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Abstract

In a local projections framework, we study the impact of oil price shocks, based on a refined approach to

disentangle oil price movements, on the dynamics of the entire yield curve in nineteen emerging economies

with different positions on the oil market. Responses of the term structure factors to oil market shocks are

shown to differ conditional on not only the underlying sources that drive oil price, but also based on the

oil-dependence of these economies. In particular, we find that oil price risk shocks put upward pressure

on the level, slope, and curvature of interest rates across the board. Supply-driven shocks in oil markets

cause a rise in the level of interest rates in oil-importing economies more significantly, yet the downward

impact on yield curve slope is more pronounced in oil-exporting countries. Demand-driven shocks have a

significant and persistent upward impact on level factors in oil-importing countries. Furthermore, the effect

of precautionary demand shocks on the curvature factor is more pronounced in oil-importing countries vis-

à-vis oil-exporters. Significance, direction, and duration of our results may guide monetary policymakers

in emerging countries as well as international investors in portfolio and hedging decisions.
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1. Introduction

There exists a large international literature on the impact of oil price movements on equity markets (see,

for example, Degiannakis et al., (2018), and Smyth and Narayan (2018) for detailed reviews in this regard).

Given that the size of the global bond market is estimated to be over 100 trillion US dollars, relative to

the size of the worldwide equity market standing at around 65 trillion US dollars (Securities Industry and

Financial Markets Association (SIFMA)), a growing number of recent studies have started highlighting

the role of oil price in driving the bond markets of developed and emerging economies (see, for example,

Kang et al., (2014), Bouri et al., (2017, 2018, 2019a, 2019b), Lee et al., (2017), Shahzad et al., (2017),

Gormus et al., (2018), Bouri (2019), Demirer et al., (2019), Balcilar et al., (2020), Coronado et al., (2020),

Nazlioglu et al., (2020), Filis et al., (forthcoming)). This is not surprising simply because of the importance

of the bond market in comparison to the stock market, but also since the bond market is often viewed as a

safe-haven (Kopyl and Lee, 2016; Habib and Stracca, 2017; Hager, 2017), and the entire yield curve as a

predictor of economic activity and inflation (Gogas et al., 2015a, 2105b; Plakandaras et al., 2017a, 2017b,

2019; Hillebrand et al., 2018). Naturally, the impact of oil shocks on the bond market movement (of various

maturities) is an important question from the perspectives of both investors and policymakers alike.

While the abovementioned studies provide an understanding of the relationship between the bond and

oil markets, this existing line of research primarily concentrates on long-term (10-year) government bond

yields and sovereign credit default swaps (CDS), and oil price or returns. We aim to add to this literature by

examining the effects of oil price shocks on the entire term structure of interest rates for nineteen emerging

countries. In this regard, given the suggestion of Kilian (2009) that “Not all oil price shocks are alike”,

we first disentangle the oil price movement due to demand and supply shocks. Then we relate the supply

and demand oil shocks with the term structure of interest rates, by using the well-established framework of

Nelson and Siegel (1987) from the finance literature which summarises the entire term structure into three

latent yield factors of level, slope, and curvature, which in turn are considered to be the only relevant factors
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that characterise the yield curve (Litterman and Scheinkman, 1991). The factor model of the term structure

in combination with the decomposition of oil price shocks, into different causes, enable us to characterise

the responses of the yield curve to various shocks and to calculate the entire yield curve movement in the

wake of these shocks. Besides, we also check if the dynamics between oil shocks and the yield curve is

contingent upon whether the country can be considered as an exporter or importer in the oil market. Note

that, theoretically, high oil prices increase inflation expectations and hence, increases nominal bond yields,

which in turn moves bond prices or returns in the opposite direction, with this channel being important

especially for oil importers on one hand. On the other hand for oil exporters, higher oil prices generate

increased domestic income and can result in higher demand for investment in the financial asset market

(including bonds), and hence produce higher asset prices or returns. To the best of our knowledge, this is

the first paper to link oil price shocks to the term structure of interest rates of emerging markets.

