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Abstract

Utilizing a machine-learning technique known as random forests, we study whether regional
output growth uncertainty helps to improve the accuracy of forecasts of regional output
growth for twelve regions of the United Kingdom using monthly data for the period from
1970 to 2020. We use a stochastic-volatility model to measure regional output growth un-
certainty. We document the importance of interregional stochastic volatility spillovers and
the direction of the transmission mechanism. Given this, our empirical results shed light on
the contribution to forecast performance of own uncertainty associated with a particular re-
gion, output growth uncertainty of other regions, and output growth uncertainty as measured
for London as well. We find that output growth uncertainty significantly improves forecast
performance in several cases, where we also document cross-regional heterogeneity in this
regard.
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1 Introduction

Theoretically, the effect of uncertainty on economic activity is generally explained by the real
option theory (see for example, Bernanke (1983), Pindyck (1991), Dixit and Pindyck (1994), and
more recently, Bloom (2009)), which suggests that decision-making is affected by uncertainty
because it raises the option value of waiting. In other words, given that the cost associated with
wrong investment decisions are very high, uncertainty makes firms and, in the case of durable
goods, also consumers more cautious. As a result, economic agents postpone investment, hiring,
and consumption decisions to periods of lower uncertainty (which results in cyclical fluctuations
in macroeconomic aggregates). In other words, uncertainty is expected to negatively impact
overall output (besides consumption investment). In the wake of the “Great Recession" and more
recently the COVID-19 pandemic, the large empirical literature (see Castelnuovo et al., (2017),
Gupta et al., (2018, 2019, 2020a, 2020b), Al-Thageb and Algharabali (2019), Caggiano et al.,
(2020), for detailed reviews) that has emerged involving the impact of uncertainty on output has
overwhelmingly confirmed the negative association between these two variables as outlined in

theory.

While the literature dealing with the influence of uncertainty on output primarily relies on in-
sample-based structural analyses, more recently, quite a few studies (see for example, Karnizova
and Li (2014), Balcilar et al., (2016), Junttila and Vataja (2018), Aye et al., (2019a, 2019b),
Gupta et al., (2020c), Pierdzioch and Gupta (2020)) have also analyzed the role of uncertainty
in forecasting economic activity (output growth and recessions) in out-of-sample analyses. This
is an important line of research, since policymakers in general, and central banks in particular,
would need accurate predictions of the future path of the economy following periods of height-
ened uncertainty while making their policy decisions. Understandably, precise forecasting of
the macroeconomy is also important for investors. Finally, since in-sample predictability might
not translate into forecasting gains, and the ultimate test of any predictive model (in terms of
econometric methodologies and the predictors being used) is primarily considered to be in its
out-of-sample performance (Campbell, 2008), this area also forms a pertinent question for aca-

demic researchers.



Against this backdrop, the objective of this research is to analyze the forecasting ability of uncer-
tainty for output growth in the United Kingdom, but from a regional perspective. In particular,
we look at twelve regions of the UK (namely East Midlands, East of England, London, North
East, North West, Northern Ireland, Scotland, South East, South West, Wales, West Midlands,
Yorkshire and the Humber) over the quarterly period from 1970:02 to 2020:02. In the process,
we not only study the predictive role of uncertainty associated with a particular region, but also
incorporate the effect of uncertainty of the other regions, given the widespread evidence of inter-
national uncertainty spillovers (see for example, Gupta et al., (2016), Gabauer and Gupta (2018),
Antonakakis et al., (2018, 2019), Christou et al., (2020a)), and evidence of which we also provide
in our particular data set. We also control for other standard aggregate macroeconomic predic-
tors (inflation rate, financial stress, and interest rate), as well as lagged values of the growth rate
of the specific-region under investigation and the other regions, which have also been shown to

depict interconnectedness (Koop et al., 2020a).

