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Abstract 
 We study the role of OPEC meeting dates and production announcements for predicting jumps 
in the oil market. The period of analysis spans from the daily period of 2nd December 1997 to 
26th May 2017, with the start and end date corresponding to our availability of the intraday 
data on oil-price data. We, first, apply the standard linear Granger causality test to detect 
evidence of the OPEC-based predictors in causing jumps. This test fails to detect predictability 
from OPEC-based predictors to oil market jumps. Yet given the strong evidence of nonlinearity 
between jumps and the dummies capturing news regarding the OPEC production 
announcements and meeting dates, we next use a nonparametric causality-in-quantiles test. 
Upon employing this data-driven robust approach, we find strong evidence that the variables 
do predict oil market jumps, ranging from the lower end of the conditional distribution of jumps 
to around the median. 
 
Keywords: Oil market jumps; OPEC announcements; Nonparametric quantile causality 
JEL Codes: C22; Q02 
  
  

                                                             
* Corresponding author. Department of Business Administration, University of Patras, University Campus, Rio, 
P.O. Box 1391, 26500 Patras, Greece. Email: Email: gillask@upatras.gr. 
** Department of Economics, University of Pretoria, Pretoria, 0002, South Africa. Email: rangan.gupta@up.ac.za. 
*** Department of Economics, Helmut Schmidt University, Holstenhofweg 85, P.O.B. 700822, 22008 Hamburg, 
Germany. Email address: pierdzic@hsu-hh.de. 
**** Department of Economics, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 
46241, Republic of Korea. Email: smyoon@pusan.ac.kr. 



2  

1. Introduction 
 The recent financialization of the oil market has increased participation of hedge funds, pension 
funds and insurance companies in the market, thus resulting in oil to be a profitable alternative 
investment in the portfolio decisions of financial institutions (see Akram, 2009; Tang and 
Xiong, 2012; Silvennoinen and Thorp, 2013; Fattouh et al., 2013; Büyüksahin and Robe, 2014; 
Bahloul et al., 2018; Bonato, 2019, among others). Naturally, accurate predictability of large 
oil-price movements and volatility is of vital importance to traders in the oil-sector. Oil-price 
volatility can be also considered as a measure of uncertainty, which in turn has been found to 
negatively influence economic activity (Elder and Serletis, 2010; Aye et al., 2014; van Eyden 
et al., 2019). Thus, not surprisingly, a large literature exists on the predictability of daily oil-
price conditional volatility using different kinds of univariate and multivariate models from 
Generalized Autoregressive Conditional Heteroskedasticity (GARCH)-family, as well as the 
Markov-switching multifractal (MSM) model, and variations of the Heterogeneous 
Autoregressive (HAR) model to predict the realized volatility of oil returns (see Lux et al., 
2016 and Gkillas et al., 2020a for detailed reviews). 
 
The modelling of unexpected movements in oil prices is also crucial for portfolio risk 
management and financial decision making. Volatility as a measure of risk is an unobservable 
variable and several problems arise when trying to assess its impacts on financial markets. In 
light of this, market agents are known to care not only about the nature of volatility, but also 
about its level, with traders often differentiating between good and bad volatility (Giot et al., 
2010). More specifically, “good” volatility is directional, persistent and relatively easy to 
anticipate, yet “bad” volatility is jumpy and relatively difficult to foresee (Caporin et al., 2016). 
Consequently, “good” volatility is associated with the continuous and persistent part of the 
price process, while “bad” volatility is associated with discontinuous movements known as 
jumps (Huang et al., 2019). In this context, it has been stressed that incorporating jumps into 
volatility models can improve their overall performance, given their dominance in the price 
process (Asai et al., 2019; 2020). Hence, the accurate prediction of jumps stands for a key 
research question. The inclusion of jumps in the price process is also important for asset 
allocation and portfolio risk management. Jumps help to forecast (i) returns (Andersen et al., 
2015), (ii) volatility (Duong and Swanson, 2015), (iii) equity risk premium (Santa-Clara and 
Yan, 2010) and (iv) variance risk premium (Li and Zinna, 2017). Nevertheless, it is necessary 
to differentiate jumps information from risk. In other words, according to Bollerslev et al. 
(2008), jumps add a locally source of non-diversifiable risk in volatility making the prediction 
more difficult. 
 