Our paper is closely related to the work of Ioannidis and Ka (2019), given that these authors studied the

impact of oil price shocks on the dynamics of the entire yield curve in four countries (US, Canada, Norway,

and South Korea). The authors showed that responses of the term structure factors to oil market shocks

are contingent on the underlying sources that drive oil price shocks and the country’s dependence on oil. In

particular, oil market-specific demand shocks result in increases in the level factor in oil-importing countries,

but have no such effect in oil-exporting countries. At the same time, oil supply disruptions have short-lived

negative responses to the slope factors in the US and Canada, associated with loosening monetary policy,

whilst demand side shocks tend to lead to increases in the slope of all countries. In sum, oil supply and

demand shocks are shown to jointly account for a considerable amount of the observed variation in the term

structure of interest rates. Unlike this paper, our focus on the emerging bond market is motivated by the fact

that, in the wake of the global financial and European sovereign debt crises, bonds of emerging markets have

caught the attention of global investors aiming to diversify their portfolios with the relatively higher yields

on average derived from these bonds in comparison to their developed market counterparts, resulting in the

massive size (21.9 trillion US dollars) of the debt markets of emerging economies (International Monetary

Fund, 2018).

In addition, and more importantly, unlike the work of Ioannidis and Ka (2019), who relies on the de-

composition of the oil shocks as suggested by Kilian (2009), we use the more refined recent approach of

Clements et al., (2019). Although the decomposition method of Kilian (2009) has been popularly used in

the literature relating oil shocks to asset markets, it tends to give too much weight to oil-specific demand
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shocks relative to supply shocks. In this regard, Ready (2018) overcame the limitation by employing a

decomposition that only defines oil demand and risk shocks, with supply shocks representing elements that

are unclassified by the decomposition. But, Clements et al., (2019), improved the work of Ready (2018) by

providing an explicit role to precautionary demand shocks using an independent measure constructed from

oil futures data, and hence, reducing the role of the supply shocks obtained as the final residual in the recur-

sive identification scheme of Ready (2018). Note that, Clements et al., (2019) provided a clearer delineation

between shocks to equity market discount rates and aggregate demand, which we modify to be appropriate

in explaining the bond market. Also, while Ioannidis and Ka (2019) incorporated the term structure factors

and variables driving supply and demand in global crude oil markets into a structural vector autoregressive

(SVAR) model, we rely on the Local Projection (LP) method of Jorda (2005), which has been shown to have

many advantages over the standard VAR methods. In particular, the LP approach not allows estimating re-

sponses on a variable-by-variable basis, thus overcoming the degrees of freedom problem associated with

standard VARs, but it also reduces the dependence of the impulse response functions on the specification of

the data generation process, i.e., the results are independent of the identification of the structural shocks.

The remainder of the paper is organized as follows: Section 2 discusses the data used, while Section 3

and 4 respectively devoted to outlining the various methodologies employed and presenting the empirical

results, with Section 5 concluding the paper.

2. Data

We collect monthly zero coupon yields of maturities 3, 6, 12, 24, 36, 48, 60, 72, 84, 96, 108 and

120 months to estimate the yield curve factors for each market in our panel of emerging countries. The

zero coupon bond yields are retrieved from Bloomberg terminal. We have a panel data-set of 19 emerging

countries and the sample covers the period of January 2004 to January 2020. However, the panel is not

balanced because data availability varies by country. The list of countries, data availability periods and

summary statistics for the zero-coupon bonds are reported in Table 1.

− Insert Table 1 about here. −

We follow Ready (2018) and its extension by Clements et al. (2019) for decomposition of oil price

shocks. As per their use, monthly returns on the Word Integrated Oil and Gas Producers Index is obtained

from Datastream to be used as one of the main identifying variables. Similarly, the closest expiry NYMEX
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West Texas Intermediate (WTI) crude oil futures contract at month-end is used, and is obtained from the

Energy Information Administration (EIA). As a proxy for changes in the discount rates, the previous studies

use VIX. However, we opt to use Bank of America Merrill Lynch Option Volatility Estimate Index (MOVE)

available from Bloomberg as the more appropriate alternative for the bond market. In order to estimate the

n-month convenience yield, the 3-month expiry contact is obtained from EIA and, 3-month LIBOR rate is

downloaded from the FRED database of the Federal Reserve Bank of St. Louis.

3. Methodologies

3.1. Extraction of the yield curve factors

The conventional Nelson and Siegel (1987) model for zero-coupon yield curve has the following func-

tional form:

yt(τ) = β1 + β2

(
1 − e−λτ

λτ

)
+ β3

(
1 − e−λτ

λτ
− e−λτ

)
, t = 1, . . . ,T and τ = 1, . . . ,N (1)

where yt(τ) represents the continuously-compounded zero-coupon nominal yield at time t of a bond with

maturity τ, and β1, β2, and β3 are yield curve factors with loadings of 1,
(

1−e−λτ
λτ

)
, and

(
1−e−λτ
λτ − e−λτ

)
re-

spectively. The factor loading for β1 is a constant equal to 1 indicating that the loading is the same for all

maturities. Hence, an increase in this factor results in a change in the level of the yield curve. It is therefore

interpreted as a long-term factor. The factor loading for β2 starts at its maximum of 1 at τ = 0 and decays

monotonically to 0, so it is viewed as a short-term factor. Finally, the factor loading for β3 begins at 0 at

short maturities, increases until maturity reaches intermediate maturity and then decays back to zero as the

maturity increases. As a result, β3 has the largest impact on medium-term yields, so it is interpreted as

a medium-term factor. Put differently, these time-varying factors represent the level (Lt), slope (S t), and

curvature (Ct) of the a yield curve.