At this stage, we must point out that Junttila and Vataja (2018), Aye et al., (2019b), and Gupta et
al., (2020c) have highlighted the important role played by uncertainty in forecasting alternative
measures of the performance of the aggregate real economy of the UK, but our paper makes the
first attempt to analyze the forecastability of output growth due to uncertainty at the regional
level, based on a newly constructed high-frequency (quarterly) novel data set of regional Gross
Value Added (GVA) by Koop et al., (2020b, 2020c). As highlighted by Mumtaz (2018) and
Mumtaz et al., (2018), based on in-sample analyses of state-level data for the United States (US),
the impact of uncertainty is heterogeneous and depends on the underlying conditions of the
regions at the time the uncertainty shock originates. Naturally, one cannot generalize the role of
uncertainty for the aggregate economy to the various regions comprising the overall country, thus
making our regional study of tremendous importance from the policy perspective for determining
the nature and size of policy intervention to counteract the negative influence of an uncertainty
shock, especially given the well-established heterogeneity involving business-cycle fluctuations
and, in general, across regions of the UK (Barrios et al., (2003), Beenstock and Felsenstein
(2008)). Note that, while we could have studied the states of the US, which does indeed have

widespread availability of regional data, and could indeed be an area of future research, our



decision to look at the UK emanates from the persistent uncertainty witnessed by its regions ever
since the Brexit referendum that took place in (23rd) June, 2016, besides the impact of the global
financial and European sovereign debt crises that took place earlier. Hence, the UK, which has
witnessed waves of crises including the current Coronavirus episode, forms an interesting case

study of the uncertainty-growth nexus.

As far as the econometric approach is concerned, we rely on a machine-learning approach, known
as random forests (Breiman, 2001), which in turn has two main advantages. First, random forests
can accurately analyze the links between regional GVA growth and a large number of predictors
in a full-fledged data-driven manner. Second, random forests automatically capture potential
nonlinear links between output growth and its predictors, including uncertainty, as shown to
exist historically for the UK by Christou et al., (2020b) and Bredin et al., (2021),! as well as any

interaction effects between the predictors.

We structure the remainder of this research as follows. In Section 2, we briefly describe how
a random forest is grown. In Section 3, we describe our data and report our empirical results.

Finally, in Section 4, we conclude with final remarks.

2 Random forests

A random forest consists of a large number of individual regression trees (see Hastie et al.,
(2009) for a for a textbook exposition; our notation follows theirs). A regression tree, 7, in turn,
consists of branches that subdivide the space of predictors, x = (x1,x2,...), of the regional output
growth rate (in the following: regional output growth, for short) into / non-overlapping regions,
R;. These regions are computed by applying a search-and-split algorithm in a recursive top-down

fashion.

Application of this search-and-split algorithm to grow a regression tree requires, starting at the

top level of the tree, iterating over the various predictors, s, and the all possible splitting points,

IFor a detailed review of the international literature on the nonlinearity between uncertainty and economic ac-
tivity, the reader is referred to Caggiano et al. (2021).



p, that can be formed using the data on a predictor. For every combination of a predictor and a
splitting point, the search-and-split algorithm forms two half-planes, R; (s, p) = {x;|x; < p} and

Ry (s, p) = {xs]xs > p} so as to minimize the standard squared-error loss criterion:

min{rr_lin Z (RG; — RG1)* + min Z (RGi—R_Gz)Z}, (D
5P RG, Xs€ER1 (s,p) RG, Xs€Ra(s,p)

where the index i denotes those observations on regional output growth, RG, that belong to a
half-plane, and RG; = mean{RG; |x; € Ri(s, p)},k = 1,2 denotes the half-plane-specific mean of
regional output growth. The objective function given in Equation (1), thus, requires (i) searching
over all combinations of s and p, and, (ii) for any given combination of s and p, minimizing the
half-plane-specific squared error loss by an optimal choice of the half-plane-specific means of
regional output growth. The solution of this minimization problem gives the top-level optimal
splitting predictor and optimal splitting point, and the two RGy. The resulting simple regression

tree that has two terminal nodes.