Recently, some studies have highlighted the role of news on the Organization of the Petroleum 
Exporting Countries (OPEC) production decisions in driving the (returns and) volatility of the 
crude oil market (see Schmidbauer and Rösch, 2012; Mensi et al., 2014; Ji and Guo, 2015; 
Loutia et al., 2016; Gupta and Yoon, 2018; Gupta et al., 2019; Derbali et al., 2020, among 
others). While in the existing empirical literature there is a body of evidence showing that 
jumps are linked to fundamentals (see e.g. Andersen et al., 2007), we still need to shed light on 
additional sources of unexpected movements in the oil market. Against this backdrop, given 
the importance of oil market jumps in portfolio risk management and asset allocation, the 
objective of our paper is to empirically test whether OPEC production decisions involving cut, 
maintain, and increase, and also OPEC meeting dates can predict jumps, and in hence provide 
a channel through which the “bad” volatility is affected. For our predictability analysis, we rely 
on the nonparametric causality-in-quantiles test proposed by Jeong et al., (2012), which allows 
us to test for predictability over the entire conditional distribution of jumps and control for 
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misspecification due to uncaptured nonlinearity (which we show to exist below in our data 
from a statistical perspective). This is of paramount importance when the dependent variable, 
i.e., jumps in our case may exhibit fat tail behavior (see Bollerslev et al., 2013). This method 
also permits us to capture various market phases (sizes), such as booms and crashes, associated 
with the jumpy behavior of the prices process of the oil market. Moreover, this method can be 
considered as an inherently time-varying method since various parts of the conditional 
distribution can be related to different time points throughout the evolution of the dependent 
variable. In particular, the method applied in this study has the following two key advantages. 
First, it is considered as robust to misspecification errors as it is based on a nonparametric data-
driven method. Second, by applying this method, we can detect casual effects across the entire 
conditional distribution of jumps and more importantly in the right end point of the distribution 
of jumps (see also Heimstra and Jones, 1994; Diks and Panchenko, 2005, 2006, among others). 
To the best of our knowledge, this is the first paper that evaluates the predictive power of OPEC 
production decisions on oil market jumps using a quantiles-based nonparametric framework. 
 
From a practical point of view, our study sheds light on the types of events that can trigger 
unexpected movements in the oil market. According to Andersen et al. (2007), “it would be 
interesting to attempt a more systematic characterization of the types of events that cause the 
different markets to jump”. Therefore, there is a practical interest in identifying jumps, which 
in turn is important for developing hedging strategies and modelling market risk premia (see 
Eraker et al., 2003). Taking also into account that oil is a major production factor, policymakers 
have to make decisions during periods of jump-inducing turbulence in the oil market, hence it 
is economically important to proceed to a better econometric and statistical understanding of 
the behavior of jumps along with the events that cause the oil market to jump (see Gkillas et 
al., 2020b; Todorov and Tauchen, 2011). 
 
The remainder of the paper is organized as follows. Section 2 lays out the basics of the 
methodology involving jumps and the causality-in-quantiles approach. Section 3 presents the 
data and reports the empirical results, with Section 4 concluding the paper. 
 
2. Methodology 
2.1. Jumps 
 In the related empirical literature, there is strong evidence that the assumption of a continuous 
diffusion is violated. The need for a more detailed description of the price process emerged 
from volatility asymmetries. Based on the theoretical studies implement by Barndorff-Nielsen 
and Shephard (2004b), Andersen et al. (2007) proposed a jump detection non-parametric 
scheme for realized volatility. In this sub-section, we briefly present the methodology for 
detecting oil price jumps from realized volatility. 
 
In particular, we construct daily realized volatility with the use of realized variance (ܴܸ), as in 
Andersen et al. (2007), among many others. ܴ ܸ is the benchmark measure of realized volatility. 
More analytically, we define the price process in days ݐ. Within each day, there are ܰ + 1 
intraday prices or ܰ intraday returns. In any day ݐ, the observed prices concern these intraday 
time periods: ݐ଴ < ଵݐ < ⋯ <  ேାଵ. If we assume a constant number of intraday prices per dayݐ
across all days considered, intraday returns can be constructed as the logarithmic difference 
between two consecutive observed prices given by the following equation: 

௧,௜ݎ = log൫ ௧ܲ,௜൯ − log൫ ௧ܲ,௜ିଵ൯ (1) 
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where ݎ௧,௜ stands for the intraday return, ௧ܲ,௜ stands for the intraday price with ݅ = (1, … , ܰ), 
for the day ݐ. 
 
Next, a daily point estimate of ܴ ௧ܸ is constructed for each day ݐ by summing all intraday returns 
available as follows: 

ܴ ௧ܸ ≡ ෍ ௧,௜ଶݎ
ே

௜ୀଵ
 (2) 

where ݎ௧,௜ stands again for the intraday return ݅ within day ݐ for ݅ = 1, … ܰ, and ܰ is the total 
number of intraday returns within a trading day. 
 
