factors used as predictors and the metric of macroeconomic uncertainty.

The metrics that we use are the broadest measures of macroeconomic and financial uncertainties

available for the US. The uncertainty indexes are available for three forecasting horizons of 1-,

3-,and 12-month-ahead. So the benchmark HAR-RV model is extended with these 14 (8 factors

and 3 MUs and FUs each) additional predictors to constitute Model 2.

1The factors are available for download from: https://www.sydneyludvigson.com/

data-and-appendixes.
2The MU and FU indexes are available for download from: https://www.sydneyludvigson.com/

data-and-appendixes.
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As far as the investor sentiment index is concerned, we rely on the American Association of

Individual Investors (AAII) Sentiment Survey, whereby the sentiment survey measures the per-

centage of individual investors who are bullish, bearish, and neutral on the stock market in the

short-term, with individuals polled from the AAII website on a weekly basis, and only one vote

per member is accepted in each weekly voting period.3 Since 1987, AAII members have been

answering the same simple question each week, i.e., What direction do AAII members feel the

stock market will be in the next 6 months? The results are compiled into the AAII investor sen-

timent index, measured as the difference between the bullish and bearish percentages,4 which

offers insight into the mood of individual investors. The AAII Investor Sentiment Survey has

become a widely followed measure of the mood of individual investors. The weekly survey re-

sults are published in financial publications including Barron’s and Bloomberg and are widely

followed by market strategists, investment newsletter writers and other financial professionals.

Since our analysis is at the monthly-level, we take the weekly averages over a month, as well as

the standard deviation of the bull minus bear opinions to capture monthly investor sentiment and

uncertainty around the same. The investor sentiment index is added to the predictors in Model

2, to give us Model 3, while the standard deviation of the index is included in Model 3 to yield

Model 4. At this stage, it must be realized that there are multiple ways, such as combining in-

formation on market-based proxies and internet searches besides surveys (see Zhou (2018) for a

detailed review in this regard), in measuring investor sentiment, which is a latent variable. We

chose to use the AAII index as compared to the other publicly available indexes like that of Baker

and Wurgler (2006, 2007) and Da et al. (2015), since data is available until recent months (un-

like December, 2018 and December, 2011 respectively), and also with the unobservable investor

confidence indexes, which we discuss next, being survey-based, makes the comparison in terms

of their creation to some degree similar.

Based on surveys conducted on both large individual and institutional investors by the Interna-

tional Center for Finance at the Yale School of Management, we consider four investor confi-

3Note that, the University of Michigan survey-based consumer confidence index is included in the 8 macro and
financial factors included in Model 2.

4The data is publicly available for download from: https://www.aaii.com/sentimentsurvey/sent_

results, and is published every Wednesday, based on the poll conducted the previous Friday.
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dence indexes, which are the only known measures for the US that are available publicly.5 The

first index is called the US one-year confidence index, which captures the percentage of the pop-

ulation expecting an increase (a number strictly greater than zero) in the DJIA in the coming

year; the second one is the US buy-on-dips confidence index, and measures the percentage of

the population expecting a rebound (increase) the next day should the market ever drop 3% in

one day; the third index is called the US crash confidence index and is associated with the per-

centage of the population who attach little probability (strictly less than 10%) to a stock market

crash in the next six months, and finally, the US the valuation confidence index which gives

the percentage of the population who think that the market is not too high, i.e., the number of

respondents who choose “too low" or “about right" as a percentage of those who choose “too

low", “too high", and “about right". As indicated earlier, to capture investor confidence we use

the index values, and the standard errors associated with these indexes to provide a proxy for

investor confidence uncertainty, giving us a total of 16 additional predictors. Given this, Model

5 involves the predictors in Model 4 plus the 4 each investor confidence indexes for individual

and institutional investors, and Model 6 include the predictors of Model 5 and the 8 investor

confidence uncertainty measures.

Though the surveys for the calculation of the confidence indexes are conducted since September,

1989, continuous monthly data begins only from June, 2001, which forms our start date, and

with the macroeconomic and financial factors and associated uncertainty measures available until

June, 2020, our analysis ends at that point.

