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1 Introduction

The housing market plays an important role in the economy of the United States (US), since it consti-
tutes a significant share of many households’ asset holding and net worth. According to the Financial
Accounts data of the US corresponding to the fourth quarter of 2018, residential real estate repre-
sents about 83.7% of total household non-financial assets, 28.3% of total household net worth and
24.6% of household total asset.2 Therefore, as pointed out by Shiller (1998), the risk or volatility of
house prices is among the largest personal economic risks faced by the individual. Note that, housing
assets differ from financial assets, such as stocks, since they serve the dual role of investment and
consumption (Henderson and Ioannides, 1987). Naturally, the effects of housing on savings and port-
folio choices are extremely important questions, and hence, understanding the source of the housing
market price volatility is important because it has individual portfolio implications, as it affects house-
holds’ investment decisions regarding tenure choice and housing quantity (Miles, 2008a). Moreover,
the housing market affects the economy not only through wealth effects (Case et al., 2013), but also
through influences on other markets such as the mortgage market, mortgage insurance and mortgage
backed bonds, as well as consumer durables (Miller and Peng, 2006). Finally, knowledge about house
price volatility is also an important input into housing policy (Zhou and Haurin, 2010).3 In light of
these points, the variations in the housing market are important to key components of the overall
economy and the welfare of the society.

Given this, a growing number of studies have attempted to model and predict volatility (using uni-
variate models and also with econometric frameworks including wide array of factors) at the aggre-
gate and regional (state and metropolitan statistical areas (MSAs)-levels) of the US (see for example,
Dolde and Tirtiroglu (2002), Crawford and Fratantoni (2003), Miller and Peng (2006), Miles (2008a),
Miles (2008b), Miles (2011), Zhou and Haurin (2010), Elder and Villupuram (2012), Li (2012), Ajmi
et al. (2014), Engsted and Pedersen (2014), Barros et al. (2015), Bork and Møller (2015), Fairchild
et al. (2015), André et al. (2017), Chen (2017), Nyakabawo et al. (2018)). All these studies find
the existence of Autoregressive Conditional Heteroskedasticity (ARCH) and long memory effects
in housing price returns volatility, and a relatively good forecasting performance of the Generalized
Autoregressive Conditional Heteroskedasticity (GARCH)-type models.

Our objective is to introduce a new class of volatility processes for modeling and forecasting volatil-
ity of US housing markets, namely the Markov-switching multifractal (MSM) process, recently in-
troduced by Calvet and Fisher (2004). The multifractal processes originally stem from the statistical
physics and have been adapted to finance by Mandelbrot et al. (1997), Calvet and Fisher (2001, 2004)
and Lux (2008). The MSM processes successfully find applications in forecasting returns volatility
in stock, exchange-rate, and commodity markets and outperform the GARCH-type models at long
forecasting horizons. We adopt three different loss functions and the model confidence set (MCS)
test to evaluate and compare the MSM forecasting performance with those of GARCH-type models
at short and long horizons. The choice of the MSM process is motivated by the previous findings by

2See: https://www.federalreserve.gov/releases/z1/20190920/html/b101h.htm.
3For example, consider the following case: if low-valued houses’ values are relatively volatile, then policies that encourage

low-income renter households to become homeowners should be evaluated in light of the house price risk that they would
bear.
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Crawford and Fratantoni (2003) and Barros et al. (2015) who provide evidence of nonlinearities and
long memory properties of house prices. In fact, the unique framework of the MSM model allows
for regime switching of heterogenous persistence creating an apparent long memory. These features
are relevant for capturing the dynamics underlying the US housing price volatility. In addition, given
that the MSM model requires high-frequency data in general, we deviate from the existing studies on
volatility of the US housing market, which are based on monthly or quarterly datasets, by using an
unique database of house prices available at daily frequency for the 10 major (Boston, Chicago, Den-
ver, Las Vegas, Los Angeles, Miami, New York, San Diego, San Francisco, and Washington D.C.)
Metropolitan Statistical Areas (MSAs) of the US, as well as a composite version for proxying the
price of house in the country overall. In this regard, a recently developed daily house price futures
data is also used for the sake of robustness. Given the importance of housing price volatility, we
believe the usage of daily house price data for forecasting US housing market volatility is likely to
be more informative to economic agents and policy authorities in making their respective decisions
in a timely manner than those derived from low-frequency data. The daily estimates and forecasts
of volatility will provide high-frequency leading information to consumers, investors and policymak-
ers, as to where the economy is headed in the future, as researchers could use this information in a
nowcasting framework (Banbura et al., 2011) to forecast important decision-making variables that are
measured only at lower-frequencies, using mixed data sampling (MIDAS) regressions (see Andreou
et al., 2010).

The remainder of the paper is organized as follows. Section 2 introduces our data sets. The mod-
eling framework is provided in Section 3. We discuss the statistical properties of our models in
Section 4. Forecasting methodologies and empirical results are presented in Section 6, and Section 7
concludes.

2 Data analysis

Our data set consists of daily housing price indices for 10 major US MSAs with different start and
end dates, namely Boston (5/1/1995 - 11/10/2012), Los Angeles (5/1/1995 - 23/10/2012), Chicago
(3/9/1999 - 12/10/2012), Denver (5/5/1999 - 17/10/2012), Miami (3/4/1998 - 15/10/2012), Las Vegas
(5/1/1995 - 17/10/2012), San Diego (4/1/1996 - 23/10/2012), San Francisco (5/1/1995 - 18/10/2012),
New York (5/1/1995 - 23/10/2012) and Washington D.C. (5/6/2001 - 11/10/2012). This unique data
is sourced from Bollerslev et al. (2016), whereby the authors use comprehensive housing transaction
data from DataQuick, and then apply the repeat sales method to derive these indices. The data set
is downloadable from: http://qed.econ.queensu.ca/jae/datasets/bollerslev001/. Fol-
lowing Wang (2014), we compute the daily Composite 10 Housing Price Index, as a proxy for the
aggregate housing price of the US, as a weighted average of the house prices of the 10 MSAs. The
specific values of the weights used were Boston (0.212), Chicago (0.074), Denver (0.089), Las Vegas
(0.037), Los Angeles (0.050), Miami (0.015), New York (0.055), San Diego (0.118), San Francisco
(0.272), and Washington D.C. (0.078), representing the total aggregate value of the housing stock
in the 10 MSAs in the year 2000. This aggregate index has the daily sample period of 5/6/2001 -
11/10/2012. Since these indices are a bit outdated, even though they do cover the period of turmoil
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in the US housing market in the wake of the subprime mortage crisis, we also use the CME-S&P
Case-Shiller House Price Index (HPI) Continuous Futures (CS-CME), derived from Datastream as
maintained by Thomson Reuters, and covers the period of 2/8/2007 - 29/8/2018. We compute the
continuously compounded returns as

rt =
[
ln(pt) − ln(pt−1)