Turning now our attention to jumps, it is important to mention that when volatility at the given 
point estimate ݐ includes jump variation, then it cannot be considered as an unbiased estimator 
of integrated variance. Therefore, price increments can be distinguished between jump 
variation and continuous variation. The former can be computed as the difference between the 
total variation - which is estimated by the ܴ ௧ܸ as it measures both the continuous and jump 
variation - and the continuous variation. The standardized realized bipower variation (ܴܤ ௧ܸ) 
used in this study captures only the amount of continuous variation, therefore it has been 
considered to be a jump-robust estimator of realized volatility. More precisely, the asymptotic 
results of Barndorff-Nielsen and Shephard (2004) enable the nonparametric distinction 
between continuous and jump variation. Following Barndorff-Nielsen and Shepherd (2004, 
2006), we use the ܴܤ ௧ܸ as a jump-free volatility estimator for the continuous sample path 
variation. ܴܤ ௧ܸ can be considered as a jump-robust estimator of integrated variance, that is, it 
is a less biased estimator than other realized measures of in the presence of jumps. The ܴܤ ௧ܸ 
is constructed by the following: 

ܤܴ ௧ܸ ≡ ଵିߦ ଶ ෍ |௧,௜ିଵݎ||௧,௜ݎ|
ே

௜ୀଶ
 (3) 

where ߦଵ ≡ ඥ2/ߨ =  is the mean of the absolute value of a random variable (ܼ) which (|ܼ|)ܧ
follows a normal distribution. 
 
We use the Andersen et al.’s (2007) jump statistic to detect realized jump intensity. The jump 
statistic, as used here, is given as follows: 

௧ܷ ≡ ߋ√ (ܴ ௧ܸ − ܤܴ ௧ܸ)ܴ ௧ܸିଵ
ሾ(ߦଵି ସ + ଵିߦ2 ଶ − ,1}ݔܽ݉(5 ܶܳ௧ܴܤ ௧ܸି ଶ}ሿଵ/ଶ (4) 

where ܶܳ௧ is the integrated quarticity which is estimated using the standardized realized tri-
power quarticity measure as ߦߋସ/ଷିଷ ∑ ௧,௜|ସ/ଷ௺௜ୀଷݎ|  ସ/ଷ is equal toߦ ௧,௜ିଶ|ସ/ଷ, whileݎ|௧,௜ିଵ|ସ/ଷݎ|
2ଶ/ଷ(1/2)߁(7/6)߁ିଵ = ܷ ൫|ܼ|ସ/ଷ൯. Theܧ ௧ is a ratio statistic which follow the standard normal 
distribution ( ௧ܷ → ܰ(0,1), as ܰ → ∞). The ௧ܷ is used as a pre-test, testing the null hypothesis 
of no jumps against the alternative hypothesis of existence of jumps. A significant jump is 
identified by an indicator function, ૚{ ௧ܷ >  :௔}, under the following conditionߔ

௧ܬ ≡ ૚{ ௧ܷ > ௔}ሾܴߔ ௧ܸ − ܤܴ ௧ܸሿ (5) 
Analogically, the continuous component denoted by ܥ௧,௔ is equal to ૚{ ௧ܷ ≤ ܴ{௔ߔ ௧ܸ, where 
ܴ ௧ܸ ≡ ௧,௔ܬ +  ௧,௔. The non-negativity of both components corresponds directly to aܥ
significance level of ܽ = 0.05 (Andersen et al., 2007). To put it differently, the difference 
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between the ܴ ௧ܸ and ܴܤ ௧ܸ is equal to zero when there is no jump and strictly positive when a 
jump occurs in the oil market (asymptotically). 
 
2.2. Causality-in-Quantiles  
In this sub-section, we briefly present the methodology for testing nonlinear causality as 
developed by Jeong et al., (2012).1 As already stated, this approach is a robust approach far 
away from the center of the distribution. Furthermore, it enables us to capture nonlinear 
dynamic casual effects between two time series. In our study, let ݕ௧ be the dependent variable 
which stands for jumps (ܬ௧), while ݔ௧ stands for the predictor variable, in our case the dummies 
used in turn corresponding to OPEC meeting dates, and production decisions made on those 
dates involving a cut, maintain or increase (as described in detail in the Data segment of the 
paper below). 
 
Let ௧ܻିଵ ≡ ,௧ିଵݕ) … , ௧ି௣), ܺ௧ିଵݕ ≡ ,௧ିଵݔ) … , ௧ି௣), ܼ௧ݔ = (ܺ௧, ௧ܻ), and ܨ௬೟|∙(ݕ௧| •) denote the 
conditional distribution of ݕ௧ given •. Defining ܳఏ(ܼ௧ିଵ) ≡ ܳఏ(ݕ௧|ܼ௧ିଵ) and ܳఏ( ௧ܻିଵ) ≡ܳఏ(ݕ௧| ௧ܻିଵ), we have ܨ௬೟|௓೟షభ{ܳఏ(ܼ௧ିଵ)|ܼ௧ିଵ} =  with probability 1. The (non) causality in ߠ
the ߠ-th quantile hypotheses to be tested are: 

)௬೟|௓೟షభ{ܳఏܨ଴:   ܲ൛ܪ ௧ܻିଵ)|ܼ௧ିଵ} = ൟߠ = 1  
)௬೟|௓೟షభ{ܳఏܨଵ:   ܲ൛ܪ ௧ܻିଵ)|ܼ௧ିଵ} = ൟߠ < 1  (6) 

Based on the study implement by Jeong et al. (2012), the feasible kernel-based test statistics is 
given as follows: 

