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Abstract 
We extend the literature on the effect of rare disaster risks on commodities by examining the 
effect of the El Niño–Southern Oscillation (ENSO) on crude oil via the recently developed k-
th order nonparametric causality-in-quantiles framework, utilizing a long range historical data 
set spanning the period 1876:01 to 2020:10. The methodology allows us to test for the 
predictive role of ENSO over the entire conditional distribution of not only real oil returns but 
also its volatility, by controlling for misspecification due to uncaptured nonlinearity and 
regime-changes. Empirical findings show that the Southern Oscillation Index (SOI), measuring 
the ENSO cycle, not only predicts real oil returns, but also volatility, over the entirety of the 
respective conditional distributions. The findings highlight the role of rare disaster risks over 
not only financial markets, but also commodities with significant implications for policymakers 
and investors. 
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1. Introduction 
As outlined in Trenberth et al., (2007) the El Niño–Southern Oscillation (ENSO) is an 
irregularly periodic variation in winds and sea surface temperatures over the tropical eastern 
Pacific Ocean, affecting the climate of much of the tropics and subtropics. The warming phase 
of the sea temperature is known as El Niño and the cooling phase as La Niña. The two periods 
last several months each and typically occur every few years with varying intensity per period. 
The ENSO cycle changes the global climate pattern (Martin et al., 2013; Staupe-Delgado et al., 
2018; Rojas et al., 2019), which in turn affects the demand and supply in the oil market, 
resulting in price fluctuations (Changnon, 1999; Cruz and Krausmann, 2013; Cashin et al., 
2017; Qin et al., 2020). The literature suggests multiple channels in which ENSO can drive 
return and volatility dynamics in crude oil. From a demand perspective, the demand for oil 
could be affected by changes in global climate patterns due to the ENSO cycles, as warming 
weather patterns, in particular, negatively affect demand for energy commodities. Severe 
changes in the ecological environment can also force policy makers to implement policies to 
reduce energy consumption in order to reduce pollution that can be a driving factor behind the 
occurrence of natural disasters. Similarly, on the supply side, severe weather conditions can 
negatively affect the exploration, refining and transportation activities globally, thus opening a 
supply channel in which the ENSO cycle can affect oil market dynamics. Accordingly, one can 
establish a direct association between the ENSO cycles and crude oil price fluctuations from 
both demand and supply side related channels. 
Considering that the ENSO cycle can cause severe natural disasters, such as droughts, floods 
and hurricanes (Cane, 2004; Alajo et al., 2006; Miyakawa et al., 2017; Hu and Fedorov, 2019), 
borrowing from the work of Demirer et al., (2018) on rare disaster risks and the oil market, we 
hypothesize that ENSO may also affect the volatility of the oil price. As pointed out by Demirer 
et al., (2018), this is likely to be the case because disaster risks contribute to jump risk in oil 
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prices, and there is growing evidence suggesting that jumps account for a substantial part of 
the variation in crude oil prices, as well as a substantial part of the risk premium in oil 
derivatives prices (Asai et al., 2019, 2020). From yet another angle, several empirical studies 
have highlighted the role of rare disaster risks on first and second moment movements of asset 
(equities, bonds, currencies) prices (see for example, Berkmann et. al., 2011, 2017; Gupta et 
al., 2019a, 2019b; Gkillas et al., 2020), and given the well-known spillover effects between 
financial and oil markets (see for example, Tiwari et al., 2013, 2018; Balcilar et al., 2015,2017; 
Nazlioglu et al., 2020), there also exists an indirect channel through which rare disaster risks 
can affect returns and volatility of oil. Accordingly, the effect of time varying rare disaster risks 
on return and volatility dynamics in the oil market is supported both from an economic and 
empirical point of view. 
Clearly, understanding the factors, and the role of the ENSO in this particular case, that drive 
oil market volatility, besides prices and/or returns, is a pertinent question both from the 
perspectives of policymakers and investors. From a policy making perspective, there is ample 