]
, (1)

where pt denotes the housing price in USD at a time t.
Figs. 1 through 4 depict the time evolution of house price returns for 10 US cities, the aggregate

index and their squared returns. The descriptive statistics of our data sets are reported in Table 1.
Except for Chicago, Miami and future housing price index, we observe a negative skewness in the
data for other major cities. All the data sets are characterized by excess kurtosis suggesting a deviation
from the normality. This observation can be confirmed by the Jarque-Bera test, which rejects the null
hypothesis of the normality at all significant levels. The ARCH test for heteroscedasticity at lag 1
rejects the null of no conditional heteroscedasticity in the data. The results of the augmented Dickey-
Fuller (ADF) unit-root test of Dickey and Fuller (1979) and its modified version to account for serial
correlations (Phillips-Perron test) in Phillips and Perron (1988) reject the null hypothesis of unit-root.
We also apply the KPSS test for stationarity to confirm the verdict of the unit root tests.

We investigate the long memory effects in the US housing price changes by adopting the Detrended
Fluctuation Analysis (DFA) (see Weron, 2002) to compute the Hurst exponent indices (see, Table 1).
The Hurst indices help to quantify the degree of persistence in data and serve as standard measures of
long-term dependence. Except for Las Vegas, San Francisco, U.S. Aggregate and future housing price
changes the values for log-price changes are close to 0.5, implying absence of long memory features
in housing price returns. For absolute and squared returns the Hurst index values are significantly
above 0.5, indicating the presence of long memory in housing price volatility.

We also compute the so-called Hill estimator for the tail index (cf. Hill, 1975) in order to quantify
the decay of the unconditional distribution of housing price returns in its extremal region. The esti-
mate for the tail index (see Table 1) is in the vicinity of 3 or above and this result is in harmony with
typical findings for financial assets, (see Lux and Ausloos, 2002). Again, this is a clear indication of
non-Normality as the slow decay of the distribution of returns implies that large price changes occur
with much higher probability than under a Gaussian shape.

We also investigate the nonlinearity in the mean process using the White (see Lee et al., 1993) and
Teraesvirta neural network tests (see, Table 1). Based on the results of Teraesvirta neural network
test (see Teraesvirta et al., 1993) only Las Vegas, San Diego and San Francisco exhibit linearity in
"mean". These results confirm that U.S. housing price indices are characterized by nonlinearities.

Figs. 5 through 8 show the autocorrelation functions for log-returns and squared log-returns. We
observe that the squared log-returns are highly correlated. However, the Ljung-Box tests also reject
the null hypothesis of no serial correlation for log-returns at the 5% significance level for Denver
and San Diego. This indicates the presence of some serial dependence and predictability in the re-
turns of housing prices for those cities. Overall, the U.S. housing price indices, therefore, share the
typical salient features of financial assets that are captured by the catchwords "fat tails" and "clus-
tered volatility", but some of them show some deviation from the "efficiency" of stock or foreign
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exchange markets (their complete lack of predictability). These findings have motivated the choice of
our proposed processes.

3 Modeling framework

We assume that returns {rt} in US housing markets follow a smooth transition autoregressive fraction-
ally integrated process [STARFI(p, d)] that satisfies the following equation:

Φst;η(L)(1 − L)drt = εt, (2)

where εt|Ωt−1 ∼ N(0, σ2
t ).

Ωt−1 is the σ−field generated by the past information {εt−1, εt−2, . . . }. The lag polynomials in Eq.
2 are defined as: Φst;η(L) = 1 − φ1(st; η1)L − · · · − φp(st; ηp)Lp where the autoregressive coefficients
φi (st, ηi) = φi0 + φi1G (st, τ, c)), for i = 1, . . . , p, are nonlinear functions that have to be defined, st

denotes the state variable and ηi = (φi0, φi1, τ, c)′ a vector of parameters, and d is a real number. L is
the lag operator and (1 − L)d is the fractional differencing operator that is given by

(1 − L)d =

∞∑
k=0

Γ(k − d)Lk

Γ(−d)Γ(k + 1)
, (3)

with Γ(·) being the gamma function.
The transition function G (st, τ, c) follows the first-order Logistic function that is given:

G (st, τ, c) =
1

1 − exp(−τ(st − c))
, τ > 0. (4)

Remark. The STARFI(p,d) reduces to the STAR(p) when d = 0. The logistic function exhibits
the following properties: limst→−∞G (st, τ, c) = 0, limst→∞G (st, τ, c) = 1, G (st, 0, c) = 1/2,
limτ→−∞G (st, τ, c) = 0 and limτ→∞G (st, τ, c) = 1.

In general, the innovation process, εt, in Eq. (2) can be modeled as follows:

εt = utσt, (5)

where ut is a sequence of independent identically distributed normal random variables with zero mean
and unit variance.

Our findings in Section 2 show that US housing markets share the same salient features of financial
assets. In addition, the recent research findings in modeling and forecasting financial market volatil-
ity that the Markov-switching multifractal (MSM) model can better reproduce the stylized facts of
financial markets and provides more accurate forecast than the GARCH-type models. Motivated
by all these facts, we choose the MSM and GARCH-type processes for capturing the time-varying
dynamics of σt:

1. Markov-switching multifractal (MSM) model:
In this framework we assume that the dynamics underlying the housing markets volatility are
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driven by a hidden Markov chain vector, Mt, that consists of k independent random volatility
components, M(1)

t ,M(2)
t , . . . ,M(k)

t , and the volatility is formalized as:

σt = σ̄

√√√ k∏
j=1

M( j)
t , (6)

where σ̄ is a scaling factor and k the number of volatility components.