መ்ܬ = 1
ܶ(ܶ − 1)ℎଶ௣ ෍ ෍ ܭ ൬ܼ௧ିଵ − ܼ௦ିଵ

ℎ ൰  ௦̂ߝ௧̂ߝ
்

௦ୀ௣ାଵ,௦ஷ௧

்

௧ୀ௣ାଵ
 (7) 

where ܭ(•) is the kernel function with bandwidth ℎ, ܶ is the sample size, ݌ is the lag order, 
and ߝ௧̂ = ૚{ݕ௧ ≤ ෠ܳఏ( ௧ܻିଵ)} − )is the regression error, where ෠ܳఏ ߠ ௧ܻିଵ) is an estimate of the 
)th conditional quantile and ૚{•} is the indicator function. The ෠ܳఏ-ߠ ௧ܻିଵ) is estimated by the 
Nadarya-Watson kernel estimator as follows: 

෠ܳఏ( ௧ܻିଵ) = ∑ ܮ ቀ ௧ܻିଵ − ௦ܻିଵℎ ቁ  ૚{ݕ௦ ≤ ௧}௦்ୀ௣ାଵ,௦ஷ௧ݕ
∑ ܮ ቀ ௧ܻିଵ − ௦ܻିଵℎ ቁ௦்ୀ௣ାଵ,௦ஷ௧

 (8) 
with ܮ(•) denoting the kernel function. 
 
Note that, asymptotic normality holds for ܬመ் . The empirical implementation of causality testing 
via quantiles entails specifying three key parameters: the bandwidth (ℎ), the lag order (݌), and 
the kernel types for ܭ(∙) and ܮ(∙). We use a lag order of six based on the Schwarz Information 
Criterion (SIC). We determine ℎ by leave-one-out least-squares cross validation. Finally, for ܭ(∙) and  ܮ(∙), we use Gaussian kernels. 
 
3. Data and Results 
3.1. Data 
 Our analysis involves the measure of oil market jumps and four OPEC related variables over 
the daily period of 2nd December 1997 to 26th May 2017, with the start and end date 
                                                             
1 What is more, the exposition in this section closely follows Nishiyama et al. (2011) and Jeong et al. (2012). Our 
description is compact because the details of the test have been laid out in, e.g. recent contributions by Balcilar, 
et al. (2016a) and Balcilar et al. (2016b), Balcilar et al. (2016c) and Balcilar et al. (2017), among others. 
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corresponding to our availability of the intraday data on oil price. Intraday data reveal important 
information about the market compare to, for example, to daily data, such as intraday price 
changes and market microstructures. In this vein, Hansen and Huang (2016) noted that realized 
volatility is more accurately estimated at a daily frequency employing intraday data. We use 
intraday data on oil futures traded in NYMEX over a 24-hour trading day (pit and electronic) 
to extract our daily measure of jumps. We use futures data as futures have lower transaction 
costs related to futures trading, and therefore, our paper can be considered more relevant for 
analysts for practical applications (e.g. hedging analyses). Additionally, price discovery takes 
places mainly in futures markets as futures respond faster to new information than the spot 
markets because of the ease of short selling and lower transaction costs that they have (see 
Shrestha, 2014). The futures price data, in continuous format, is obtained from: Disktrading 
database (http://www.disktrading.com) and Kibot database (http://www.kibot.com). Close to 
expiration of a contract, the position is rolled over to the next available contract, provided that 
activity has increased. We define daily returns as the end of day (New York time) price 
difference (close to close). In the case of intraday returns, last-tick interpolation gives 1-minute 
prices (if the price is not available at the 1-minute stamp, the previously available price is 
imputed), and finally we compute 5-minute returns by taking the log-differences of these 
prices, and then these returns to construct a daily point estimate of realized oil volatility. 
 
OPEC news announcements on production decisions are made during OPEC conferences, 
which occur at least twice a year. The decisions may take the form of quota reductions, 
increases, or maintenance of the status quo. Three dummy variables are constructed in terms 
of the type of production decisions undertaken, and are included in the analysis, along with a 
dummy variable corresponding to the meeting date. The data for conference decisions were 
obtained from the OPEC website (http://www.opec.org). There were 75 announcements during 
our period of consideration, involving 16 cut, 12 increase, 47 maintain decisions. 
 
The summary statistics of jumps is reported in Table A1, and as can be seen from this table, 
the variable is positively skewed and has excess kurtosis, resulting a non-normal distribution. 
This is also indicated by the overwhelming rejection (at 1 percent level of significance) of the 
null of normality under the Jarque-Bera test. Such statistical properties provide a preliminary 
justification for the causality-in-quantiles test used in this empirical analysis. 
 
3.2. Results  
Before we present the findings of the causality-in-quantiles test, for the sake of completeness 
and comparability, we first conduct the standard linear Granger causality test. The resulting 2(6) statistics are presented in Table 1, and as can be seen from the table, the null of no-
Granger causality running from the four OPEC-based dummies to jumps cannot be rejected in 
any of the cases, even at the 10% level of significance. 