3.2 Forecasting results

We use a recursively expanding estimation window to estimate our Models 1 to 6 by random

forests. To this end, we start with a training period of 100 observations, compute out-of-sample

forecasts for h = 1,3,6,12, add one month’s data to reestimate the models and to compute an-

other set of out-of-sample forecasts, and continue in this way until we reach the end of our

5The indexes are downloadable from: https://som.yale.edu/faculty-research-centers/

centers-initiatives/international-center-for-finance/data/stock-market-confidence-indices/

united-states-stock-market-confidence-indices.
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sample period. We also consider somewhat longer training periods of 120 and 140 observations

(and correspondingly shorter out-of-sample periods). For estimation of random forests and eval-

uation of the out-of-sample forecasts, we use the statistical computing program R (R Core Team

2019) and the add-on package “grf” (Tibshirani et al. 2020). While recursively expanding the

estimation window, we use cross-validation for every model to optimize the number of predictors

randomly selected for splitting, the minimum node size of a tree, and the parameter that governs

the maximum imbalance of a node. We use 2,000 random regression trees to grow a random

forest.6

Table 1 summarizes ratios of root-mean-squared-forecasting errors (RMSFE). We compute these

ratios for various model configurations. For example, the column entitled “Model 1 / Model

2” summarizes the ratios of the RMSFE computed for Model 1 divided by the RMSFE that we

obtain for Model 2. A RMSFE ratio that exceedss unity, thereby, indicates that the second model

outperforms the first one. We compute the RMSFE ratios for both RV and
√

RV , that is, for

the realized variance and the realized standard deviation (the latter is often being used in the

empirical literature as a metric of realized volatility).

− Please include Table 1 about here. −

As one would have expected, the results that we summarize in Table 1 clearly show that Model

2 outperforms Model 1 in terms of the RMSFE for all trainng periods and forecast horizons, and

for both RV (Panel A) and
√

RV (Panel B). The differences between Models 2, 3, and 4 in terms

of the RMSFE criterion, in turn, are less clear-cut. While the RMSFE ratio exceeds unity for

some configurations of training periods and forecast horizon, it falls short of unity for others,

where Model 3 (Model 4) tends to perform somewhat better than Model 2 (Model 3) when we

study
√

RV . Furthermore, Model 5 tends to perform better than Model 4 in the majority of cases,

and Model 6 tends to show a better performance in terms of the RMSFE criterion than Model

5, notably for the intermediate training period of (120 observations). In other words, a main

6It should be noted that the “grf” package offers the option to use different subsamples for constructing a tree
and for making predictions. We deactivate this option, as in a classic random forest.
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result is that adding the investor confidence indexes for individual and institutional investors,

and especially the 8 investor confidence uncertainty measures improves forecast performance. A

comparison of Model 6 and Model 2 (that is, the model that features the 8 factors and 3 MUs and

FUs each).7

− Please include Table 2 about here. −

Table 2 summarizes the results (p-values) of the test suggested by Clark and West (2007) of equal

mean-squared prediction errors. The test results corroborate the results of the RMSFE analysis.

While, unsurprisingly, Model 2 outperforms Model 1, the test results are largely insignificant

for the comparisons of Models 2 and 3 as well as Models 3 and 4. In sharp contrast, the test

results become increasingly significant when we compare Models 4 and 5 (especially so when we

study
√

RV ), and they are significant in the overwhelming majority of configurations of training

periods and forecast horizons when we test Model 5 against Model 6, and now for both metrics

of realized volatility, RV (Panel A) and
√

RV (Panel B). Similarly, Model 6 tends to outperform

Model 2, especially for the intermediate and longer training period. Again, we conclude that

investor confidence indexes for individual and institutional investors, and especially the investor

confidence uncertainty measures, have predictive value for realized stock-market volatility.8

− Please include Table 3 about here. −

The results for good and bad realized volatility that we summarize in Table 3 lend further support

to our main conclusion, with one qualification. Model 5 outperforms Model 4 to a lesser extent

than in the case of standard aggregate realized stock-market volatility.The results for Model 6, in

turn, clearly show that the investor confidence uncertainty measures can help investors to forecast

out-of-sample realized good and bad stock-market volatility.