The dynamics governing the random volatility components (also called multipliers) determines
the unique framework that characterizes the multifractal models. At date t, each multiplier
M( j)

t is drawn from the base distribution FM (to be specified) with positive support and unit
expectation. Depending on its rank within the hierarchy of multipliers, M( j)

t changes from one
period to the next, with probability γ j, and remains unchanged with probability 1−γ j, providing
a spectrum of low and high frequencies of multiplier renewal.

The k transition probabilities are are specified as

γ j = 2 j−k, j = 1, . . . , k. (7)

The transition matrix related to the jth multiplier is given by

P j =

1 − 0.5γ j 0.5γ j

0.5γ j 1 − 0.5γ j

 .
To finalize the specification of the MSM model we draw each multiplier, M( j)

t (in the event of
a change) from a two-point distribution with support {m0, 2 − m0}, 1 < m0 < 2, and probability
0.5, implying the unconditional expectation E(M j

t ) = 1. The transition matrix of the vector
Mt ≡ (M(1)

t , . . . ,M(k)
t )′ becomes the 2k × 2k matrix P = P1 ⊗ P2 ⊗ · · · ⊗ Pk, where ⊗ denotes the

Kronecker product. Using the binomial base distribution4 for the single multipliers implies the
finite support Γ ≡ {m0, 2 − m0}

k for Mt and allows implementing of the maximum likelihood
approach.

Remark. A higher k increases the number of regimes (which is 2k), and generates proximity
to long memory over a longer number of lags, but comes at an additional computational cost
in our maximum likelihood approach. In contrast to the traditional Markov switching models,
in which the number of parameters to be estimated doubles with an additional regime, the
number of parameters in MSM model remains constant with an increasing number of regimes.
We note that the non-parametric specification of the transition probability does not guarantees
the convergence of the process in continuous time limit. Furthermore, we point out that the
MSM processes exhibit only apparent long memory with an asymptotic hyperbolic decay of
the autocorrelation of absolute powers over a finite horizon and does not obey the traditional
definition of long memory (see Beran, 1994).

4Liu et al. (2007) find that assuming other base distributions, such as lognormal and gamma, makes little difference in
empirical applications
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2. GARCH-type models:

• A more general class of short-memory GARCH(1, 1) models proposed by He and
Terasvirta (1999) can be formalized as

σκt = g(εt−1) + c(εt−1)σκt−1, (8)

with Pr(σκt > 0) = 1, κ > 0, and where {εt} is a sequence of i.i.d. standard normal random
variables, and g(x), c(x) are nonnegative functions. This class of GARCH-type mod-
els includes, among others, the specifications of Bollerslev (1986) (standard GARCH),
Glosten et al. (1993) (GJR-GARCH), Nelson (1991) (EGARCH), and Ding et al. (1993)
(APARCH). These models are robust and able to capture the most stylized facts of US
housing markets.

• Motivated by the properties observed in log changes of US housing prices and the find-
ings in Barros et al. (2015) we also adopt the FIGARCH model developed by Baillie et al.
(1996) that generalizes the standard GARCH framework by introducing fractional differ-
ences in the GARCH process and thereby enables the model to reproduce the long-term
dependence of US housing price volatility as documented in the high Hurst coefficients
of absolute and squared returns. The conditional variance in the FIGARCH(1,d,1) model
can be formalized as

σ2
t = ω +

[
1 − β(L) − φ(L)(1 − L)d

]
ε2

t + βσ2
t−1, (9)

where ω > 0, φ < 1, β < 1, 0 ≤ d ≤ 1. L denotes the lag operator and d is the parameter
of fractional differentiation. The parameters have to fulfill the following conditions:

β − d ≤ φ ≤
(2 − d)

3
(10)

and

d
[
φ −

(1 − d)
2

]
≤ β(d − β + φ). (11)

Remark. We refer the readers to Conrad and Haag (2006) for generalized restrictions
on the parameters in the FIGARCH model. Long-term dependence shows up in the fact,
that, in principle, all available past data should be used in the construction of forecasts
of future volatility (while in GARCH, its short-term dependence makes it sufficient to use
the filtered realization of the conditional variance, σt, at the forecast origin, time t).

4 Statistical properties

In this section we show that our proposed models for modeling and forecasting US housing market
volatility are stationary, ergodic and exhibit high-order moments.

7
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Assumption 1. The roots of the characteristic polynomials Φst;η(L) lie outside the unit circle, the
parameter d ∈ (−0.5, 0.5) and the logistic transition function is well defined.

Assumption 2. The random volatility components M1
t ,M

2
t , . . . ,M

k
t with E(M j

t ) = 1, j = 1, . . . , k, are
nonnegative and independent of each other at any time and γ j ∈ (0, 1).

Proposition 1. Under Assumption 1 and 2, the STARFI(p, d)-MSM(k) model given by 2, 6 and 7 has
a unique, second-order stationary solution. It follows that {rt, εt, σt} are strictly stationary, ergodic
and invertible.

Proof. Under Assumption 2, the conditions of Theorem 1 in (Chapter 1, section 12 Shiryaev, 1995)
are satisfied. It follows that the chain underlying the dynamics of multipliers M j

t is geometrically
ergodic. The ergodic distribution is given by πl = 1/2k, l = 1, . . . , 2k. Under Assumptions 1 and 2,
{rt, εt, σt} are strictly stationary, ergodic and invertible. �

Proposition 2. Under Assumption 1, the STARFI(p,d)-GARCH-class model given by 2, 5 and 8 has
a unique, αδ−order stationary solution. It follows that {rt, εt, σt} are strictly stationary, ergodic and
invertible.

Proof. Under Assumption 1 and the conditions of Theorem 2.1 in Ling and McAleer (2002) with a
constant mean process replaced by a stationary univariate STARFI(p,d) process, {rt, εt, σt} are strictly
stationary, ergodic and invertible. �

Proposition 3. Under Proposition 2, it follows that the 2mth moments of {rt, εt} are finite, where m is
a strictly integer.

Proof. Under Proposition 1 and the conditions of Theorem 1 in (Chapter 1, section 12 Shiryaev,
1995), the 2mth moments of {rt, εt} are finite. b > 1, it is obvious that all the elements of the transition
matrix of the chain underlying the multipliers are strictly positive, γ j ∈ (0, 1) �

Proposition 4. Under Proposition 2, it follows that the mδth moments of the {rt, εt} exist.