The yield curve factors are estimated using non-linear least squares where the objective function is to

minimize the squared difference between duration-inverse weighted actual and fitted prices. However, uti-

lizing the non-linear least-squares optimization may result in non-smooth parameter estimates particularly

for slope and curvature parameters. Hence, we estimate yield curve parameters with Ordinary Least Squares

(OLS) via fixing λ to lower the variance of these parameters as suggested by Diebold and Li (2006). We

carry out a grid analysis to determine the optimal parameter λ for each country in our sample that gives us

the smallest root mean squared error (RMSE).
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3.2. Identifying oil shocks with structural VAR methodology

Ready (2018) introduces a new approach in which oil price shocks can be categorized as supply or

demand-driven using the information in asset prices. The three variables necessary to decompose the oil

price movements into supply and demand shocks are an index of oil-producing firms, a measure of oil price

changes, and a proxy for changes in expected returns. As in Ready (2018), monthly returns on the Word

Integrated Oil and Gas Producers Index are used as the proxy for oil production RProd
t . For changes in oil

price, the 1-month returns ∆pt on the closest expiry NYMEX WTI crude oil futures contract at month-end

is used. Finally, Ready (2018) uses innovations to the VIX index as a proxy for changes in the discount

rate since the variance risk premium captured in VIX is both closely linked to stock return and is useful for

prediction of stock return indicating that the VIX may be a reasonable proxy for risk adjustment (Bollerslev

et al. (2009)).

Although the VIX is desirable to use as a proxy for discount factor shocks in the equity market, we

propose a new modified identification scheme which replaces the innovations of VIX with the innovations

of Bank of America–Merrill Lynch Option Volatility Estimate Index (MOVE). As by construction, the

MOVE index reflects the future volatility in U.S. Treasury yields implied by current prices of options on

government bonds of various maturities. Hence, it provides a signal for changes in risk in the fixed income

markets.

Defining Xt =
[
∆pt RProd

t ξMOVE,t
]′

a structural VAR model is used to identify the supply shocks st,

demand shocks dt, and risk shocks rt which is defined as:

Xt = C +

P∑
i=1

ΦiXt−i + AZt (2)

Zt ≡


st

dt

rt

 , A ≡


1 1 1

0 a22 a23

0 0 a33

 (3)

where the matrix A relates the identified shocks into the observable variables with the following equation:

Xt = AZt (4)

The lag length P=1 is selected by the BIC. To impose orthogonality, a22, a23, a33 and σs, σd, σr is
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subjected to the following condition:

Var(Zt) = A−1ΣX
(
A−1

)T
=


σ2

s 0 0

0 σ2
d 0

0 0 σ2
r

 (5)

where ΣX is the covariance matrix of the observable Xt, and σs, σd, σr are the volatilities of the identified

shocks. Furthermore, the shocks are normalised to add up to the total change in oil prices. This identification

scheme explicitly defines the demand shock, while the supply shock is considered to be the final residual

component of the model.

Clements et al., (2019) offers a key refinement to Ready (2018) by incorporating precautionary demand

shocks as the fourth shock factor in addition to aforementioned three of risk, demand and supply. Thus, the

interpretation of the final residual as a supply shock is refined by also taking into account the possibility

of precautionary demand shocks contributing to these residuals. In order to identify precautionary demand

shocks, an estimate of the convenience yield is obtained by imposing a no-arbitrage condition on the log of

the n-month futures price f (n)
t as proposed by Alquist et al., (2014). Specifically, we employ the following

equation:

f (n)
t = yt + ni(n)

t − nδ(n)
t (6)

where yt is the log spot price, i(n)
t is the nominal interest rate that investors can borrow at between time

periods t and t +n, and δ(n)
t is the n-month raw convenience yield. The 3-month expiry contract and 3-month

LIBOR rate are used to obtain an estimate for δ(n)
t

1. Hence, the precautionary demand shocks are then

defined as the projection of the supply shocks onto the space of innovations to convenience yield that is

orthogonal to the risk and demand shocks.2

3.3. Estimating impulse response functions using local projections

We now turn to estimate the impacts of the identified oil shocks on yield curve factors. The Local