In order to grow a larger tree, the next step of the search-and-split algorithm requires to carry out
the minimization problem in Equation (1) for the two top-level half-planes, R (s, p) and Ry (s, p),
yielding, up to two second-level optimal splitting predictors and optimal splitting points, and four
second-level region-specific means of regional output growth. Solving the minimization problem
over and over again gives an increasingly complex regression tree. Finally, the search-and-split
algorithm is terminated when a regression tree has a preset maximum number of terminal nodes
or every terminal node has a minimum number of observations. In our empirical research, we a
cross-validation technique to determine the optimal minimum number of observations per termi-

nal node (see Section 3.2 for details).

Once the the search-partition algorithm has stopped, the regression tree sends the predictors of
regional output growth from its top level to its leaves along the optimal partitioning points (that is,
the nodes of the tree) and branches. A forecast of regional output growth can then be computed
by its region-specific mean. For a regression tree made up of L regions, this forecast is formed

as follows (1 denotes the indicator function):

L

T (xi, {Ri}}) = Y RV/1(x; €R)). (2)
i=1



The search-and-split algorithm can be used in principle to grow an increasingly complex regres-
sion tree. However, the resulting complex hierarchical structure of a regression tree gives rise to
an overfitting and data-sensitivity problem. and, thereby, implies that forecasting performance
deteriorates. It is at this stage that a random forest enters the scene. A random forest solves the
overfitting problem in two steps. In the first step, a large number of bootstrap samples (sampling
with replacement) is drawn from the data. In the second step, a random regression tree is fitted
to every bootstrap sample. Such a random regression tree differs from a classic regression tree
in that for every splitting step only a random subset of the predictors is being used. In this way, a
random regression tree mitigates the effect of influential predictors on tree building. Moreover,
growing a large number of random trees lowers the correlation of forecasts from the individual
trees. Finally, averaging the decorrelated forecasts computed by means of the individual random

regression trees stabilizes the forecasts of realized output growth.

3 Empirical analysis
3.1 Data

The annualized GVA growth of the regions (East Midlands, East of England, London, North
East, North West, Northern Ireland, Scotland, South East, South West, Wales, West Midlands,
Yorkshire and the Humber) is obtained from the nowcasting project of Koop et al., (2020b,
2020c) associated with the Economic Statistics of the Centre of Excellence.” Koop et al., (2020b,
2020c¢) develop a mixed frequency Vector Autoregressive (MF-VAR) model and use it to produce
estimates of quarterly regional output growth. Temporal and cross-sectional restrictions are im-
posed in the model to ensure that the quarterly regional estimates are consistent with the annual
regional observations and the observed quarterly UK totals. Koop et al., (2020b, 2020c) use
a machine-learning method based on the hierarchical Dirichlet-Laplace prior to ensure optimal

shrinkage and parsimony in the overparameterised MF-VAR. Because this data set is available

The data is dowlodable from: https://www.escoe.ac.uk/regionalnowcasting/.
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from 1970:02 onward, our analysis starts from this period and ends in 2020:02, based on data

availability at the time of writing of this paper.

Uncertainty is a latent variable, and hence one requires ways to measure it. In this regard, be-
sides the various alternative metrics of uncertainty associated with financial markets (such as the
implied-volatility indices, realized volatility, idiosyncratic volatility of equity returns, corporate
spreads), there are primarily three broad approaches to quantify uncertainty: (1) A news-based
approach, with the main idea behind this method being to perform searches of major newspapers
for terms related to economic and policy uncertainty, and then to use the results to construct
indices of uncertainty. (2) Measures of uncertainty derived from stochastic-volatility estimates
of various types of small and large-scale structural models related to macroeconomics and fi-
nance. (3) Measures of uncertainty obtained from dispersion of professional forecaster disagree-
ments. As far as our metric of uncertainty is concerned, motivated by the recent work on the
nexus between growth and growth-uncertainty by Balcilar and Ozdemir (2020), we use the sec-
ond approach, due to unavailability of the first and third avenues associated with regional data.
In other words, our measure of regional uncertainty is derived from stochastic volatility (SV)
estimates of the regional output growth. In particular, as in Kastner and Friiwirth-Schnatter
(2014), given observed growth rates for a particular region denoted by y = (y,y2,...,yr)’, the
SV model is specified as: yr = ¢*/2g,, with b, = u + v(h,_1 — l) + oV, where it is assumed
that the iid standard normal innovations & and v are independent for ¢,s € {1,...,T}. The
unobserved process h = (hg,hy,...,hr) appearing in the state equation is usually interpreted
as the latent time-varying volatility process (our measure of uncertainty) with initial state dis-
tributed according to the stationary distribution, i.e., ho|u, ¥, ~ A (u,02/(1 — y?)). Sim-
ulation efficiency in state-space models can often be improved through model reparameteriza-
tion. Given that, centered parameterization has several disadvantages, following Kastner and
Frithwirth-Schnatter (2014), the (fully) non-centered parameterization of the model is given
through: y; ~ .47(0, a)E,Gi‘), with i, = wh, | +v,, v; ~ A(0,1), where @ = e, is of par-
ticular importance. The initial value of /|y is drawn from the stationary distribution of the
latent process, i.e., iip|y ~ #(0,1/(1 — y?)), and note that, i, = (h, — u)/o. Figure 1 shows