 
[INSERT TABLE 1 ABOUT HERE] Given the insignificant results obtained from the linear causality tests, we statistically examine 

the presence of nonlinearity in the relationship between jumps and the four OPEC dummies. 
For this purpose, we apply the Brock et al., (1996) test (known also as BDS test) to the residuals 
from the jump equation involving six lags of jumps and the four alternative OPEC dummies, 
considered by turn. Table A2 in Appendix 1 presents the results of the BDS test of nonlinearity. 
As shown in this table, we find strong evidence for the rejection of the null of independent and 
identically distributed (i.i.d.) residuals at various embedded dimensions (݉), which in turn, is 
indicative of nonlinearity in the relationship jumps and the dummies associated with cuts, 
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increases, maintain and meeting dates. This results further indicate that the results based on the 
linear Granger causality test cannot be deemed robust and reliable. 
 
Given the strong evidence of nonlinearity in the relationship between jumps and OPEC news 
announcements,2 we now turn our attention to the causality-in-quantiles test, which is robust 
to linear misspecification due to its nonparametric (i.e., data-driven) approach, besides 
providing evidence of predictability (if any) over the entire conditional distribution of jumps. 
As can be seen from Table 2, all the four OPEC related variables provide strong evidence of 
causality over the quantile range from 0.05 to 0.55, with the strongest impact in terms of 
statistically significant observed at the lowest considered quantile. More importantly, unlike 
the linear Granger causality test, where evidence of predictability is non-existent, we find 
evidence of predictability from the lowest quantile to the quantile just above the median. 
Recalling that quite a number of recent studies have suggested that OPEC news announcements 
drive volatility, one can argue that a channel through which this happens is that OPEC 
production decisions affect primarily the jump component in a similar manner, and hence, 
“bad” volatility. From a practical point of view such evidence indicates that the role of OPEC 
production decisions becomes important for sudden movements oil-prices associated with 
adverse events as when volatility is interpreted as uncertainty, it becomes a key input to 
investment decisions and portfolio choices (Poon and Granger, 2003). But, although OPEC 
production decisions can significantly help in the predictability of jumps, large jumps due to 
large price movements that happened in the oil market cannot be linked with OPEC production 
decisions. 
 
In a recent paper, Plante (2019) introduced a newspapers (the Financial Times, the Houston 
Chronicle, the New York Times and the Wall Street Journal) articles count index related to 
OPEC that rises in response to important OPEC meetings and events connected with OPEC 
production levels. Plante (2019) showed that this index can predict oil market volatility. This 
index is constructed at a monthly frequency and is available over the period from January 1986 
to December 2016. In addition to this benchmark index, the author also developed two other 
indices, with the first one being the raw number of articles written about OPEC and divided by 
the total number of articles produced by the four newspapers over the same time period, and 
the second one based on Google search volume data on “OPEC” covering January, 2004 to 
December, 2016.3 As a robustness check to our daily analysis of jumps obtained from intraday 
data, we now computed the monthly jumps from daily data on WTI oil prices. The daily data 
are obtained from the FRED database of the Federal Reserve Bank of St. Louis ( 
(https://fred.stlouisfed.org/). To detect monthly jumps from realized volatility we employ the 
jump detection scheme presented in Appendix 2. The application of this scheme to monthly 
realized volatility is possible in the same way as it is to daily realized volatility estimates 
constructed from intraday data, on the grounds that it is not dependent on direct estimates of 
the transition density function and directly builds on the theoretical results of Barndorff-
Nielsen and Shephard (2004). Barndorff-Nielsen and Shephard (2004) noted that the 
conception of realized bi-power variation and jumps can be applied to finite number of 
                                                             
2 In addition, by applying the Bai and Perron’s (2003) test of multiple structural breaks on the jump equation (with 
six lags each of jumps and cut, increase, maintain, or meeting date dummies), two breaks (in September, 2001 
and August, 2006) were detected between jumps series and each of the four OPEC news related variables. This 
result in turn, further warranted the need of a nonlinear approach to detecting causality in our context. Complete 
details of the structural break tests are available upon request from the authors. We also apply standard unit root 
tests to reveal whether oil market jumps series is stationary. The results are also available upon request and suggest 
that jumps can be employed directly without further transformation in the causality-in-quantiles procedure. 
3 The newspaper- and Google search volume-based indices are available for download from the website of Dr. 
Michael D. Plante at: https://sites.google.com/site/michaelplanteecon/research. 
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observations and a fixed interval of time, even in case it is a trading day or a calendar month. 
Following Giot and Laurent (2007), the explanatory power of the monthly jumps is consistent 
with implied volatility in encompassing regressions. Monthly jumps are also studied by 
(Gkillas et al., 2018; Gkillas et al., 2020b, among others). Furthermore, when we repeated the 
causality-in-quantiles test in Table A3 in the Appendix 1, we find that in general, our results 
are similar to those obtained under the daily data. The strongest impact in terms of statistically 
significant observed at the lowest quantile and the causality ranges to till just above the median 
(especially under the two newspapers based indices). 
 