Proof. Under Proposition 2 and the conditions of Theorem 2.2 in Ling and McAleer (2002), the mδth
moments of the {rt, εt} exist. �

Denoting ρ(n) = cov(rt, rt−n)/var(rt) the autocorrelation function of the process defined by Eq. 2.
ρq(n) = cov(|εt|

q, |εt−n|
q)/var(|εt|

q) the autocorrelation of εt for every moment q and every integer n.
Consider two arbitrary numbers κ1 and κ2 in the open interval (0, 1). The following set of integers
S k =

{
n : κ1k ≤ log 2(n) ≤ κ2k

}
contains a large range of intermediate lags.

Proposition 5. Under Assumption 1, it follows that ρ(n) ∼ c|n|2d−1 as n→ ∞, where c is a constant.

Proof. Under Proposition 2 and Theorem 2.4 in Hosking (1981), ρ(n) is proportional to |n|2d−1. �

Proposition 6. Under Assumption 2, it follows that ln ρq(n) ∼ −ψ(q) ln n as k → ∞, where ψ(q) =

log2

(
E(Mq)

[E(Mq/2)]2

)
.
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Proof. Under Proposition 2 and the proof of the Proposition 1 in Calvet and Fisher (2004), ρ(n) is
proportional to ψ(q) ln n. �

Remark. The MSM processes exhibit only apparent long memory with an asymptotic hyperbolic
decay of the autocorrelation of absolute powers over a finite horizon and does not obey the traditional
definition of long memory, that means, asymptotic power-law behavior of autocorrelation functions
in the limit or divergence of the spectral density (Beran, 1994).

Remark. We note that the FIGARCH process is not covariance stationary. However, there exist
many attempts to demonstrate the strict stationarity of the FIGARCH process with infinity variance.
We refer the reader to Bougerol and Picard (1992), Giraitis et al. (2000), Kazakevicius and Leipus
(2002) and Douc et al. (2008) for more details.

5 Estimation

We estimate all the models using the maximum likelihood approach. Given the fact that ut in Eq. 5
is assumed to follow a standard normal distribution, the information matrix of the STARFI-GARCH-
type models and STARFI-MSM model are bock-diagonal and allow to estimate the models using a
two-stage procedure without loss of efficiency (see Lundbergh and Terasvirta, 1999). In the first stage
we adopt the Non-linear Squares (NLS) to estimate the parameters of the conditional mean process.
The optimal lag p in STARFI model is determined based on the Akaike information criterion. We
note that here that under normality assumption the NLS is equivalent to MLE (Wooldridge, 1994).

Remark. Based on the fact that under assumption 1, the STARFI process defined in Eq. 2 is strictly
stationary and ergodic and the necessary and sufficient conditions for the existence of moments are
satisfied, the ε̂t are the consistent estimates of the εt (see Chan and McAleer, 2002).

In the second stage we use the computed residuals to estimate the parameters of the conditional
variance via the maximum likelihood method. In the GARCH-type models we fix the optimal lag
p = q = 1. It well documented that using p = q = 1 is enough to effectively capture the dynamics
underlying the variance process (see Bollerslev et al., 1994). The parameters are well-estimated and
asymptotically efficient. To save place we do not report them, but can be submitted under request.

6 Empirical study

We investigate the forecasting performance of our models using three loss functions, namely the root
mean squared error, mean absolute error and the value-at-risk (VaR) based loss function. In addition,
we apply the model confidence set (MCS) test of Hansen et al. (2011) to identify models that perform
well in our portfolio of models. We adopt a rolling forecasting scheme that consists of removing
one earlier observation and adding a new one day by day, so that the estimation sample size remains
constant over the out-of-sample. For all 10 US cities and their composite index we use observations
until 31/12/2007 as in-sample and those from 01/01/2008 to the end of each data set as out-sample.
For each run, we produce forecasts up to 20 days ahead. For house price futures data set we take the
first half of the observations as in-sample and the remaining as out-of-sample.

9
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6.1 Forecasting evaluation criteria

The root mean square error, the mean absolute deviation and the mean of the VaR-based loss function
that are given by

RMSE j,k
h =

1
n

n∑
i=1

(
σ2

T+i,h,k − σ̂
2
T+i,h, j,k

)2
1/2

, (12)

MAE j,k
h =

1
n

n∑
i=1

|σ2
T+i,h,k − σ̂

2
T+i,h, j,k|, (13)

and

MVaR j,k
h (α) = n−1

n∑
i=1

(
α − IαT+h, j,k

) (
εT+h, j,k − VaRαT+h, j,k

)
, (14)

respectively. j denotes a particular model in our portfolio and k represents a particular U.S. city
or index, n is the number of out-sample forecast observations, T the forecast origin and h the fore-
casting horizon. σ̂2

T+i,h, j,k denotes the volatility forecast obtained using a GARCH-type model or
MSM model, σ2

T+i,h,k is the daily actual volatility that is approximated by the daily squared returns,
IαT+h, j,k = 1(εT+h, j,k < VaRαT+h, j,k), VaRαT+h, j,k = F−1

T+h(α)σ̂T+h, j,k is the conditional value-at-risk, and
FT+h(.) is the forecast cumulative distribution of the standardized returns. As with RMSE and MAE,
a smaller value for the MVaR(α) points to a good predictive performance. VaR forecasts provide an
assessment of the loss that occurs in the α percent worst cases, and are used to determine the neces-
sary level of underlying equity for risky assets to cover the risk of extreme market movement. The
asymmetry of (14) helps to avoid making type I-errors (failing to forecast a large negative change) to
be more important than issuing an erroneous warning signal.

We note that the VaR-based loss function defined in Eq. (14) is not differentiable due to the pres-
ence of the indicator function. The non-differentiability of MVaR(α) may cause a problem in the
implementation of the MCS test of Hansen et al. (2011) that is based on the framework of White
(2000). To obtain consistent results we also use a smooth approximation5 to MVaR(α), denoted as
MSVaR(α), that is differentiable and given by

MSVaR j,k
h (α) = n−1

n∑
i=1

[
α − gν

(
εT+h, j,k,VaRαT+h, j,k

)] (
εT+h, j,k − VaRαT+h, j,k

)
, (15)

gν(y, z) = [1 + exp(ν(y − z))]−1. The parameter, ν > 0, governs the smoothness and for a higher
value of ν MSVaR(α) gets closer to MVaR(α).