evidence that the first and second moment movements in crude oil may have an impact on 
inflation and predict recessions (Stock and Watson, 2003; Elder and Serletis, 2010; Plakandaras 
et al., 2017; van Eyden et al., 2019; Pierdzioch and Gupta, 2020). Particularly in emerging 
economies, energy imports contribute a great deal to persistent budget deficits and uncertainty 
in energy costs can present a significant challenge to policy makers in their economic growth 
projections. Moreover, the oil market’s recent financialization has led to increased participation 
of hedge funds, pension funds and insurance companies in the market for commodities, thus 
rendering oil a profitable alternative investment in the portfolio decisions of financial 
institutions (Bahloul et al., 2018; Bonato 2019). Given that volatility, when interpreted as 
uncertainty, becomes a key input to investment decisions and portfolio choices (Poon and 
Granger, 2003), accurate estimates of oil-price volatility are of vital importance to oil traders. 
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Against this backdrop, to test our hypothesis that the ENSO cycle plays a predictive role over 
oil returns and volatility, we use the recently developed k-th order nonparametric causality-in-
quantiles framework of Balcilar et al., (2018). The main novelties of this econometric 
framework and, thus, the empirical results of our paper are as follows: First, it is robust to 
misspecification errors, as it detects the underlying dependence structure between the examined 
dependent variable (i.e., real oil returns) vis-à-vis the regressor (i.e., the ENSO cycle 
represented by the Southern Oscillation Index, SOI). In our empirical exercise, we show that 
this is particularly important given that we find evidence of nonlinearity and regime changes 
between real oil returns and SOI, which supports the use of the nonparametric test. Second, 
this methodology allows not only causality-in-mean to be tested (i.e., the first moment), but 
also causality in the tails of the joint distribution of the variables. Our analysis reveals that this 
aspect is especially relevant in the light of the fact that the unconditional distribution of the 
dependent variable - i.e. real oil returns - tends to exhibit fat tails. Thus, the nonparametric 
causality-in-quantiles test captures predictability in bear, normal and bull market phases 
corresponding to the lower, median, and upper quantiles of the distribution. Third, we are able 
to investigate causality-in-variance and, thus, to study higher-order dependency. This again is 
highly pertinent since, during some periods, causality in the conditional-mean may not exist 
while, at the same time, higher-order predictability may turn out to be significant. 
Understandably, this framework which renders it possible to test for predictability over the 
entire conditional distributions of both real oil returns and volatility and simultaneously 
accounts for misspecification due to uncaptured nonlinearity and structural breaks, this 
framework is preferred to conditional mean-based nonparametric causality tests of Hiemstra 
and Jones (1994) and Diks and Panchenko (2005, 2006), and models of the Generalized 
Autoregressive Conditional Heteroskedasticity (GARCH)-family.  
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To the best of our knowledge, this is the first paper that evaluates the predictive power of the 
ENSO cycle for real oil returns and volatility based on a nonparametric k-th order causality-in-
quantiles framework. In addition to the novel econometric framework, we also utilize a unique 
monthly data set covering the period of 1876:01 to 2020:10, which basically involves the 
longest possible available history on these two variables of concern. The usage of about 145 
years of data ensures that our analysis does not suffer from a sample selection bias. Our paper, 
thus, adds to the already existing large literature on the predictability of oil returns and volatility 
based on a wide array of linear and nonlinear models and macroeconomic, financial and 
behavioural predictors (see Gupta and Wohar (2017), Gkillas et al., (2020), Baumeister et al., 
(forthcoming), Salisu et al., (forthcoming) for detailed reviews in this regard), by considering 
the role of climate patterns. The remainder of the paper is organized as follows: Section 2 
outlines the data and the methodology, while Section 3 discusses the econometric results, with 
Section 4 concluding the paper.  
 