Projection (LP) method of Jorda (2005) is employed in our analysis since it has many advantages over the

1The projection of δ(n)
t onto Working’s T-index is used as the ultimate proxy for convenience yield as suggested by Alquist and

Kilian (2010). The Working’s T-index is computed using the data on open interest in oil futures, made publicly available by CFTC

through weekly Commitment of Traders Reports, following the methodology of Buyuksahin and Robe (2014).
2See Alquist et al., (2014) and Clements et al., (2019) for detailed explanations.
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standard VAR methods. A big advantage of LPs is that they allow estimating responses on a variable-by-

variable basis, thus overcoming the degrees of freedom problem associated with standard VARs. The second

advantage of LPs is that they reduce the dependence of the impulse response functions on the specification

of the data generation process (Jorda, 2005).

Our baseline panel specification is:

yi,t+h = αh +

m∑
k=0

βk,hoilshocks j
t−k + ui + ei,t+h (7)

where yi,t is alternatively, level, slope, and curvature; j= supply shocks, demand shocks and risk shocks;

i = 1, 2, . . . ,N is the subscript for the country to which the effects of oil shocks are investigated over its

sovereign yield curve factors; t = 1, 2, . . . ,T is the time subscript; k = 0, . . . ,m, are the lags of oil shocks;

ui represents country fixed effects; ei,t is an error term and finally h is the horizon of the local projections3.

The coefficient βk,h corresponds to the response of y at time t + h to the shock variable (shock) at time t.

Hence, the impulse responses are the sequence of all estimated βk,h.

4. Empirical results

4.1. Estimated latent term structure factors

In this section, we present the estimation results of the yield curve latent factors for the panel of countries

in our sample based on the Nelson and Siegel (1987) model. Table 2 reports the estimated factors and the

optimal value of λ for each country. Since the parameter λ controls both the exponential decay rate and the

maturity at which the loading on the curvature factor attains its maximum, the small values of λ result in

slower decay and yields better fit of the curve at longer maturities, while the large values of λ are indicative

that the curvature factor reaches its maximum value at the short maturities. Furthermore, the higher positive

values of the curvature factor generates more pronounced hump.

In Table 2, the average value of the slope factors is negative for all countries, and is indicative that on

average yields increase along maturities. Hence, many studies in the literature state that slope parameter is

highly correlated with real activity and has a predictive content for economic growth (Stock and Watson,

2003; Ang et al., 2006; Diebold et al., 2006; Argyropoulos and Tzavalis, 2016; Cepni et al., 2019). On the

3The two lags is selected by BIC. We exclude the contemporaneous lag of the shock variable when calculating the impulse

responses.
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other hand, the average value of our estimates of the level factor has a high variation ranging between 3.06

to 12.34. Given the fact that level factor represents long-term rates, a natural consequence is that the higher

value of the level factor should be associated with high volatility of the inflation rates in emerging markets

economies.

− Insert Table 2 about here. −

4.2. Oil shocks decompositions

In this section, we report the decomposition of the oil shocks based on the baseline and modified spec-

ifications. While baseline utilizes the identification framework of Ready (2018), the modified one is based

on the same identification scheme of Clements et al. (2019), which uses the convenience yield to separate

precautionary demand shocks from supply shocks. We also substitute VIX with MOVE to more reliably

identify risk shocks in fixed income markets.

Table 3 presents the variance decomposition of oil price changes for the two identification schemes. It

is clear that supply shocks keep their dominance power for explaining the variation in oil prices under both

identification schemes. In particular, the baseline scheme identifies that roughly 78.8% of the variance in oil

prices is attributed to the supply shocks and 16.6% to the demand shocks, with the shocks to VIX accounting

only for 4.7% of the total variation in oil price. This result is qualitatively compatible with the findings of

Ready (2018), but due to the variability of the data and sample period used, the precise proportions are

slightly different.

On the other hand, the modified scheme leads to a different decomposition in the oil prices, with the

impact of supply and risk shocks becoming less important relative to the baseline identification scheme,

which now account for 76% and 1% of the total variation. Interestingly, the demand shocks become much

more relevant under the modified scheme indicating that using the VIX conflates information relating to

other shocks in times of higher volatility as suggested by Clements et al., (2019). Hence, using the MOVE to

identify the risk shocks may eliminate this misclassification and leads to a relatively more important role for

aggregate demand shocks compared to the baseline scheme. Furthermore, the previously measured supply

shocks also includes the precautionary demand capturing the uncertainty about future supply, although the

role of precautionary demand is limited and it only accounts for 3% of the variation when it is included in

the identification scheme.