7Table A1 given at the end of the paper (Appendix) shows that using the mean-absolute-forecast error (MAFE)
rather than the RMSFE gives qualitatively similar results.

8As a robustness check, we consider alternative rolling-estimation windows. Results are summarized at the end
of the paper (Table 2) and confirm the results for the recursive-estimation windows.
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4 Concluding Remarks

In several earlier empirical studies, machine-learning techniques have been used to study the de-

terminants of the returns and the volatility of important financial time series. Our empirical study

contributes to this mushrooming literature in that we use random forests to demonstrate that in-

vestor confidence in general, and investor confidence uncertainty in particular have predictive

value for aggregate monthly realized US stock-market volatility (and its good and bad variants).

Importantly, we observe this predictive value in out-of-sample forecasting experiments based

on various recursive and rolling estimation windows, and for different forecast horizons of up

to one year. Moreover, we observe the predictive value of investor confidence and especially

investor confidence uncertainty in models that feature, in addition, a wide-array of macroeco-

nomic and financial variables that have been extensively studied in earlier empirical research

and which have been shown to contain important value for modeling volatility. Our empirical

results, thereby, demonstrate that not only conventional macroeconomic and financial funda-

mentals, but also behavioral factors, and investor uncertainty specifically, matter for forecasting

realized stock-market volatility.

Given that volatility forecasts are used as inputs for optimal asset-allocation decisions, our find-

ings suggest that incorporating the role of investor confidence, over and above other macroeco-

nomic and financial predictors, in forecasting models of market agents can help to improve the

design of portfolios across various investment horizons. Given that stock-market volatility has

historically impacted the real economy of the US (Pierdzioch and Gupta (2020)), policymakers

would need to monitor investor confidence closely, and design policies accordingly to ensure that

investor confidence uncertainty does not lead to volatile stock markets.

As part of future research, contingent on availability of data on investor confidence, it would

be interesting to extend our analysis to other developed and emerging markets, and also to other

asset markets, given evidence of volatility-connectedness (see, for example, Tiwari et al. (2018)).
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Table 1: Root-mean-squared-forecast-error ratios

Panel A: Results for RV

Window / horizon Model 1 / Model 2 Model 2 / Model 3 Model 3 / Model 4 Model 4 / Model 5 Model 5 / Model 6 Model 2 / Model 6
Window=100 / h=1 1.224 0.979 0.989 0.997 1.001 0.967
Window=100 / h=3 1.389 1.019 0.997 1.032 0.988 1.037
Window=100 / h=6 1.675 1.004 1.005 1.007 1.092 1.110
Window=100 / h=12 1.682 0.994 0.995 0.909 0.934 0.839
Window=120 / h=1 1.079 0.953 0.987 1.010 1.026 0.974
Window=120 / h=3 1.119 1.001 0.990 1.043 1.073 1.108
Window=120 / h=6 1.475 1.001 1.017 0.955 1.250 1.214
Window=120 / h=12 1.595 0.994 0.996 0.936 1.019 0.944
Window=140 / h=1 1.070 0.947 0.983 1.050 1.004 0.981
Window=140 / h=3 1.095 1.006 0.991 1.071 1.052 1.122
Window=140 / h=6 1.425 1.007 1.019 1.080 1.116 1.238
Window=140 / h=12 1.606 0.994 0.997 0.981 0.978 0.950

Panel B: Results for
√

RV

Window / horizon Model 1 / Model 2 Model 2 / Model 3 Model 3 / Model 4 Model 4 / Model 5 Model 5 / Model 6 Model 2 / Model 6
Window=100 / h=1 1.125 0.999 0.999 1.020 0.997 1.015
Window=100 / h=3 1.407 1.028 1.003 1.043 1.009 1.085
Window=100 / h=6 1.723 1.013 0.993 1.050 1.064 1.125
Window=100 / h=12 1.695 0.980 0.996 0.918 0.934 0.837
Window=120 / h=1 1.038 1.017 1.004 1.055 1.002 1.080
Window=120 / h=3 1.094 1.043 1.005 1.068 1.125 1.260
Window=120 / h=6 1.436 1.016 0.993 1.005 1.257 1.275
Window=120 / h=12 1.610 0.989 0.992 0.932 1.020 0.933
Window=140 / h=1 1.024 1.023 1.002 1.078 1.003 1.108
Window=140 / h=3 1.058 1.050 1.006 1.098 1.108 1.286
Window=140 / h=6 1.404 1.017 0.999 1.123 1.140 1.300
Window=140 / h=12 1.622 0.989 0.992 0.984 0.971 0.937