 2.  Data and Econometric Methodology 
In this section, we present the data, and basics of the methodology for testing nonlinear 
causality via a hybrid approach as developed by Balcilar et al., (2018), which is based on the 
frameworks of Nishiyama et al., (2011) and Jeong et al., (2012).  

2.1. Data 
As far as the crude oil price is concerned, we use the monthly data of the nominal West Texas 
Intermediate (WTI) oil price, which is available from 1859, and is derived from the Global 
Financial Database.1 The nominal value of the WTI oil price is deflated by the Consumer Price 
Index (CPI), obtained from the data segment of the website of Professor Robert J. Shiller,2 with 

                                                             
1 https://globalfinancialdata.com/. 
2 http://www.econ.yale.edu/~shiller/data.htm. 
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the data starting from January 1871. Naturally, the real oil price can only be computed from 
this date. We compute the log-returns of the real oil price (ROILR), by taking the first difference 
of the natural logarithms of the real oil price in percentages. For the metric to represent the 
ENSO cycle, we use the Southern Oscillation Index (SOI), obtained from the Bureau of 
Meteorology, Government of Australia.3 The SOI, gives an indication of the development and 
intensity of El Niño or La Niña events in the Pacific Ocean. The SOI is calculated using the 
pressure differences between Tahiti and Darwin. Sustained negative (positive) values of the 
SOI below (above) −7 (+7) often indicate El Niño (La Niña) episodes. Low atmospheric 
pressure tends to occur over warm water and high pressure occurs over cold water, in part 
because of deep convection over the warm water. El Niño episodes are defined as sustained 
warming of the central and eastern tropical Pacific Ocean, and La Niña episodes are defined as 
sustained cooling of the central and eastern tropical Pacific Ocean, thus resulting in a decrease 
and an increase in the strength of the Pacific trade winds respectively. The SOI data is available 
from January, 1876, and hence our sample ranges between 1876:01-2020:10, i.e., 1738 
observations, based on data availability of these two variables of concern at the time of writing 
this paper.4 Figure 1 presents the time series plots for real oil returns (ROILR) and the Southern 
Oscillation Index (SOI) and Table 1 presents the summary statistics. ROILR and SOI are both 
negatively skewed and the excess kurtosis results in a non-normal distribution as indicated by 
the strong rejection of the null of normality under the Jarque-Bera test. The non-normality of 
the ROILR provides preliminary motivation to use a quantiles-based, rather than a conditional 
mean-based approach for our empirical analysis.   

[INSERT TABLE 1] 

                                                             
3 http://www.bom.gov.au/climate/current/soihtm1.shtml. 
4 The log-returns ensure that the oil data is mean-reverting, while the SOI is stationary in levels, which in turn 
meets the data requirements of the test employed. Understandably, we need to work with returns to analyze the 
impact on squared returns, i.e., volatility. 
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2.2. Methodology 
Now turning to the k-th order nonparametric causality-in-quantiles test, let ݕ௧ denote ROILR 
and ݔ௧ the SOI.5 Further, let  ௧ܻିଵ ≡ ,௧ିଵݕ) … , ௧ି), ܺ௧ିଵݕ ≡ ,௧ିଵݔ) … , ௧ି),  ܼ௧ݔ = (ܺ௧, ௧ܻ), 
and ܨ௬|∙(ݕ௧| •)  denote the conditional distribution of ݕ௧  given • .  Defining ܳఏ(ܼ௧ିଵ) ≡
ܳఏ(ݕ௧|ܼ௧ିଵ)  and ܳఏ( ௧ܻିଵ) ≡ ܳఏ(ݕ௧| ௧ܻିଵ) , we have  ܨ௬|షభ{ܳఏ(ܼ௧ିଵ)|ܼ௧ିଵ} = ߠ   with 
probability one. The (non)causality in the q -th quantile hypotheses to be tested are: 
)௬|షభ{ܳఏܨ:   ܲ൛ܪ ௧ܻିଵ)|ܼ௧ିଵ} = ൟߠ = 1                                                                                     (1)  
)௬|షభ{ܳఏܨଵ:   ܲ൛ܪ ௧ܻିଵ)|ܼ௧ିଵ} = ൟߠ < 1                                                                                      (2)  
Jeong et al., (2012) show that the feasible kernel-based test statistics has the following format: 

መ்ܬ                = 1
ܶ(ܶ − 1)ℎଶ   ܭ ൬ܼ௧ିଵ − ܼ௦ିଵ

ℎ ൰  ௦̂ߝ௧̂ߝ
்

௦ୀାଵ,௦ஷ௧
                      

்

௧ୀାଵ
                        (3) 

where ܭ(•) is the kernel function with bandwidth ℎ, ܶ is the sample size,  is the lag order, 
and ߝ௧̂ = {ݕ௧ ≤ ܳఏ( ௧ܻିଵ)} − )is the regression error, where ܳఏ ߠ ௧ܻିଵ) is an estimate of the 
ߠ -th conditional quantile and {•}  is the indicator function. The Nadarya-Watson kernel 
estimator of ܳఏ( ௧ܻିଵ) is given by 

ܳఏ( ௧ܻିଵ) = ∑ ܮ ቀ ௧ܻିଵ − ௦ܻିଵℎ ቁ  {ݕ௦ ≤ ௧}௦்ୀାଵ,௦ஷ௧ݕ
∑ ܮ ቀ ௧ܻିଵ − ௦ܻିଵℎ ቁ௦்ୀାଵ,௦ஷ௧

                                                                   (4)  

with ܮ(•) denoting the kernel function.  