the estimated regional stochastic volatilities.



— Please include Figure 1 about here. —

Our forecasting exercise also includes Consumer Price Index (CPI)-based annualized inflation
rate, with the CPI data obtained from the Main Economic Indicators (MEI) Database of the
Organisation for Economic Co-operation and Development (OECD). To measure the stance of
monetary policy, we consider the official bank rate derived from the Bank of England (BoE) until
1989, and then we use the shadow short rate (SSR) developed by Wu and Xia (2016) from 1990
onwards,’ given that our period of analysis involves the zero lower bound (ZLB) scenario in the
wake of the Great Recession and the global financial crisis, and more recently following the out-
break of the Coronavirus in 2020. Given that a range of unconventional monetary policies (such
as large scale asset purchases, a maturity extension program and efforts of forward guidance in
order to manage expectations of a prolonged period of low policy rates) are pursued during the
ZLB situations, we would need a uniform and coherent measure of the monetary policy stance.
Thus we use the SSR, which measures the nominal interest rate that would prevail in the absence
of its effective lower bound.* Finally, we incorporate the information of the Financial Stress In-
dex (FSI) derived from the Statistical Data Warehouse of the European Central Bank.’ The index
includes six market-based financial stress measures that capture returns and (realized) volatility
of three financial market segments, i.e., equity, bond and foreign exchange. In addition, when ag-
gregating the sub-indices, the FSI takes the co-movement across market segments into account.
The reader is referred to Duprey et al., (2017) for further details. Note that data that is available

at higher (monthly frequency), is converted to quarterly values by taking three-month averages.

3The data is available for download from the website of Professor Jing Cynthia Wu at: https://sites.
google.com/view/jingcynthiawu/shadow-rates?authuser=0.

4The SSR is based on models of the term-structure, which essentially removes the effect that the option to invest
in physical currency (at an interest rate of zero) has on yield curves, resulting in a hypothetical “shadow yield curve"
that would exist if physical currency were not available. The process allows one to answer the question: “what policy
rate would generate the observed yield curve if the policy rate could be taken negative?" The “shadow policy rate"
generated in this manner, therefore, provides a measure of the monetary policy stance after the actual policy rate
reaches zero. The main advantage of the SSR is that it is not constrained by the ZLB and thus allows us to combine
the data from the ZLB period with that of the the non-ZLB era, and use it as the common metric of monetary policy
stance across the conventional and unconventional monetary policy episodes.

>The data can be downloaded from: https://sdw.ecb.europa.eu/quickview.do;jsessionid=
D122B96CF06237259EFEBFB2ADCA10FOSERIES_KEY=383.CLIFS.M.GB._Z.4F.EC.CLIFS_CI.IDX.
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3.2 Empirical results

We carry out our empirical analysis by using the statistical computing program R (R Core Team
2019), where we make use of the add-on package “grf” (Tibshirani et al., 2020). Our results are
based on estimates of random forests for rolling-estimation windows of length 40, 60, and 80
quarters (that is, 10, 15, and 20 years). While shifting the rolling-estimation windows across the
data set, we optimize, by means of cross validation, the number of predictors randomly selected
for splitting, the minimum node size of a tree, and the parameter that governs the maximum
imbalance of a node, where we use 2,000 regression trees to grow a random forest. We study
three forecast horizons: 1,2,4 quarters, where the target variable in case 4 > 1 is the arithmetic

average of the regional output growth rates under scrutiny over the respective forecast horizon.