To draw meaningful inferences about the relative forecasting performance of our proposed models
for forecasting housing market volatility, we apply the model confidence set (MCS) test that was
recently developed by Hansen et al. (2011). The basic idea of the MCS approach is to derive from an
initial set of competing models,M0 without a predefined benchmark model, a set of superior models,
M∗ at forecasting horizon h, with a given confidence level. Formally, we have

5As mentioned by Granger (1999) the issue associated with the non-differentiability may be just a technicality due to the
fact that it should always be possible to find a smooth function which is arbitrarily close to the non-smooth one.
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M∗ = {i ∈ M0|E
(
dh

i, j

)
≤ 0 ∀ j ∈ M0},

where dh
i, j = Li,h − L j,h is the loss differential between models i and j. Li,h denotes a specific loss

function of a particular model i. Based on the expected loss functions, competing models are ranked
and the worst performing model at each step is eliminated. This sequential elimination continues until
the null hypothesis of equal loss differentials for all models cannot be rejected:

H0 : E
(
dh

i, j

)
≤ 0 ∀i, j ∈ M.

The test statistic used under the null is either the range statistic, Tr, or the semi-quadratic statistic,
Tsq, that are given by

Tr = max
i, j∈M

|d̄i, j|√
ˆvar(d̄i, j)

, Tsq =
∑
i, j

(d̄i, j)2√
ˆvar(d̄i, j)

.

The p-values can easily be obtained via a stationary bootstrap procedures that are developed based
on the framework in White (2000). We refer the reader to Hansen et al. (2011) for details on the
framework of the MCS approach concerning the impact of the (i) forecasting schemes used, (ii) the
relationships between models under comparison and (iii) the differentiation of the loss functions used.

6.2 Forecasting results

Tables 2 through 4 report MSE, MAE, MVaR(1%) and MSVaR(1%) of housing price volatility fore-
casts for our six volatility models used in this analysis and across US cities or indices. For the MCS
test we have used both the differentiable and non-differentiable VaR-based loss function. We only
report the MCS test results for ν ≥ 6950. The p-values of the MCS test and the rank of the models
are reported in Table 5 through 10.

Based on the RMSE criterion, all the models perform well at different forecasting horizons and
across all indices. However, based on the MCS test results we observe that in most cases the MSM
model clearly outperforms other competitive models at the 1-day forecasting horizon. At the 10-
days forecasting horizon and beyond the MCS test results indicate that for Denver, Las Vegas all the
volatility models are in the optimal set at the 95% confidence level suggesting that for these US cities
all models perform equally well.

According to the MAE criterion and the MCS test results, FIGARCH seems to be the best model
followed by the MSM model across indices and performs better than short-memory GARCH-type
models at the different horizons. Based on the MVaR(1%) criterion and the MCS test results the MSM
model outperforms its competitors at the 10-days ahead and beyond across all indices. The second
best model seems to be the EGARCH model. Note that the differences in forecasting performance
between the MSM and GARCH-type models across US cities or indices appear so pronounced under
the MVaR criterion. The MSM model provides better average MVaR results and as for the smooth
MSVaR criterion, practically no differences are detected compared to the non-differentiable MVaR as
the smoothness parameter ν increases.

11



Conclusion Segnon/Gupta/Lesame/Wohar

7 Conclusion

In this paper we have shown that the US housing markets share the typical salient features of fi-
nancial assets. However, we note that the persistence in US housing markets is more pronounced
and that the tails have more probability mass than observed in the stock, foreign exchange and com-
modity markets. We have proposed various approaches for modeling and forecasting US housing
market volatility and discussed the statistical properties of the models used. We have evaluated and
compared the out-of-sample forecasting ability of the models via three loss functions and the model
confidence set (MCS) test. We found that based on the RMSE criterion all models in most cases
perform well. Using the asymmetric loss functions such as the MAE and MVAR, the MSM followed
by the FIGARCH outperform the short-memory GARCH-type models.
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Table 2: The results of RMSE, MAE and MVAR