[INSERT TABLE 2 ABOUT HERE] 
4. Conclusion 
 Recent evidence tends to suggest that news on OPEC production decisions can affect oil market 
volatility. Given that the volatility-related literature also stresses the importance of jumps in 
forecasting oil price volatility, we study the role of announcements of production decision by 
the OPEC in predicting daily oil market jumps derived from intraday data. For our 
predictability analysis, we rely on a nonparametric causality-in-quantiles test, which is robust 
to not only misspecification due to nonlinearity being a data-driven procedure, but also 
provides evidence of causality over the entire conditional distribution of jumps. Our results 
indicate that dummy variables capturing information on OPEC meeting dates, as well as 
production decisions associated with cuts, increases, or maintaining the status quo indeed 
predict oil market jumps very strongly at the lower end of the conditional distribution, and 
ranges till just above the median. In summary, our analysis shows that OPEC’s production 
decisions can affect “bad” oil market volatility as it can trigger jumps via small to normal 
jumps. But this result can only be detected when we rely on a nonparametric quantiles-based 
causality framework, instead of standard causality linear models. Standard linear models fail 
to capture any evidence of predictability due to misspecification that arises as they are unable 
to capture nonlinearities exist in the relation between jumps and OPEC meeting dates and 
production announcements. 
 
From a practical point of view, our study sheds light on the types of events that cause 
unexpected movements in the oil market. To this end, we take the point of view of investors 
that are exposed to jump-risk that may occur due to OPEC meeting dates and production 
announcements. Thus, we proceed to a systematic characterization of the types of events that 
cause the oil market to jump. In other words, we determine whether OPEC announcements can 
be considered as a source of “bad” volatility for the oil market. Our findings do reveal 
predictability from OPEC meeting dates and production announcements to oil market jumps 
when controlling different market phases and regimes. Such evidence has ample practical 
implications for portfolio selection and risk management, as well as policy implications as it 
is widely accepted that oil market uncertainty negatively affects economic activity (see Elder 
and Serletis, 2010). Thus, our findings imply that both investors and policymakers can use the 
information contained in OPEC announcements to predict unexpected movements in the oil 
market. As part of future research, our paper can be extended to analyzing the role of news 
associated with OPEC in predicting volatility and jumps of other financial markets. 
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Table 1: Granger Causality Test Estimates for Oil Market Jumps 
Independent variable χ2(6)-statistic p-value 

Meeting 9.9319 0.1275 
Cut 8.3267 0.2151 

Maintain 5.9475 0.4291 
Increase 3.4897 0.7453 

Notes: This table reports the estimates for the standard linear causality test between oil market jumps 
and OPEC news announcements. The OPEC news announcements on production decisions are made 
during OPEC conferences, which occur at least twice a year. The decisions may take the form of quota 
reductions, increases, or maintenance of the status quo. Three dummy variables are constructed in terms 
of the type of production decisions undertaken, and are included in the analysis, along with a dummy 
variable corresponding to the meeting date. ***, ** and * indicate the rejection of the null hypothesis 
of no-causality from OPEC news announcements to oil market jumps. 
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Table 2. Nonparametric Causality-in-Quantiles Results for Oil Market Jumps 
Quantile Meeting Cut Maintain Increase 

0.05 2685.1220*** 2692.4390*** 2676.4040*** 2697.4810*** 
0.10 1502.1840*** 1507.2630*** 1496.8810*** 1510.2930*** 
0.15 934.8305*** 938.0227*** 930.9399*** 940.0763*** 
0.20 586.4426*** 588.2303*** 583.3897*** 589.6616*** 
0.25 402.5122*** 403.0630*** 399.7872*** 404.1003*** 
0.30 279.5168*** 279.3823*** 278.4010*** 281.8445*** 
0.35 181.0650*** 180.3274*** 179.9614*** 182.2018*** 
0.40 204.5213*** 207.7911*** 204.3135*** 205.5889*** 
0.45 293.8399*** 298.0508*** 293.3934*** 296.0927*** 
0.50 21.2322*** 20.9058*** 20.9493*** 21.3410*** 
0.55 503.8821*** 510.0203*** 503.7456*** 508.2684*** 
0.60 0.0391 0.0487 0.0390 0.0409 
0.65 0.0398 0.0219 0.0238 0.0195 
0.70 0.0458 0.0499 0.0364 0.0384 
0.75 0.0484 0.0490 0.0382 0.0463 
0.80 0.0868 0.1126 0.0910 0.1251 
0.85 0.0452 0.0098 0.0178 0.0077 
0.90 0.0670 0.0274 0.0343 0.0154 
0.95 0.0304 0.0086 0.0104 0.0009 

Notes: This table reports the estimates for the causality-in-quantiles test between oil market jumps and 
OPEC news announcements. The OPEC news announcements on production decisions are made during 
OPEC conferences, which occur at least twice a year. The decisions may take the form of quota 
reductions, increases, or maintenance of the status quo. Three dummy variables are constructed in terms 
of the type of production decisions undertaken, and are included in the analysis, along with a dummy 
variable corresponding to the meeting date. ***, ** and * indicate the rejection of the null hypothesis 
of no-causality from OPEC news announcements to oil market jumps for various quantiles at 1 percent, 
5 percent and 10 percent levels of significance, respectively. The corresponding critical values of the 
test are 2.575, 1.96 and 1.645. 
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Appendix 1 
 Figure A1. Data Plot of Jumps 
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Notes: This figure depicts data plots for oil market jumps over the daily period of 2nd December 1997 to 26th 
May 2017, with the start and end date corresponding to our availability of the intraday data on oil price. 
 