We estimate random forests for four different models. Model 1 features, in addition to the the
inflation rate, the monetary policy-related interest rate, and the FSI as proxies of monetary and
financial conditions, as predictors only the own lagged regional output growth of a region along
with the regional output growth of all other regions, given the evidence of spillovers of regional
growth as shown by Koop et al., (2020a). Model 2 features the predictors of Model 1 plus the
own stochastic volatility of a region, capturing the associated uncertainty of that region. Com-
paring Models 1 and 2 sheds light on whether today’s regional output growth uncertainty helps
to improve the accuracy of forecasts of subsequent regional output growth. Model 3 features all

predictors of Model 2 and, in addition, the regional stochastic volatilities of all other regions.

To motivate the formulation of Model 3, we would like to formally highlight the importance of
interregional stochastic volatility spillovers. In this regard, we utilize a full-fledged time-varying
version of the spillover approaches of Diebold and Yilmaz (2012, 2014), as proposed based
on a time varying parameter-vector autoregressive (TVP-VAR) model by Antonakakis et al.,
(2020). This framework is based on the generalized forecast error variance decomposition for a
VAR, but the biggest drawback of the generalized spillover method is that it provides misleading
information when it comes to aggregate spillover as the associated index is bounded between 0
and 100 percent, and so when a shock is introduced to the individual variable it brings most of

the variation in other factors than the factor to which shock was introduced. In light of this, we



also the joint spillover method by following Lastrapes and Wiesen (2021) capable in gauging the
system-wide spillovers, as developed in a TVP-VAR context by Balcilar et al., (2020).

Both approaches provide qualitatively similar results, illustrating the robustness of our findings
with respect to the spillover analysis. Figure 2 represents the dynamic total connectedness, which
describes the average amount of shock spillover one series has to all others in the network. We
see that the Antonakakis et al., (2020) results are constantly smaller in magnitude than those
of Balcilar et al., (2020). Besides the fact that the high degree of dynamic total connectedness
highlights the importance of uncertainty shock spillovers when it comes to regional UK output
growth, it further points out significant economic events that had a substantial effect on its dy-
namic behavior such as the mid-1970s recessions that was marked by the 1973 oil crisis, and
stagflation, as well as the early 1980s recession characterized by the transition from a manufac-
turing to a services economy and a period of considerable spending cuts. More recent dynamics
cover the time of the global financial crisis, the European sovereign debt crisis, and the Coron-

avirus pandemic that has spread over to the European continent in the beginning of 2020.

— Please include Figure 2 about here. —

But even more to the point is the direction of the transmission mechanism as it lays out a more
in-depth analysis of the regional shock propagation. Figure 3 depicts the relative strength of each
region in a time-varying behavior underlining the significant and permanent effect the global fi-
nancial crisis of 2009 had on most UK regional dynamics. In particular, regions such as London,
East of England, North West, and Scotland decreased in its net transmission power until the end
of the sample period. Furthermore, similar but less severe adjustments can be observed during
the Coronavirus pandemic. In general, our results reveal that Yorkshire and the Humber, East
of England, and London have been permanent transmitters of shocks whereas East Midlands,
West Midlands, South West, and Wales have been permanent receivers of shocks. Two notable
evolutions are that the North West has become an essential transmitter after 2009, whereas Scot-
land has become a receiver of shocks. It should also be mentioned that our findings indicate the
importance of economic weight London has in the evolution of UK’s regional uncertainty by its

persistent net transmission characteristic, the unprecedented magnitude in its transmitting power

9



prior the global financial crisis of 2009, and its still continuing - even though not as significant
- role afterwards. Thus, this analysis shows that the UK regional stochastic-volatility spillovers

are strong, as its dynamics explain between 75% and 90% of the evolution of uncertainty.