Balcilar et al., (2018) extend the framework of Jeong et al., (2012), based on Nishiyama et al., 
(2011), to the second (or higher) moment which allows us to test the causality between the SOI 
and ROILR volatility (ROILRV). In this case, the null and alternative hypotheses are given by: 

                                                             
5 Our description of the technical details of the quantiles-based test is relatively compact and draws heavily on the 
expositions in Balcilar et al., (2020a, forthcoming).  
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ܲ   :0ܪ ቄݐ݇ݕܨ 1ൟ−ݐܼ|(1−ݐܻ)ߠ1൛ܳ−ݐܼ| = ቅߠ = 1,    ݇ = 1,2, … , (5)                                                          ܭ  

ܲ   :1ܪ ቄݐ݇ݕܨ 1ൟ−ݐܼ|(1−ݐܻ)ߠ1൛ܳ−ݐܼ| = ቅߠ < 1,    ݇ = 1,2, … , (6)                                                           ܭ  

The causality-in-variance test can then be calculated by replacing ݕ௧ in Eqs. (3) and (4) with 
መ்ܬ ௧ଶ. As pointed out by Balcilar et al., (2018) a rescaled version of theݕ  has the standard normal 
distribution. Testing approach is sequential and failing to reject the test for ݇ = 1 does not 
automatically lead to no-causality in the second moment; one can still construct the test for 
݇ = 2.  
The empirical implementation of causality testing via quantiles entails specifying three key 
parameters: the bandwidth (h), the lag order (p), and the kernel types for ܭ(∙) and ܮ(∙). We use 
a lag-order of 2 based on the Schwarz Information Criterion (SIC). We determine ℎ by the 
leave-one-out least-squares cross validation. Finally, for ܭ(∙)  and  ܮ(∙) , we use Gaussian 
kernels. 

3. Results 
Before we discuss the findings from the k-th order causality-in-quantiles test, for the sake of 
completeness and comparability, we conduct the standard linear Granger causality test, with a 
lag-length of 2, as determined by the SIC. The resulting 2(2) statistic (with p-values in 
parenthesis) associated with the causality running from SOI to ROILR is found to be equal to 
4.9074 (0.0860). Given these results, the null hypothesis, that SOI does not Granger cause 
OILR, cannot be rejected at the conventional 5% level of significance, though weak evidence 
of predictability is observed at the 10% level. Therefore, based on the standard linear test, we 
conclude that there is no evidence of statistically strong ENSO-related effects on real oil 
returns, in line with Qin et al., (2020), who too made similar observations using a wavelet-
based approach. 
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Given the insignificant results obtained from the linear causality tests, we statistically examine 
the presence of nonlinearity and structural breaks in the relationship between ROILR and SOI. 
Nonlinearity and regime changes, if present, would motivate the use of the nonparametric k-th 
order quantiles-in-causality approach, as the quantiles-based test would be able to adequately 
capture nonlinearity and structural breaks in the link between the variables under investigation. 
For this purpose, we apply the Broock et al., (1996, BDS) test on the residuals from the ROILR 
equation involving 2 lags of ROILR and SOI. Table 2 presents the results of the BDS test of 
nonlinearity. We find strong evidence, at the highest level of significance, against the null 
hypothesis of i.i.d. residuals at various embedding dimensions (m), which, in turn, is indicative 
of nonlinearity in the relationship between ROILR and SOI. To further motivate the causality-
in-quantiles approach, we next use the powerful UDmax and WDmax tests of Bai and Perron 
(2003), to detect 1 to M structural breaks in the relationship between ROILR and SOI, allowing 
for heterogenous error distributions across the breaks. When we apply these tests again to the 
ROILR equation involving 2 lags of ROILR and SOI, we detect 5 breaks at: 1898:06, 1921:04, 
1942:12, 1964:08, and 1986:04. The break dates are in line with the El Niño episodes.6 