− Insert Table 3 about here. −
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4.3. Local projections - impulse responses

Figure 1 presents the impulse response functions (IRFs) that are based on our modified decomposition

scheme as described above. The solid line show impulse response functions to the oil price shocks and

shaded gray areas correspond to the 68% confidence interval. The first column of the Figure 1 shows that

a risk shock is associated with an immediate increase in the level, slope and curvature factors. The impact

of the shock is persistent and lasts more than a year, except for the slope factor where the impact turns to be

negative nearly after four months.

The effect of unanticipated demand shocks on estimated yield curve factors is shown in the second

column of Figure 1. Unanticipated demand shocks have an immediate and persistent positive effect on the

level factor, which is also statistically significant. Aggregate demand shocks are associated with output

growth, and oil price increases, all of which contribute to higher inflation expectations. As a consequence,

the level factor rises following the aggregate demand shock. A more surprising finding is that unanticipated

demand shocks initially have a negative effect on the slope factor contrary to conventional monetary policy

reaction based on the Taylor-rule (Taylor, 1993). As suggested by Ioannidis and Ka (2018), the demand

shocks lead to flattening of the yield curve since investors conclude that the response of the short rate was

not adequate to control future expected inflation. This leads to a strong monetary tightening in the coming

months to support price stability which results in a positive impact on slope factor. Furthermore, a shock to

demand leads to a statistically significant increase in the curvature of the yield curve implying that investors

demand higher long term rates to keep the future value of their investments.

− Insert Figure 1 about here. −

The third column of Figure 1 shows the impulse response of yield curve factors to oil supply shocks.

A supply shock results in a statistically significant increase in the level factor but the response dies out

after nearly nine months. The positive response of the level factor may be related to elevated oil prices due

to supply disruptions which are interpreted as a signal of surge in inflation expectations. The slope factor

decreases following the supply shocks, which is consistent with the monetary policy reaction that central

banks decrease interest rates in order to offset possible negative effects of oil supply disruption on economic

activity. A supply shock is also associated with a decrease in the curvature factor, implying that oil supply

shocks influence the medium-term bond yields.
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The responses of yield curve factors to the precautionary demand shocks are plotted in the last column

of Figure 1. These shocks can be described as speculative demand shocks due to shifts in the uncertainty

about expected future shortfalls of oil supply relative to oil demand. A precautionary demand shock has an

upward and persistent effect on the level factor. This finding validates the result of Anzuini et al., (2015),

who show that the inflation rate has been rising substantially and stays above the benchmark for a long

time after a higher oil price shock induced by precautionary demand. However, following a precautionary

demand shock, the slope factor initially declines significantly. The reason may be that elevated uncertainty

leads to delay in consumers’ and firms’ investment decisions until the future price situation becomes clearer

(Bernanke, 1983). Finally, the precautionary demand shocks for oil leads to increased uncertainty in finan-

cial markets by depressing the stock market returns. This results in a positive effect on the curvature factor

since investors demand a higher risk premium for the medium-term.

Overall, our results show that the distinct oil price shocks may have very different effects on the latent

factors characterising the yield curve. Hence, it is important to understand the underlying reasons for yield

curve movements which may be driven by different types of shocks before formulating policy responses.

4.4. Do countries respond differently to oil price shocks? oil exporting countries versus oil importing

countries

We differentiate oil-exporting countries from oil-importing countries, and analyze the effects of oil

price shocks on yield curve factors separately, since the impact of oil price shocks on the yield curve of oil-

exporting countries can be different from those of oil-importing countries. Our selection criteria based on

the country’s net trade position in crude oil market (export minus import) is sourced from the International

Energy Agency (IEA)4. Hence, our final dataset includes six oil-exporting countries (Brazil, Colombia,

Malaysia, Mexico, Russia and United Arab Emirates) and thirteen oil-importing countries (Chile, China,

Czech Rep., Hungary, India, Indonesia, Peru, Philippines, Poland, South Africa, South Korea, Thailand,

Turkey).

Before undertaking the dynamic interaction between yield curve factors and different oil shocks, an

initial empirical investigation is performed by using a panel fixed estimation technique.5 Table 4 presents

4https://www.iea.org/.
5In particular, we estimate the following model:YCit = β0 + β1riskshockit + β2demandshockit + β3 supplyshockit +

β4 precautionaryshockit + ui + eit where YCi,t is alternatively, level, slope, and curvature factors, ui represents country fixed ef-

fects and ei,t is an error term.