Note: This table reports RMSFE ratios, computed for out-of-sample forecasts. The first model is the baseline and
the second model is the alternative model. A ratio larger than unity indicates that the alternative model outperforms
the corresponding baseline model. Estimation is by a recursive window, where “window” in the first column gives
the length of the training period. The parameter h denotes the forecast horizon (in months). The random forests are
built using 2,000 trees.
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Table 2: Comparing models by means of the Clark-West test

Panel A: Results for RV

Window / horizon Model 1 / Model 2 Model 2 / Model 3 Model 3 / Model 4 Model 4 / Model 5 Model 5 / Model 6 Model 2 / Model 6
Window=100 / h=1 0.049 0.619 0.317 0.141 0.055 0.408
Window=100 / h=3 0.057 0.084 0.226 0.053 0.314 0.069
Window=100 / h=6 0.021 0.242 0.134 0.167 0.037 0.074
Window=100 / h=12 0.001 0.765 0.783 0.803 0.140 0.740
Window=120 / h=1 0.004 0.726 0.392 0.162 0.008 0.321
Window=120 / h=3 0.009 0.297 0.330 0.077 0.022 0.064
Window=120 / h=6 0.000 0.234 0.054 0.332 0.014 0.081
Window=120 / h=12 0.002 0.747 0.737 0.947 0.167 0.698
Window=140 / h=1 0.006 0.759 0.492 0.111 0.019 0.453
Window=140 / h=3 0.015 0.221 0.187 0.032 0.073 0.048
Window=140 / h=6 0.001 0.203 0.045 0.119 0.052 0.076
Window=140 / h=12 0.001 0.809 0.691 0.862 0.495 0.695

Panel B: Results for
√

RV

Window / horizon Model 1 / Model 2 Model 2 / Model 3 Model 3 / Model 4 Model 4 / Model 5 Model 5 / Model 6 Model 2 / Model 6
Window=100 / h=1 0.031 0.212 0.207 0.060 0.016 0.143
Window=100 / h=3 0.067 0.064 0.225 0.060 0.187 0.112
Window=100 / h=6 0.029 0.178 0.387 0.090 0.039 0.067
Window=100 / h=12 0.001 0.907 0.586 0.835 0.199 0.764
Window=120 / h=1 0.080 0.060 0.166 0.075 0.063 0.066
Window=120 / h=3 0.005 0.100 0.222 0.095 0.043 0.086
Window=120 / h=6 0.001 0.204 0.233 0.190 0.014 0.072
Window=120 / h=12 0.003 0.780 0.862 0.942 0.193 0.731
Window=140 / h=1 0.092 0.041 0.207 0.054 0.086 0.048
Window=140 / h=3 0.011 0.083 0.214 0.056 0.083 0.081
Window=140 / h=6 0.002 0.208 0.182 0.064 0.073 0.076
Window=140 / h=12 0.002 0.770 0.884 0.741 0.591 0.725

Note: This table reports the results (p-values) of the Clark-West test of equal mean-squared prediction errors. The
null hypothesis is that the alternative model has the same out-of-sample forecasting performance as the baseline
model. The alternative hypothesis is that the alternative model performs better than the baseline model. Results
are based on Newey-West robust standard errors. Estimation is by a recursive window, where “window” in the first
column gives the length of the training period. The parameter h denotes the forecast horizon (in months). The
random forests are built using 2,000 trees.
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Table 3: Test results for good and bad volatility