Models RMSE MAE MVaR SMVaR

Horizons h=1 h=10 h=20 h=1 h=10 h=20 h=1 h=10 h=20 h=1 h=10 h=20

Boston

GARCH 0.032 0.034 0.034 0.017 0.017 0.017 0.115 0.142 0.143 0.115 0.142 0.144

GJR 0.033 0.034 0.034 0.017 0.017 0.017 0.110 0.143 0.144 0.109 0.142 0.144

EGARCH 0.033 0.034 0.034 0.017 0.018 0.018 0.115 0.134 0.135 0.115 0.134 0.134

APARCH 0.033 0.034 0.034 0.017 0.018 0.018 0.126 0.134 0.136 0.126 0.134 0.135

FIGARCH 0.033 0.035 0.034 0.015 0.016 0.016 0.122 0.169 0.170 0.122 0.168 0.169

MSM 0.031 0.034 0.034 0.015 0.017 0.017 0.107 0.133 0.133 0.106 0.133 0.133

Chicago

GARCH 0.177 0.192 0.191 0.062 0.068 0.068 0.200 0.279 0.284 0.200 0.279 0.284

GJR 0.178 0.191 0.191 0.062 0.069 0.069 0.194 0.279 0.284 0.193 0.278 0.284

EGARCH 0.182 0.189 0.189 0.061 0.066 0.067 0.215 0.264 0.277 0.215 0.264 0.277

APARCH 0.179 0.192 0.191 0.061 0.066 0.066 0.228 0.301 0.309 0.227 0.301 0.308

FIGARCH 0.190 0.193 0.194 0.055 0.057 0.057 0.320 0.501 0.597 0.320 0.500 0.596

MSM 0.181 0.189 0.190 0.055 0.060 0.059 0.204 0.267 0.282 0.204 0.267 0.282

Denver

GARCH 0.023 0.023 0.062 0.010 0.011 0.012 0.077 0.085 0.119 0.077 0.085 0.119

GJR 0.022 0.023 0.062 0.010 0.011 0.012 0.077 0.085 0.120 0.077 0.085 0.119

EGARCH 0.023 0.023 0.062 0.010 0.011 0.012 0.082 0.087 0.119 0.082 0.086 0.118

APARCH 0.023 0.023 0.062 0.011 0.011 0.013 0.087 0.087 0.117 0.087 0.086 0.116

FIGARCH 0.023 0.024 0.062 0.010 0.010 0.012 0.078 0.085 0.119 0.077 0.084 0.119

MSM 0.022 0.024 0.062 0.010 0.011 0.013 0.084 0.092 0.122 0.084 0.092 0.122

Las Vegas

GARCH 0.039 0.040 0.040 0.019 0.020 0.020 0.118 0.143 0.153 0.118 0.143 0.153

GJR 0.040 0.040 0.040 0.020 0.020 0.021 0.116 0.144 0.154 0.115 0.143 0.154

EGARCH 0.041 0.040 0.040 0.021 0.021 0.021 0.134 0.144 0.149 0.134 0.143 0.149

APARCH 0.041 0.039 0.040 0.020 0.020 0.020 0.143 0.141 0.149 0.142 0.141 0.149

FIGARCH 0.042 0.040 0.040 0.016 0.016 0.016 0.176 0.196 0.212 0.175 0.196 0.211

MSM 0.038 0.040 0.040 0.018 0.021 0.021 0.118 0.142 0.146 0.118 0.142 0.146

Los Angeles

GARCH 0.024 0.025 0.027 0.015 0.016 0.016 0.102 0.117 0.128 0.102 0.117 0.128

GJR 0.024 0.025 0.027 0.016 0.016 0.016 0.107 0.118 0.126 0.107 0.118 0.126

EGARCH 0.025 0.025 0.027 0.017 0.017 0.017 0.108 0.116 0.124 0.108 0.116 0.124

APARCH 0.026 0.062 0.135 0.015 0.050 0.106 0.122 0.192 0.248 0.121 0.192 0.248

FIGARCH 0.026 0.027 0.028 0.015 0.015 0.015 0.134 0.155 0.174 0.133 0.154 0.174

MSM 0.024 0.025 0.027 0.015 0.016 0.016 0.102 0.115 0.124 0.102 0.115 0.124

Note: The entries are RMSE, MAE, and MVaR(5%) and MSVaR(5%) for all six models. For ν ≥ 6950 the differences between the
non-differentiable and differentiable VaR-based loss functions are vanishing. All the numbers reported here have to be multiplied by 10−3.
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Table 3: The results of RMSE, MAE and MVAR

Models RMSE MAE MVaR SMVaR

Horizons h=1 h=10 h=20 h=1 h=10 h=20 h=1 h=10 h=20 h=1 h=10 h=20

Miami

GARCH 0.042 0.045 0.045 0.027 0.029 0.029 0.128 0.147 0.155 0.128 0.147 0.154

GJR 0.042 0.045 0.045 0.027 0.029 0.029 0.125 0.144 0.156 0.125 0.144 0.155

EGARCH 0.044 0.045 0.045 0.029 0.029 0.029 0.132 0.139 0.143 0.132 0.139 0.143

APARCH 0.045 0.045 0.045 0.028 0.028 0.028 0.145 0.146 0.146 0.145 0.146 0.146

FIGARCH 0.047 0.048 0.048 0.026 0.026 0.026 0.215 0.237 0.263 0.214 0.236 0.262

MSM 0.041 0.045 0.045 0.026 0.028 0.028 0.130 0.142 0.142 0.130 0.142 0.142

New York

GARCH 0.016 0.017 0.018 0.010 0.010 0.011 0.082 0.098 0.103 0.082 0.098 0.103

GJR 0.016 0.017 0.019 0.010 0.011 0.011 0.084 0.098 0.104 0.084 0.098 0.103

EGARCH 0.017 0.017 0.019 0.010 0.011 0.011 0.088 0.097 0.102 0.088 0.097 0.102

APARCH 0.016 0.017 0.018 0.010 0.010 0.011 0.087 0.098 0.103 0.087 0.098 0.103

FIGARCH 0.017 0.018 0.019 0.009 0.009 0.009 0.096 0.116 0.132 0.096 0.115 0.131

MSM 0.016 0.017 0.018 0.010 0.011 0.011 0.086 0.099 0.101 0.086 0.099 0.101

San Diego

GARCH 0.032 0.033 0.033 0.019 0.019 0.019 0.107 0.132 0.135 0.107 0.132 0.135

GJR 0.032 0.033 0.033 0.019 0.019 0.019 0.107 0.132 0.133 0.107 0.132 0.132

EGARCH 0.033 0.033 0.033 0.020 0.020 0.020 0.123 0.131 0.131 0.123 0.130 0.131

APARCH 0.033 0.056 0.108 0.019 0.041 0.073 0.129 0.156 0.185 0.129 0.156 0.185

FIGARCH 0.033 0.033 0.033 0.018 0.018 0.018 0.133 0.139 0.140 0.133 0.138 0.140

MSM 0.032 0.033 0.033 0.019 0.019 0.019 0.113 0.129 0.130 0.113 0.129 0.130

San Francisco

GARCH 0.081 0.083 0.084 0.042 0.043 0.042 0.216 0.259 0.258 0.216 0.258 0.258

GJR 0.081 0.083 0.084 0.043 0.043 0.042 0.209 0.252 0.253 0.209 0.251 0.253

EGARCH 0.082 0.083 0.083 0.045 0.046 0.046 0.216 0.229 0.227 0.216 0.229 0.227

APARCH 0.082 0.083 0.083 0.045 0.045 0.045 0.232 0.235 0.236 0.232 0.235 0.236

FIGARCH 0.086 0.086 0.088 0.039 0.038 0.038 0.404 0.429 0.454 0.404 0.429 0.453

MSM 0.078 0.083 0.084 0.039 0.042 0.041 0.177 0.237 0.248 0.176 0.237 0.248

Washington D.C.