10
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the regression results for both oil-exporting and oil-importing countries. In this setting, a positive risk

shock coincides with a statistically significant increase in level factor in both categories, but the coefficient

is higher for oil-importing countries, indicating that these countries suffer more from risk shocks because of

the higher oil dependency. This situation is also validated under the curvature factor which shows that any

risk shock is associated with significant positive impact on the curvature factor. Furthermore, when demand

shocks to oil prices are considered, the negative relationship with the slope factor is found to be much

stronger in case of oil-importing countries. In contrast to oil-exporting countries, the precautionary demand

shocks play a significant role in explaining movements of the slope factor in oil-exporting countries. It also

appears that the relatively higher portions of level and curvature factors are explained by the oil shocks as

the corresponding R2 values are higher in both categories.

− Insert Table 4 about here. −

Figures 2-3 present the impulse responses for oil importing and oil exporting countries, respectively. An

inspection of Figures 2-3 leads to a number of clear-cut conclusions. Firstly, although the effect of supply

shocks on level factor is stronger and persistent in oil-importing countries, these effects are negligible in oil-

exporting countries. This result support the findings of Baumeister et al., (2010), who show that countries

with greater reliance on oil are affected more by oil supply shocks as a consequence of rising oil prices,

which will then translate into higher inflation rates, while inflationary pressures remain negligible in net-

energy exporting countries. However, a supply-driven oil price shock results in a oil supply destruction and

has an adverse impact on economic activity which may eventually pave the way to downward pressure on

the slope factor in both oil-importing and oil-exporting countries, but the effect is more pronounced in the

latter case.

− Insert Figure 2 about here. −

− Insert Figure 3 about here. −

Secondly, Figure 2 shows that the response of the level factor to aggregate demand shocks is significant

and persistent in oil-importing countries. This implies that an increase in oil prices driven by demand shocks

will give rise to funding risk challenges and tightening in financial conditions, since oil-importing countries

generally have current account deficits. On the other hand, the magnitude of the demand shocks on the level

factor is negligible in oil-exporting countries.
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Thirdly, the effect of precautionary demand shocks on the curvature factor is more pronounced in oil-

importing countries than those of oil-exporting countries. Since precautionary demand in general arises

from the uncertainty about shortfalls of expected supply relative to expected demand and leads to rise in

oil price, higher risk premium will be demanded by global investors for the medium-term nominal treasury

bonds due to the oil price pass-through into inflation in oil-importing countries.

Overall, our results show that persistence and direction of response of yield curve factors to oil market

shocks depend on whether the country is classified as a net-importer or a net-exporter in the world oil

market. Hence, our findings may present diversification benefits for global investors and help them to

develop trading and hedging strategies in fixed income securities market by analyzing the distinct effects of

oil shocks in both oil-importing and oil-exporting countries.

5. Conclusion

In this paper, we study the impact of the oil price shocks, disentangled based on a refined approach,

on the term structure of interest rates across nineteen emerging countries, using local projection methods,

which has multiple advantages over structural VAR models. Our results indicate that the yield curve factors

of level, slope, and curvature react differently to oil market shocks contingent upon the underlying sources

that drive the oil price, as well as conditional on the oil-dependence of these countries as a net exporter

or net-importer. In particular, we find that supply shocks put upward pressure on the level and downward

pressure on the slope of interest rates, but more significantly and persistently so in oil-importing countries

than oil-exporting ones. Likewise, demand shocks draw a strong positive response from the level of interest

rates in oil-importing countries. Precautionary demand shocks have a significant upward impact on the

level and downward impact on the slope across the board, yet its impact on curvature is more pronounced

in oil-importing countries. We conjecture that various components of oil price movements yield differing

signals of inflation and economic activity expectations in countries with different exposures to oil markets.

The findings suggest that oil price movements indeed contain valuable predictive information for the

evolution of future interest rates, which can help policymakers to fine-tune their monetary policy models.

Furthermore, investors can improve asset allocation strategies by exploiting the role of oil shocks in their

interest-rate prediction models. But both the policy authorities and agents operating in the financial markets

would need to conduct proper identification of the structural shocks that drive the oil market. Finally,

12



academicians may utilize our findings to explain deviations from models of random walk, by embedding oil

shocks in their pricing models.