Panel A: Results for
√

RV G

Window / horizon Model 1 / Model 2 Model 2 / Model 3 Model 3 / Model 4 Model 4 / Model 5 Model 5 / Model 6 Model 2 / Model 6
Window=100 / h=1 0.054 0.063 0.049 0.122 0.017 0.130
Window=100 / h=3 0.055 0.285 0.926 0.087 0.146 0.085
Window=100 / h=6 0.027 0.300 0.670 0.099 0.030 0.065
Window=100 / h=12 0.001 0.942 0.871 0.779 0.209 0.802
Window=120 / h=1 0.068 0.147 0.052 0.123 0.026 0.101
Window=120 / h=3 0.002 0.527 1.000 0.097 0.060 0.085
Window=120 / h=6 0.000 0.147 0.717 0.134 0.015 0.046
Window=120 / h=12 0.002 0.962 0.728 0.941 0.218 0.759
Window=140 / h=1 0.095 0.108 0.055 0.090 0.010 0.080
Window=140 / h=3 0.006 0.508 1.000 0.077 0.083 0.071
Window=140 / h=6 0.001 0.137 0.695 0.079 0.066 0.043
Window=140 / h=12 0.001 0.965 0.774 0.784 0.608 0.750

Panel B: Results for
√

RV B

Window / horizon Model 1 / Model 2 Model 2 / Model 3 Model 3 / Model 4 Model 4 / Model 5 Model 5 / Model 6 Model 2 / Model 6
Window=100 / h=1 0.034 0.515 0.042 0.148 0.020 0.184
Window=100 / h=3 0.058 0.067 0.938 0.058 0.217 0.099
Window=100 / h=6 0.019 0.122 0.414 0.110 0.040 0.064
Window=100 / h=12 0.001 0.266 0.888 0.679 0.140 0.789
Window=120 / h=1 0.011 0.557 0.064 0.203 0.022 0.071
Window=120 / h=3 0.007 0.108 0.898 0.097 0.068 0.084
Window=120 / h=6 0.001 0.121 0.161 0.164 0.012 0.065
Window=120 / h=12 0.003 0.217 0.824 0.892 0.203 0.731
Window=140 / h=1 0.016 0.626 0.091 0.124 0.071 0.062
Window=140 / h=3 0.023 0.086 0.891 0.066 0.131 0.077
Window=140 / h=6 0.001 0.108 0.164 0.039 0.054 0.053
Window=140 / h=12 0.002 0.239 0.810 0.612 0.601 0.716

Note: This table reports the results (p-values) of the Clark-West test of equal mean-squared prediction errors. The
null hypothesis is that the alternative model has the same out-of-sample forecasting performance as the baseline
model. The alternative hypothesis is that the alternative model performs better than the baseline model. Results
are based on Newey-West robust standard errors. Estimation is by a recursive window, where “window” in the first
column gives the length of the training period. The parameter h denotes the forecast horizon (in months). The
random forests are built using 2,000 trees.
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Appendix

Table A1: Mean-absolute-forecast-error ratios
Panel A: Results for RV

Window / horizon Model 1 / Model 2 Model 2 / Model 3 Model 3 / Model 4 Model 4 / Model 5 Model 5 / Model 6 Model 2 / Model 6
Window=100 / h=1 1.163 1.000 0.997 0.937 1.045 0.976
Window=100 / h=3 1.331 1.007 0.995 0.999 0.990 0.990
Window=100 / h=6 1.593 0.977 1.020 0.928 1.151 1.065
Window=100 / h=12 1.876 0.979 0.996 0.840 0.986 0.807
Window=120 / h=1 1.055 0.991 1.019 0.921 1.077 1.002
Window=120 / h=3 1.211 0.985 0.993 1.008 1.088 1.073
Window=120 / h=6 1.524 0.964 1.042 0.900 1.199 1.084
Window=120 / h=12 1.803 0.981 1.000 0.853 1.150 0.962
Window=140 / h=1 1.056 0.979 1.015 0.981 1.033 1.007
Window=140 / h=3 1.185 0.995 0.990 1.069 1.049 1.105
Window=140 / h=6 1.476 0.968 1.048 1.024 1.057 1.099
Window=140 / h=12 1.910 0.983 1.001 0.961 1.044 0.987