[INSERT TABLE 2] 
In light of the strong evidence of nonlinearity and structural breaks in the link between ROILR 
and SOI, we now apply the causality-in-quantiles test, which is robust to misspecification due 
to its nonparametric (i.e., data-driven) approach, besides allowing us to test predictability for 
both oil returns and volatility. In Table 3, we present the results for the higher-order order 
causality-in-quantiles test for real oil returns (ROILR) and squared real oil returns, i.e., 
volatility (ROILRV), emanating from the SOI over the quantile range of 0.10 to 0.90. As can 
be seen, unlike the results discussed above derived from the linear framework, SOI is found to 

                                                             
6 http://www.bom.gov.au/climate/enso/enlist/. 
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cause ROILR at the 1% level of significance over all the quantiles of the conditional distribution 
considered, with the strongest effects observed around the median to moderately high quantiles, 
i.e., 0.50 to 0.60. Understandably, this result originates from the ability of our approach to 
control for the presence of nonlinearity (as shown in Table 1) and regime changes via the usage 
of data-driven nonparametric functional forms defining the relationship between ROILR and 
SOI. As far as return volatility (ROILRV) is concerned, we draw a similar observation as for 
returns in that we find evidence of predictability over the entire conditional distribution, but 
now causality is strongest at the lower quantiles and tends to decline as we move to upper 
quantiles. Accordingly, our findings show that SOI causes both real oil returns and volatility, 
though the strength of predictability is asymmetric across the quantiles, with stronger causality 
around the median of returns, i.e., normal oil market conditions, and lower quantiles of 
volatility associated with low oil market risk.   
 

[INSERT TABLE 3] 
Examining the findings in Table 3, one interpretation of the relatively strong predictability of 
the ENSO cycle at the lower end of the conditional distribution of oil volatility is that it 
indicates the predictive role of disaster risks on return volatility is relatively greater during 
periods when the oil market is relatively calm. This suggests that the surprise factor related to 
disaster risks shows the greatest impact on oil market volatility during relatively calmer market 
states. From another perspective, stronger causality at lower volatility quantiles could be an 
indication that when volatility (risk) in this market is low, investors do not anticipate much of 
a reaction from the Federal Reserve in terms of interest rate decisions (Balcilar et al., 2020b). 
As a result, the rare disaster risk factor tends to play a bigger role compared to the high volatility 
periods, captured by the upper quantiles of squared returns, when investors expect a stronger 
monetary policy response to market conditions.  
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At the same time, relative weaker return predictability of the ENSO cycle around the extreme 
quantiles compared to the median quantiles, i.e. normal market states, could be an indication 
of herding in the oil market during extreme market states, thus rendering the informational 
content of the ENSO redundant for investors to predict the future path of oil returns. This line 
of reasoning is vindicated by the well-established leverage effect in the oil market (Kristoufek, 
2014), which causes high and low oil returns to reduce volatility, and increase herding among 
oil traders (Brunetti et al., 2013). Indeed, examining the effect of the ENSO cycle on 
speculative activities in the oil market via the speculative ratio of Chan et al., (2015), we 
observe in Table 4 largely insignificant causal effects at the extreme quantiles of the speculative 
ratio.7 Considering that extreme high (low) quantiles of the speculative ratio correspond to 
speculative (hedging) patterns by oil traders, the insignificant causal effect of the ENSO cycle 
during periods characterized by high level of speculation and hedging suggests that investors 
tend to ignore fundamental market information related to disaster risks and follow the market 
consensus via possible herding. Accordingly, such possible herding behavior renders the 
informational content of the ENSO cycle redundant during such periods, consistent with the 
relatively weaker return predictability of the ENSO cycle observed around the extreme return 
quantiles when investors are more likely to engage in herding.8  

[INSERT TABLE 4] 
4. Conclusion 
The role of rare disaster risks on financial and commodity return dynamics is well established 
in the literature. Recently, studies have provided evidence, albeit weak, of the impact of the El 
Niño–Southern Oscillation (ENSO) cycle on oil price dynamics. Given this weak evidence, we 
                                                             