As part of future research, it would be interesting to extend our analysis to the out-of-sample prediction

of the bond market based on the information-content of oil price movements.
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Table 1: Summary statistics for zero coupon yields across maturities

Country Period 3M 6M 1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y

Brazil 2007M03-2020M01 Mean 10.07 10.18 10.35 10.91 11.30 11.55 11.71 11.81 11.88 11.92 11.96 11.99

Std Dev. 2.74 2.76 2.75 2.62 2.52 2.42 2.39 2.34 2.31 2.27 2.24 2.22

Chile 2005M09-2020M01 Mean 4.35 4.31 4.28 4.54 4.76 4.94 5.05 5.16 5.26 5.35 5.39 5.41

Std Dev. 2.25 1.90 1.59 1.40 1.28 1.20 1.16 1.13 1.11 1.10 1.07 1.05

China 2004M01-2020M01 Mean 2.43 2.49 2.61 2.81 3.02 3.20 3.33 3.43 3.53 3.60 3.67 3.73

Std Dev. 0.78 0.78 0.73 0.68 0.63 0.60 0.59 0.57 0.57 0.56 0.57 0.59

Colombia 2005M04-2020M01 Mean 5.50 5.61 5.86 6.37 6.83 7.18 7.49 7.70 7.91 8.03 8.10 8.15

Std Dev. 1.84 1.86 1.90 1.89 1.87 1.89 1.91 1.88 1.87 1.82 1.76 1.71

Czech Rep. 2004M01-2020M01 Mean 1.31 1.38 1.36 1.61 1.84 2.03 2.20 2.37 2.54 2.71 2.83 2.93

Std Dev. 1.25 1.31 1.32 1.39 1.44 1.48 1.50 1.51 1.52 1.54 1.56 1.56

Hungary 2004M01-2020M01 Mean 4.84 4.87 4.94 5.13 5.32 5.46 5.58 5.69 5.79 5.87 5.90 5.93

Std Dev. 3.70 3.67 3.62 3.47 3.27 3.04 2.84 2.66 2.51 2.39 2.27 2.18

India 2004M01-2020M01 Mean 6.76 6.90 6.97 7.14 7.31 7.47 7.58 7.66 7.74 7.80 7.83 7.80

Std Dev. 1.46 1.44 1.31 1.10 0.99 0.94 0.93 0.89 0.86 0.85 0.85 0.86

Indonesia 2004M01-2020M01 Mean 7.24 7.29 7.47 7.98 8.29 8.54 8.72 8.95 9.10 9.20 9.28 9.32

Std Dev. 2.31 2.29 2.28 2.35 2.37 2.43 2.52 2.48 2.49 2.50 2.54 2.60

Malaysia 2004M01-2020M01 Mean 2.90 2.95 3.04 3.24 3.42 3.60 3.73 3.84 3.95 4.05 4.14 4.22

Std Dev. 0.49 0.47 0.44 0.33 0.28 0.28 0.31 0.32 0.35 0.39 0.42 0.44

Mexico 2004M01-2020M01 Mean 5.97 6.03 6.09 6.30 6.56 6.78 6.95 7.12 7.30 7.43 7.53 7.62

Std Dev. 1.93 1.91 1.85 1.70 1.57 1.48 1.39 1.39 1.40 1.38 1.35 1.35

Peru 2006M05-2020M01 Mean 3.85 3.83 3.95 4.21 4.53 4.82 5.11 5.37 5.61 5.82 6.00 6.15

Std Dev. 1.24 1.29 1.30 1.28 1.23 1.20 1.14 1.08 1.03 0.99 0.98 0.97

Philippines 2004M01-2020M01 Mean 5.21 5.43 5.68 6.13 6.35 6.57 6.82 6.75 6.72 6.71 6.72 6.78

Std Dev. 3.09 3.15 3.19 3.22 3.24 3.23 3.39 3.12 3.09 2.91 2.86 2.89

Poland 2004M01-2020M01 Mean 3.35 3.42 3.57 3.79 3.96 4.13 4.27 4.37 4.46 4.54 4.62 4.67

Std Dev. 1.69 1.74 1.78 1.76 1.72 1.68 1.62 1.56 1.51 1.48 1.45 1.42

Russia 2007M01-2020M01 Mean 6.91 7.10 7.35 7.74 8.01 8.10 8.22 8.42 8.65 8.38 8.57 8.53

Std Dev. 2.27 2.30 2.06 2.05 2.09 2.06 1.98 2.24 2.70 1.89 2.25 2.07

S. Africa 2004M01-2020M01 Mean 7.11 7.20 7.25 7.50 7.73 7.92 8.06 8.22 8.37 8.54 8.64 8.74

Std Dev. 1.34 1.37 1.31 1.22 1.11 0.95 0.85 0.79 0.74 0.76 0.75 0.75

S. Korea 2004M01-2020M01 Mean 2.89 2.92 3.02 3.19 3.27 3.40 3.49 3.58 3.65 3.70 3.74 3.77

Std Dev. 1.21 1.23 1.24 1.28 1.29 1.31 1.33 1.34 1.35 1.35 1.36 1.36

Thailand 2004M01-2020M01 Mean 2.30 2.36 2.46 2.64 2.85 3.05 3.22 3.37 3.51 3.61 3.72 3.83