— Please include Figure 3 about here. —

Going back to our Model 3, given the evidence of output growth volatility spillovers across
regions, upon comparing Models 2 and 3, we can assess whether regional uncertainty spillovers
onto other regions helps t0 predict regional output growth of a particular region. Finally, Model
4 features the own stochastic volatility of a region plus the stochastic volatility of output growth
estimated for London, given its importance as a transmitter of uncertainty shocks. When we
compare Models 2 and 4 model, we can study the contribution of the capital city to forecasting

regional output growth over and above the own uncertainty of a region.

Turning next to our out-of-sample forecasting analysis, Table 1 summarizes results for root-
mean-squared forecast-errors (RMSFE) ratios. A RMSFE ratio larger than unity implies that the
alternative model outperforms out-of-sample in terms of the RMSFE the corresponding baseline
model. The first bloc of results obtains when the baseline model features only regional out-
put growth as predictors (Model 1), while the alternative model features, in addition, the own
stochastic volatility of a region (Model 2). We observe in general RMSFE ratios that exceed
unity for Yorkshire and The Humber, East of England, Scotland, and Northern Ireland. Results
for North East and Wales are mixed, and for East Midlands, London, South East, South West,
West Midlands, and North West we observe RMSFE ratios smaller than unity or hovering around
unity for several combinations of the length of the rolling-estimation window and forecast hori-
zon. On balance, however, the results suggest that taking into account regional output growth
uncertainty over and above regional output growth and monetary and financial conditions helps
to improve the accuracy of forecasts of regional output growth, where the results certainly display

a certain degree of cross-regional heterogeneity.

— Please include Table 1 about here. —
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The second bloc of results in Table 1 compares Model 2 and Model 3. This comparison sheds
light on the contribution of uncertainty that originates in other regions for the accuracy of output
growth forecasts. We observe in the majority of cases RMSFE ratios smaller than unity when
we study the short 40-quarters rolling-estimation window. For the two longer rolling-estimation
windows, in contrast, we often observe RMSFE ratios that exceed unity, with evidence that re-
gional spillover effects help to improve the accuracy of output growth forecasts being somewhat
weaker for London and especially for East of England than for the other regions. Hence, it ap-
pears that accounting for output growth uncertainty that has its origins in other regions implies
that Model 3 for several regions and model configurations has a better forecast performance than

Model 2 in terms of the RMSFE criterion.

The third bloc of results in Table 1 sheds light on the role of uncertainty as measured for London.
The RMSFE ratios show that accounting for the “London effect” leads to more accurate fore-
casts for the following regions, especially when we consider the two longer rolling-estimation
windows: North East, East Midlands, South East, South West, West Midlands, North West, and
Wales. The “London effect” is either small or even deteriorates the accuracy of forecasts when

we consider Yorkshire and the Humber, East of England, Scotland, and Northern Ireland.

We use the test proposed by Clark and West (2007) of equal mean-squared prediction errors
to shed light on the statistical significance of differences in forecast performance across the
various models. The null hypothesis is that the alternative model has the same out-of-sample
forecasting performance as the baseline model. The alternative hypothesis is that the alternative

model performs better than the baseline model. Table 2 summarizes the results (p-values).®

— Please include Table 2 about here. —

%As an additional analysis, we decomposed the regional output volatility into common and idiosyncratic compo-
nents using the non-parametric and model-free two-step general dynamic factor approach of Barigozzi and Hallin
(2016) to check whether such a decomposition adds value to the forecasting exercise. Based on the Tables Al at
the end of the paper (Appendix), we find that such a decomposition gives largely insignificant results. This result
is possibly an indication of the strong evidence of overall output growth volatility spillovers and interconnectedness
across the regions, whereby distinguishing between common and idiosyncratic volatilites corresponding to common
and local factors that drive these respective volatilities, result in loss of information that tends to add value to the
forecasting analysis.