Panel B: Results for
√

RV

Window / horizon Model 1 / Model 2 Model 2 / Model 3 Model 3 / Model 4 Model 4 / Model 5 Model 5 / Model 6 Model 2 / Model 6
Window=100 / h=1 1.088 0.999 0.985 1.001 1.037 1.022
Window=100 / h=3 1.381 1.000 0.990 0.988 1.022 1.000
Window=100 / h=6 1.590 0.988 1.009 0.966 1.116 1.075
Window=100 / h=12 1.903 0.970 0.998 0.842 0.997 0.813
Window=120 / h=1 1.048 1.022 0.982 0.990 1.070 1.063
Window=120 / h=3 1.245 0.989 0.986 1.000 1.119 1.091
Window=120 / h=6 1.497 0.978 1.022 0.937 1.184 1.109
Window=120 / h=12 1.817 0.988 0.996 0.847 1.161 0.968
Window=140 / h=1 1.030 1.038 0.971 1.035 1.062 1.109
Window=140 / h=3 1.206 0.998 0.985 1.059 1.089 1.133
Window=140 / h=6 1.471 0.973 1.036 1.061 1.051 1.124
Window=140 / h=12 1.932 0.992 0.994 0.969 1.038 0.991

Note: This table reports MAFE ratios, computed for out-of-sample forecasts. The first model is the baseline and
the second model is the alternative model. A ratio larger than unity indicates that the alternative model outperforms
the corresponding baseline model. Estimation is by a recursive window, where “window” in the first column gives
the length of the training period. The parameter h denotes the forecast horizon (in months). The random forests are
built using 2,000 trees.
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Table 2: Test results for a rolling-estimation window

Panel A: Results for RV

Window / horizon Model 1 / Model 2 Model 2 / Model 3 Model 3 / Model 4 Model 4 / Model 5 Model 5 / Model 6 Model 2 / Model 6
Window=100 / h=1 0.085 0.092 0.693 0.173 0.004 0.131
Window=100 / h=3 0.066 0.167 0.093 0.195 0.301 0.210
Window=100 / h=6 0.048 0.417 0.143 0.109 0.063 0.085
Window=100 / h=12 0.004 0.859 0.305 0.465 0.084 0.535
Window=120 / h=1 0.002 0.790 0.072 0.454 0.018 0.191
Window=120 / h=3 0.000 0.808 0.289 0.382 0.004 0.048
Window=120 / h=6 0.000 0.124 0.981 0.513 0.012 0.000
Window=120 / h=12 0.016 0.877 0.123 0.936 0.038 0.563
Window=140 / h=1 0.005 0.179 0.030 0.283 0.317 0.100
Window=140 / h=3 0.002 0.216 0.852 0.732 0.093 0.044
Window=140 / h=6 0.004 0.789 0.724 0.177 0.032 0.006
Window=140 / h=12 0.000 0.891 0.267 0.844 0.370 0.609

Panel B: Results for
√

RV

Window / horizon Model 1 / Model 2 Model 2 / Model 3 Model 3 / Model 4 Model 4 / Model 5 Model 5 / Model 6 Model 2 / Model 6
Window=100 / h=1 0.083 0.088 0.020 0.432 0.062 0.072
Window=100 / h=3 0.077 0.403 0.299 0.225 0.530 0.454
Window=100 / h=6 0.052 0.092 0.144 0.146 0.051 0.075
Window=100 / h=12 0.005 0.830 0.605 0.174 0.109 0.490
Window=120 / h=1 0.004 0.235 0.033 0.593 0.064 0.109
Window=120 / h=3 0.003 0.129 0.937 0.281 0.001 0.060
Window=120 / h=6 0.000 0.655 0.488 0.452 0.019 0.001
Window=120 / h=12 0.016 0.764 0.845 0.893 0.015 0.481
Window=140 / h=1 0.010 0.059 0.898 0.071 0.377 0.165
Window=140 / h=3 0.002 0.356 0.878 0.831 0.096 0.084
Window=140 / h=6 0.004 0.170 0.182 0.488 0.023 0.005
Window=140 / h=12 0.001 0.091 0.803 0.750 0.605 0.596

Note: This table reports MAFE ratios, computed for out-of-sample forecasts. The first model is the baseline and
the second model is the alternative model. A ratio larger than unity indicates that the alternative model outperforms
the corresponding baseline model. Estimation is by a rolling window, where “window” in the first column gives the
length of the rolling-estimation window. The parameter h denotes the forecast horizon (in months). The random
forests are built using 2,000 trees.
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