Std Dev. 1.05 1.07 1.07 1.08 1.07 1.04 1.05 1.05 1.07 1.07 1.09 1.11

Turkey 2005M04-2020M01 Mean 12.00 12.36 12.64 12.82 12.80 12.61 12.39 12.34 12.30 12.35 12.35 12.33

Std Dev. 4.59 4.68 4.79 4.71 4.53 4.28 4.04 3.96 3.90 3.87 3.82 3.79

United Arab E. 2006M06-2020M01 Mean 2.19 2.22 2.28 2.38 2.63 2.89 3.14 3.39 3.61 3.80 3.98 4.14

Std Dev. 1.41 1.31 1.24 1.23 1.17 1.10 1.04 0.98 0.92 0.88 0.85 0.83

Note: The table reports the average and standard deviation values of the yield with selective maturities.
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Table 2: Summary statistics for the estimated yield curve latent factors

Country Curvature Slope Level λ

Brazil -0.82 -2.36 11.72 0.012

Chile -1.72 -1.54 5.74 0.014

China -1.74 -1.52 3.96 0.010

Colombia -2.35 -3.43 8.65 0.014

Czech Rep. -3.15 -1.93 3.39 0.012

Hungary -1.09 -1.64 6.25 0.018

India 0.35 -1.40 7.89 0.031

Indonesia -0.60 -2.87 9.66 0.022

Malaysia -1.96 -1.53 4.46 0.011

Mexico -2.19 -2.44 8.21 0.019

Peru -4.43 -2.80 6.75 0.012

Philippines 0.94 -1.88 6.68 0.014

Poland -0.66 -1.87 5.09 0.022

Russia 0.69 -1.92 8.44 0.020

S. Africa -2.01 -2.22 9.10 0.018

S. Korea -0.87 -1.16 3.98 0.015

Thailand -2.53 -1.75 4.14 0.011

Turkey 2.83 -0.37 11.27 0.009

United Arab E. -4.73 -1.93 4.51 0.010

Note: The table reports the average values of the yield curve factors and the optimal value of λ.

Table 3: Oil shock variance decomposition

Shock Baseline Modified

Stdev. % of Var. Stdev. % of Var.

Risk 0.058 4.65 0.026 0.95

Demand 0.109 16.59 0.120 20.33

Supply 0.237 78.77 0.232 76.00

Precautionary 0.044 2.71

Note: The table reports the annualised standard deviations for each oil shocks identified based on baseline and modified scheme together with

the percentage of variance explained by each orthogonal oil shock.
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Table 4: Yield curve factor and identified oil shocks: panel fixed effects estimation results

Oil-exporting countries Oil-importing countries

Dependent variable Dependent variable

Shock Level Slope Curvature Level Slope Curvature

Risk 0.287** -0.025 0.112 0.351*** 0.095 0.169***

(0.082) (0.067) (0.062) (0.089) (0.091) (0.058)

Demand 0.007 -0.012 -0.005 0.015 -0.013 0.003

(0.006) (0.009) (0.004) (0.009) (0.008) (0.007)

Supply -0.004 -0.004 0.001 0.002 -0.008** -0.001

(0.005) (0.004) (0.001) (0.002) (0.003) (0.003)

Precautionary -0.051 -0.008 0.032 0.024 -0.03* -0.005

(0.026) (0.044) (0.020) (0.026) (0.016) (0.09)

Constant 0.074*** -0.02*** -0.001*** 0.063*** -0.014*** -0.005***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

R2 0.28 0.14 0.50 0.27 0.06 0.51

Observations 1040 1040 1040 2446 2446 2446

Note: The table presents the panel regression of yield curve factors on identified oil shocks across both oil-exporting and oil-importing coun-

tries. The country-based cluster-robust standard errors are given in parenthesis. ***, **, and * denote 1%, 5%, and 10% significance level,

respectively.
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Figure 1: Responses of the yield curve factors to oil markets shocks

Notes: Solid line are responses to one-standard deviation shocks in market shocks based on local projections. Shaded gray areas correspond to the 68% confidence intervals.

The heteroscedasticity and autocorrelation robust standard errors of Newey and West (1987) are used.
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Figure 2: Responses of the yield curve factors to oil markets shocks - oil importing countries

Notes: See notes to Figure 1.
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Figure 3: Responses of the yield curve factors to oil markets shocks - oil exporting countries

Notes: See notes to Figure 1.
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