11



We find relatively strong evidence (in terms of the significance of the test results, using roughly
a 5% threshold) that adding own regional uncertainty to Model 1 improves forecast accuracy for
Yorkshire and the Humber, East of England, Scotland, and Northern Ireland. The test results
are occasionally significant for North East, London, North West, and Wales. Hence, there is
evidence that output growth uncertainty matters for forecasting regional output growth, though
our results clearly show that it is important to differentiate between regions in this regard. As far
as a comparison of Models 2 and 3 is concerned, we find that the model that includes the other
regions stochastic volatilities as predictors produces significantly better forecasting results for
Wales, Scotland, and Northern Ireland than the model that dismisses uncertainty originating in
other regions, mainly for the two longer rolling-estimation windows. There is also some, albeit
weaker, evidence that regional uncertainty spillover-effects matter in some model configurations
for Yorkshire and the Humber, South East, South West, and North West. Finally, we find strong
evidence that accounting for the “London effect” significantly improves forecast accuracy in the
case of East Midlands, South East, and South West. We also find a few significant test results for
North East, West Midlands, North West, and Wales.

As a further extension, and as a robustness check, we replicated the analysis given in Table 2 for
forecasts of the regional output growth rate 4—periods ahead, given data when a forecast has to
be made, rather than its arithmetic average over the forecast horizon. The results (not reported
to safe journal space, but available from the authors upon request) in some cases strengthen
the evidence of a role of uncertainty. Specifically, evidence of predictive value of own regional
output uncertainty strengthens for North East, London, and North West, while including the re-
gional output uncertainty of all regions gives significant results for all regions at the two longer
forecast horizons, that is, for 7 = 2,4 for the intermediate forecast horizon, and in the over-
whelming majority of regions for the long forecast horizon. Finally, evidence of the “London
effect” strengthens for the West Midlands and Wales. In sum, these results further back our con-
clusion that uncertainty matters for forecasting regional output growth, and that it is important to

carefully take into account regional heterogeneity in this regard.
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4 Concluding Remarks

We have used random forests and a stochastic-volatility model to study the out-of-sample pre-
dictive value of regional output growth uncertainty for regional output growth in twelve regions
of the UK over the sample period from 1970 to 2020, where we have accounted for a region’s
own uncertainty, the uncertainty of other regions, and uncertainty as measured for London, given
evidence of regional volatility connectedness. We have reported evidence that uncertainty helps
to improve forecast accuracy, and that spillover effects of uncertainty onto other regions as well
as the “London effect” is beneficial in this regard too. The results, however, turned out to display

a non-negligible extent of cross-regional heterogeneity.

From the perspective of policymaking, our results highlight primarily two issues: First, due to
the evidence of volatility spillovers of output growth across regions, policymakers need to take
into account the growth uncertainty of other regions beyond its own when making predictions
about the future path of growth of a specific region, and accordingly deciding on policy choices
to negative the adverse effect of uncertainty. Second, given the underlying heterogeneity, under-
standably, policy decisions, both in terms of the type of intervention and its associated strength,
cannot be uniform at the aggregate UK level , but needs to be conducted on a region-specific

manner.

In future research, it would be interesting to use the methodology to study the output growth-
uncertainty nexus at the regional level for other countries (such as the US). Another promising
avenue for future research is to use alternative machine-learning techniques to study the output
growth-uncertainty nexus. Such a comparison can also be used to trace out which machine-

learning technique performs best when applied to regional output growth data.
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Figure 1: Regional stochastic volatilities
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Figure 2: Dynamic total connectedness

100

Note: Black area illustrates Balcilar et al. (2020) whereas red line demonstrates Antonakakis et al. (2020) results
based upon a 20-quarter ahead forecast horizon. Both approaches are based on a TVP-VAR with a lag length of as
suggested by the Bayesian information criteria.
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Figure 3: Net total directional connectedness measures
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Note: Black area illustrates Balcilar et al. (2020) whereas red line demonstrates Antonakakis et al. (2020) results
based upon a 20-quarter ahead forecast horizon. Both approaches are based on a TVP-VAR with a lag length of as
suggested by the Bayesian information criteria.
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