  



15  

Table A1. Summary Statistics of Oil Market Jumps 
Statistic Value 
Mean 1.98E-05 
Median 2.50E-06 
Maximum 0.001480 
Minimum 0.000000 
Standard Deveation 4.23E-05 
Skewness 12.18215 
Kurtosis 332.2824 
Jarque-Bera 22962445 
 ***value 0.0000-݌
Observations 5055 

Notes: This table reports summary statistics for oil market jumps over the daily period of 2nd December 
1997 to 26th May 2017, with the start and end date corresponding to our availability of the intraday data 
on oil price. The null hypothesis that the data is normally distributed is also tested by the Jarque-Bera 
test. The p-values of the test are given below in brackets. ***, ** and * indicate the rejection of the null 
hypothesis of the skewness being zero and the excess kurtosis being zero at 1 percent, 5 percent and 10 
percent levels of significance, respectively. 
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Table A2. Brock et al. (1996) (BDS) test of nonlinearity 
Dependent 

variable 
Independent 

variable Dimension 
  2 3 4 5 6 

Jumps 
Meeting 27.2511*** 33.5470*** 38.6822*** 43.3977*** 48.6534*** 
Cut 27.2010*** 33.5395*** 38.6393*** 43.3688*** 48.5535*** 
Maintain 27.4109*** 33.6064*** 38.6291*** 43.2205*** 48.4024*** 
Increase 27.5014*** 33.7918*** 38.7891*** 43.3925*** 48.5096*** 

Notes: This table reports the estimates for Brock et al.’s (1996) test (BDS) of nonlinearity between oil 
market jumps and OPEC news announcements. The OPEC news announcements on production 
decisions are made during OPEC conferences, which occur at least twice a year. The decisions may 
take the form of quota reductions, increases, or maintenance of the status quo. Three dummy variables 
are constructed in terms of the type of production decisions undertaken, and are included in the analysis, 
along with a dummy variable corresponding to the meeting date. The test is applied on the residuals 
arising from the regression between oil market jumps as dependent variable and the OPEC news 
announcements as independent variables (including twelve lags) recovered from the VAR(6) model. 
The number of lags is defined from the Akaike Information Criterion (AIC). The null hypothesis of 
independent and identically distributed residuals (i. i. d.) at various embedded dimensions (݉) is tested 
by a z-statistic of the BDS test. ***, ** and * indicate the rejection of the null hypothesis of the BDS 
test at 1 percent, 5 percent and 10 percent levels of significance, respectively. 
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Table A3. Nonparametric Causality-in-Quantiles Estimates for Monthly Oil Market Jumps 
Quantile 

OPEC Newspaper 
Index 

Alternative 
Newspaper Index 

Google Search 
Volume Index 

0.05 27.0996*** 29.1435*** 36.8897*** 
0.10 14.9814*** 16.4169*** 18.9854*** 
0.15 9.5543*** 10.7645*** 10.9073*** 
0.20 6.3436*** 7.4399*** 6.2517*** 
0.25 4.2819*** 5.3149*** 3.3899*** 
0.30 2.9346*** 3.9322*** 1.6912* 
0.35 2.2036** 3.1739*** 0.9640 
0.40 1.7457* 2.7437*** 0.7737 
0.45 1.6974* 2.5224** 0.8431 
0.50 1.9715** 2.6516*** 0.6129 
0.55 1.7881* 2.3049** 0.5693 
0.60 1.4271 1.9956** 0.3205 
0.65 1.5730 1.9193* 0.2484 
0.70 1.5422 1.4499 0.2461 
0.75 1.8836* 1.7918* 0.2292 
0.80 1.3745 1.1396 0.5821 
0.85 1.6242 1.1269 0.5034 
0.90 1.0378 0.9288 0.4475 
0.95 0.8072 0.7524 0.4679 