GARCH 0.042 0.044 0.043 0.026 0.028 0.027 0.132 0.161 0.163 0.132 0.161 0.163

GJR 0.042 0.044 0.043 0.027 0.028 0.028 0.130 0.162 0.160 0.130 0.162 0.159

EGARCH 0.043 0.044 0.043 0.027 0.029 0.028 0.139 0.160 0.160 0.138 0.160 0.159

APARCH 0.044 0.045 0.043 0.026 0.027 0.027 0.156 0.163 0.161 0.156 0.162 0.161

FIGARCH 0.045 0.046 0.045 0.024 0.024 0.024 0.177 0.236 0.251 0.177 0.236 0.250

MSM 0.041 0.044 0.043 0.025 0.027 0.027 0.134 0.153 0.154 0.134 0.153 0.154

Note: Note: The entries are RMSE, MAE, and MVaR(5%) and MSVaR(5%) for all six models. For ν ≥ 6950 the differences between the
non-differentiable and differentiable VaR-based loss functions are vanishing. All the numbers reported here have to be multiplied by 10−3.
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Table 4: The results of RMSE, MAE and MVAR

Models RMSE MAE MVaR SMVaR

Horizons h=1 h=10 h=20 h=1 h=10 h=20 h=1 h=10 h=20 h=1 h=10 h=20

Aggregate index

GARCH 0.005 0.006 0.006 0.003 0.003 0.003 0.046 0.066 0.068 0.045 0.064 0.067

GJR 0.005 0.006 0.006 0.003 0.003 0.003 0.044 0.064 0.067 0.043 0.063 0.065

EGARCH 0.006 0.006 0.006 0.004 0.004 0.004 0.047 0.050 0.051 0.046 0.049 0.051

APARCH 0.006 0.019 0.043 0.003 0.015 0.035 0.150 0.159 0.183 0.147 0.158 0.182

FIGARCH 0.006 0.006 0.006 0.003 0.003 0.003 0.071 0.077 0.082 0.069 0.075 0.080

MSM 0.005 0.006 0.006 0.003 0.003 0.003 0.047 0.054 0.058 0.046 0.053 0.057

House price futures

GARCH 0.103 0.106 0.106 0.019 0.019 0.019 0.085 0.086 0.086 0.085 0.086 0.086

GJR 0.098 0.106 0.106 0.018 0.019 0.019 0.085 0.087 0.087 0.085 0.087 0.087

EGARCH 2.719 0.509 0.476 0.165 0.049 0.047 0.121 0.097 0.097 0.121 0.097 0.097

APARCH 0.100 0.302 0.182 0.019 0.111 0.063 0.085 0.168 0.139 0.085 0.168 0.139

FIGARCH 0.079 0.107 0.108 0.016 0.028 0.029 0.089 0.109 0.114 0.087 0.109 0.114

MSM 0.099 0.107 0.106 0.010 0.014 0.015 0.038 0.084 0.085 0.038 0.084 0.085

Note: Note: The entries are RMSE, MAE, and MVaR(5%) and MSVaR(5%) for all six models. For ν ≥ 6950 the differences between the
non-differentiable and differentiable VaR-based loss functions are vanishing. All the numbers reported here have to be multiplied by 10−3.
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Table 5: MCS test results using squared and absolute loss functions