7 The speculative ratio is measured as the trading volume divided by open interest for WTI futures traded on 
NYMEX (data obtained from Commodity Systems Inc.). Note that due to the availability of futures market data, 
the monthly speculative ratio series begins in 1983. 
8 Cakan et al., (2019) also establish a link between speculative behavior and herding in the global oil market 
associating greater speculation with herding behavior in major energy importer and exporter nations.  
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extend this sparse literature via the recently developed k-th order nonparametric causality-in-
quantiles test of Balcilar et al., (2018), which in turn allows the predictive role of the ENSO 
over the entire conditional distribution of not only real oil returns (ROILR), but also its 
volatility (ROILRV), by controlling for misspecification due to uncaptured nonlinearity and 
regime-changes. Our results point out that the Southern Oscillation Index (SOI), capturing the 
ENSO cycle, not only predicts real oil returns, but also volatility, over the entirety of the 
respective conditional distributions, based on the longest span of historical monthly data 
associated with these two variables covering 1876:01 to 2020:10. These results highlight the 
predictive role of rare disaster risks over not only financial market volatility, but also 
commodity price fluctuations.  
Our results can be used by policymakers to obtain information on the movements of the first- 
and second-moments of the oil market due to changes in climate patterns, and in the process, 
use this knowledge to anticipate economic activity, given that oil price movements may lead 
business cycles, and then accordingly make appropriate policy choices. Moreover, with 
volatility being a key input in portfolio decisions, the predictability of oil-market volatility due 
to the ENSO cycle is of vital importance to oil investors, as well as asymmetries in volatility 
patterns due to disaster related risks can be utilized to improve options pricing models.  
Since in-sample predictability does not necessarily translate into out-of-sample gains, it is 
interesting to extend our analysis in future research to a full-fledged forecasting exercise using 
the k-th order nonparametric causality-in-quantiles method, as outlined in detail by Bonaccolto 
et al., (2018).   
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Table 1. Summary Statistics. 

Statistic ROILR SOI 
Mean 0.0096 0.0494 
Median 0.0000 0.2000 
Maximum 54.5602 34.8000 
Minimum -56.1416 -42.6000 
Std. Dev. 7.0333 10.4340 
Skewness -0.0549 -0.1817 
Kurtosis 13.9347 3.2831 
Jarque-Bera 8659.6370*** 15.3688*** 
Observations 1738 

Note: SOI and ROILR are the Southern Oscillation Index and real 
oil returns, respectively. *** indicate rejection of the null hypothesis 
of normality at 1% level of significance. 
 
 
 
  



20  

Table 2. Brock et al. (1996, BDS) Test of Nonlinearity. 

Independent 
Variable 

Dimension 
2 3 4 5 6 

MDRI 14.0975*** 17.2835*** 19.6878*** 22.0171*** 24.8608*** 
Note: Entries correspond to the z-statistic of the BDS test for the null of i.i.d. residuals, with the 
test applied to the residuals recovered from the real oil returns (ROILR) equation with 2 lags each 
of ROILR and the Southern Oscillation Index (SOI). * indicates rejection of the null hypothesis at 
1% level of significance.
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Table 3. k-th Order Causality-in-Quantiles Test Results. 

Quantile ROILR ROILRV 
0.10 3.3335*** 12.5992*** 
0.20 4.8229*** 8.9996*** 
0.30 5.0307*** 9.2491*** 
0.40 4.7041*** 10.5854*** 
0.50 11.0125*** 10.8090*** 
0.60 13.1502*** 9.9403*** 
0.70 6.6253*** 9.0746*** 
0.80 3.8630*** 7.6191*** 
0.90 2.7695*** 5.3934*** 

Note: *** indicate rejection of the null hypothesis of no Granger 
causality at 1% level of significance (critical value of 2.575) from 
Southern Oscillation Index (SOI) to real oil returns (ROILR) and 
real oil return volatility (ROILRV) for a particular quantile. 
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Table 4. k-th Order Causality-in-Quantiles Test Results for Speculative Activities. 

Quantile SR 

0.10 
1.5361 

 
 

0.20 1.6246 
0.30 2.2297** 
0.40 3.2489*** 
0.50 3.0940*** 
0.60 3.2119*** 
0.70 3.0699*** 
0.80 1.8340* 
0.90 1.5450 

Note: ***, ** and * indicate rejection of the null hypothesis of no 
Granger causality at 1%, 5% and 10% levels of significance 
(critical values of 2.575, 1.96 and 1.645) respectively from 
Southern Oscillation Index (SOI) to monthly speculative ratios 
(SR) for WTI futures, traded on the NYMEX, for a particular 
quantile. SR is defined as trading volume divided by open interest.  
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Figure 1. Data Plots 
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1(b). Southern Oscillation Index (SOI): 
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Note: See Notes to Table 1. 