Notes: This table reports the estimates for the causality-in-quantiles test between oil market jumps and 
news OPEC-related indices. The indices considered are OPEC Newspaper Index, Alternative 
Newspaper Index and Google Search Volume Index. The first index is newspapers articles count index 
related to OPEC that rises in response to important OPEC meetings and events connected with OPEC 
production levels. This index is constructed at monthly frequency and is available over the period of 
January 1986 to December 2016. The second index is the raw number of articles written about OPEC 
and divided by the total number of articles produced by the four newspapers over the same period. The 
third index is based on Google search volume data on “OPEC” covering January 2004 to December 
2016. ***, ** and * indicate the rejection of the null hypothesis of no-causality from OPEC news indices 
to oil market jumps for various quantiles at 1 percent, 5 percent and 10 percent levels of significance, 
respectively. The corresponding critical values of the test are 2.575, 1.96 and 1.645.  
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Appendix 2 
This appendix offers a detailed overview of the procedure used in this study to detect monthly 
jumps from a monthly point estimate of realized volatility estimated employing daily returns. 
French et al. (1987), Schwert (1990) and Schwert and Seguin (1991) suggested the construction 
of realized volatility using daily returns. Campbell et al. (2001) were the first to employ various 
alternative measures to estimate the dispersion of returns in a monthly frequency, based on the 
conception of the nonparametric realized volatility estimation. Gkillas (Gillas) et al. (2018) 
studied the properties of monthly realized volatility. 
 
In this paper, we estimate monthly realized volatility with the use of daily returns, as in 
Christensen and Hansen (2002), and Barroso and Santa-Clara (2015), among others. More 
specifically, we employ daily oil log returns of the to construct monthly point estimates of 
realized variance (ܴܸ). The ܴܸ is the benchmark and widely used realized volatility measure. 
More specifically, for each month ݐ, we construct a monthly point estimate by using all daily 
returns, as follows: 

ܴ ௧ܸ ≡ ෍ ௧,௜ଶݎ
ே

௜ୀଵ
 (1) 

where ݎ௧,௜ stands for the daily return for day ݅ within month ݐ for ݅ = 1, … ܰ, and ܰ is the total 
number of daily returns within a month ݐ. 

 
The asymptotic results of Barndorff-Nielsen and Shephard (2004) enable the nonparametric 
distinction between continuous and jump variation of returns. Although the realized variance ܴܸ defined in Equation (1) measures both the continuous and jump variation, the standardized 
realized bipower variation (ܴܸܤ) which captures only the amount of continuous variation, 
therefore it has been considered to be a jump-robust estimator of ܴܸ. The RBV is given by the 
following: 

ܤܴ ௧ܸ ≡ ଵିߦ ଶ ෍ |௧,௜ିଵݎ||௧,௜ݎ|
௺

௜ୀଶ
 (2) 

where ߦଵ is equal to ඥ2/ߨ =  and (|ܼ|) stands for the mean of the absolute value of a (|ܼ|)ܧ
random variable (ܼ) which is follow a normal distribution. 
 
We use the logarithmic transformation of Andersen et al.’s (2007) jump statistic to detect 
realized jump intensity. In an earlier version of their study, Andersen et al. (2007) found no 
difference between the plain jump statistic and its logarithmic transformation. The log-version 
of the jump statistic, used in this study, is given by the following: 

௧ܷ ≡ ܰ (log(ܴ ௧ܸ) − log(ܴܤ ௧ܸ))
ሾ(ߦଵି ସ2ߦଵି ଶ − 5)ܶܳ௧(ܴܤ ௧ܸ)ିଶሿଵ/ଶ (3) 

where ܶܳ௧ is the integrated quarticity which is estimated using the standardized realized tri-
power quarticity measure as ߦߋସ/ଷିଷ ∑ ௧,௜|ସ/ଷ௺௜ୀଷݎ|  ସ/ଷ is equal toߦ ௧,௜ିଶ|ସ/ଷ, whileݎ|௧,௜ିଵ|ସ/ଷݎ|
2ଶ/ଷ(1/2)߁(7/6)߁ିଵ = ܷ ൫|ܼ|ସ/ଷ൯. Theܧ ௧ is a ratio statistic which follow the standard normal 
distribution ( ௧ܷ → ܰ(0,1), as ܰ → ∞). The ௧ܷ is used as a pre-test, testing the null hypothesis 
of no jumps against the alternative hypothesis of existence of jumps. A significant jump is 
identified by an indicator function, ૚{ ௧ܷ >  :௔}, under the following conditionߔ
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௧ܬ ≡ ૚{ ௧ܷ > ܴ)௔}ሾlogߔ ௧ܸ) − log(ܤ ௧ܸ)ሿ (4) 
where continuous component ܥ௧,௔ is equal to ૚{ ௧ܷ ≤ {௔ߔ log(ܴ ௧ܸ) and log(ܴ ௧ܸ) is equal to 
௧ܬ +  ௧,௔. The non-negativity of both components corresponds directly to a significance levelܥ
of ܽ = 0.05 (Andersen et al., 2007). The application of this detection scheme to monthly 
realized volatility estimates is possible in the same way as it is to daily estimates, on the grounds 
that it is not dependent on direct estimates of the transition density function and directly builds 
on the theoretical results of Barndorff-Nielsen and Shephard (2004). Barndorff-Nielsen and 
Shephard (2004) showed that the conception of realized bi-power variation and jumps is 
applicable to finite number of observations and a fixed interval of time, even in case it is a 
trading day or a calendar month. 
 
 
 