Squared loss function Absolute loss function

Horizons

h=1 h=10 h=20 h=1 h=10 h=20

Model pvMCS Model pvMCS Model pvMCS Model pvMCS Model pvMCS Model pvMCS

Boston

FIGARCH 0.000 FIGARCH 0.006 FIGARCH 0.015 EGARCH 0.000 EGARCH 0.000 EGARCH 0.000

EGARCH 0.000 GJR 0.204∗ GARCH 0.682∗ APARCH 0.000 APARCH 0.000 APARCH 0.000

APARCH 0.000 GARCH 0.249∗ MSM 0.736∗ GJR 0.000 GJR 0.000 GJR 0.000

GARCH 0.000 MSM 0.274∗ GJR 0.736∗ GARCH 0.000 MSM 0.000 MSM 0.000

GJR 0.000 APARCH 0.274∗ APARCH 0.736∗ MSM 0.963∗ GARCH 0.000 GARCH 0.000

MSM 1.000∗ EGARCH 1.000∗ EGARCH 1.000∗ FIGARCH 1.000∗ FIGARCH 1.000∗ FIGARCH 1.000∗

Chicago

FIGARCH 0.030 FIGARCH 0.003 FIGARCH 0.000 EGARCH 0.000 EGARCH 0.000 EGARCH 0.000

EGARCH 0.348∗ APARCH 0.099 APARCH 0.123∗ GJR 0.002 GJR 0.001 GJR 0.001

MSM 0.433∗ GJR 0.099 GJR 0.123∗ GARCH 0.002 GARCH 0.001 GARCH 0.001

APARCH 0.433∗ GARCH 0.127∗ GARCH 0.123∗ APARCH 0.002 APARCH 0.001 APARCH 0.001

GJR 0.614∗ MSM 0.678∗ MSM 0.474∗ FIGARCH 0.849∗ MSM 0.001 MSM 0.006

GARCH 1.000∗ EGARCH 1.000∗ EGARCH 1.000∗ MSM 1.000∗ FIGARCH 1.000∗ FIGARCH 1.000∗

Denver

EGARCH 0.000 FIGARCH 0.438∗ FIGARCH 0.187∗ APARCH 0.000 MSM 0.000 MSM 0.000

FIGARCH 0.000 MSM 0.832∗ GJR 0.783∗ EGARCH 0.000 APARCH 0.000 APARCH 0.000

APARCH 0.000 GARCH 0.832∗ GARCH 0.830∗ GARCH 0.000 GARCH 0.000 GARCH 0.057

GARCH 0.000 APARCH 0.984∗ MSM 0.830∗ GJR 0.000 EGARCH 0.002 EGARCH 0.151∗

GJR 0.000 GJR 0.984∗ EGARCH 0.830∗ FIGARCH 0.001 GJR 0.002 GJR 0.151∗

MSM 1.000∗ EGARCH 1.000∗ APARCH 1.000∗ MSM 1.000∗ FIGARCH 1.000∗ FIGARCH 1.000∗

Las Vegas

APARCH 0.001 EGARCH 0.063 EGARCH 0.076 EGARCH 0.000 MSM 0.000 MSM 0.000

EGARCH 0.001 GJR 0.499∗ GJR 0.246∗ APARCH 0.000 EGARCH 0.000 EGARCH 0.000

FIGARCH 0.001 FIGARCH 0.586∗ FIGARCH 0.445∗ GARCH 0.000 GARCH 0.000 GJR 0.000

GJR 0.001 GARCH 0.586∗ GARCH 0.445∗ GJR 0.000 APARCH 0.000 GARCH 0.000

GARCH 0.001 MSM 0.586∗ MSM 0.547∗ MSM 0.000 GJR 0.000 APARCH 0.000

MSM 1.000∗ APARCH 1.000∗ APARCH 1.000∗ FIGARCH 1.000∗ FIGARCH 1.000∗ FIGARCH 1.000∗

Los Angeles

FIGARCH 0.000 APARCH 0.000 APARCH 0.000 EGARCH 0.000 APARCH 0.000 APARCH 0.000

APARCH 0.000 FIGARCH 0.000 FIGARCH 0.000 GJR 0.000 EGARCH 0.000 EGARCH 0.000

EGARCH 0.000 GJR 0.366∗ GARCH 0.231∗ GARCH 0.007 GARCH 0.000 GARCH 0.000

GJR 0.004 GARCH 0.366∗ GJR 0.377∗ APARCH 0.007 GJR 0.000 MSM 0.000

GARCH 0.410∗ MSM 0.748∗ MSM 0.509∗ MSM 0.041 MSM 0.000 GJR 0.000

MSM 1.000∗ EGARCH 1.000∗ EGARCH 1.000∗ FIGARCH 1.000∗ FIGARCH 1.000∗ FIGARCH 1.000∗

Note: MCS p-values for forecasts from six volatility models at different forecasting horizons. The p-values are computed via a stationary
bootstrap (B=10000) using the range statistic Tr . The forecasts inM∗95% are identified by one asterisk.

21



References Segnon/Gupta/Lesame/Wohar

Table 6: MCS test results using squared and absolute loss functions

Squared loss function Absolute loss function

Horizons

h=1 h=10 h=20 h=1 h=10 h=20

Model pvMCS Model pvMCS Model pvMCS Model pvMCS Model pvMCS Model pvMCS

Miami

FIGARCH 0.000 FIGARCH 0.000 FIGARCH 0.000 EGARCH 0.000 EGARCH 0.000 EGARCH 0.000

EGARCH 0.000 GARCH 0.144∗ GARCH 0.080 APARCH 0.000 GJR 0.000 GJR 0.000

APARCH 0.000 APARCH 0.280∗ GJR 0.310∗ GARCH 0.000 GARCH 0.000 GARCH 0.000

GARCH 0.000 GJR 0.872∗ APARCH 0.749∗ GJR 0.000 MSM 0.000 APARCH 0.000

GJR 0.000 MSM 0.872∗ MSM 0.749∗ FIGARCH 0.956∗ APARCH 0.000 MSM 0.001

MSM 1.000∗ EGARCH 1.000∗ EGARCH 1.000∗ MSM 1.000∗ FIGARCH 1.000∗ FIGARCH 1.000∗

New York

EGARCH 0.000 FIGARCH 0.280∗ FIGARCH 0.048 EGARCH 0.000 MSM 0.000 MSM 0.000

FIGARCH 0.000 EGARCH 0.568∗ GJR 0.091 APARCH 0.000 EGARCH 0.000 EGARCH 0.000

APARCH 0.000 GJR 0.770∗ EGARCH 0.155∗ GJR 0.000 GJR 0.000 GJR 0.000

GARCH 0.000 APARCH 0.963∗ APARCH 0.566∗ GARCH 0.000 APARCH 0.000 APARCH 0.000

GJR 0.000 MSM 0.963∗ GARCH 0.755∗ MSM 0.000 GARCH 0.000 GARCH 0.000

MSM 1.000∗ GARCH 1.000∗ MSM 1.000∗ FIGARCH 1.000∗ FIGARCH 1.000∗ FIGARCH 1.000∗

San Diego

APARCH 0.000 APARCH 0.000 APARCH 0.000 EGARCH 0.000 APARCH 0.000 APARCH 0.000

EGARCH 0.000 FIGARCH 0.007 FIGARCH 0.000 APARCH 0.002 EGARCH 0.000 EGARCH 0.000

FIGARCH 0.000 GJR 0.011 GJR 0.125∗ GJR 0.002 MSM 0.000 MSM 0.000

GJR 0.020 GARCH 0.103∗ EGARCH 0.346∗ GARCH 0.077 GJR 0.000 GJR 0.000

GARCH 0.024 EGARCH 0.105∗ GARCH 0.346∗ MSM 0.344∗ GARCH 0.000 GARCH 0.000

MSM 1.000∗ MSM 1.000∗ MSM 1.000∗ FIGARCH 1.000∗ FIGARCH 1.000∗ FIGARCH 1.000∗

San Francisco

FIGARCH 0.000 FIGARCH 0.000 FIGARCH 0.000 APARCH 0.000 EGARCH 0.000 EGARCH 0.000

APARCH 0.000 MSM 0.260∗ MSM 0.051 EGARCH 0.000 APARCH 0.000 APARCH 0.000

EGARCH 0.000 GARCH 0.260∗ GARCH 0.101 GJR 0.000 GJR 0.000 GJR 0.000

GARCH 0.000 GJR 0.260∗ GJR 0.364∗ GARCH 0.000 GARCH 0.000 GARCH 0.000

GJR 0.000 APARCH 0.844∗ APARCH 0.742∗ MSM 0.328∗ MSM 0.000 MSM 0.000

MSM 1.000∗ EGARCH 1.000∗ EGARCH 1.000∗ FIGARCH 1.000∗ FIGARCH 1.000∗ FIGARCH 1.000∗

Washington D. C.

FIGARCH 0.000 FIGARCH 0.000 FIGARCH 0.000 EGARCH 0.000 GJR 0.000 EGARCH 0.000

APARCH 0.000 APARCH 0.169∗ APARCH 0.276∗ GJR 0.000 EGARCH 0.000 GJR 0.000

EGARCH 0.000 EGARCH 0.550∗ EGARCH 0.389∗ GARCH 0.000 MSM 0.000 GARCH 0.000

GARCH 0.000 GJR 0.599∗ GARCH 0.389∗ APARCH 0.001 GARCH 0.000 MSM 0.000

GJR 0.000 GARCH 0.599∗ GJR 0.649∗ MSM 0.001 APARCH 0.001 APARCH 0.001

MSM 1.000∗ MSM 1.000∗ MSM 1.000∗ FIGARCH 1.000∗ FIGARCH 1.000∗ FIGARCH 1.000∗

Note: MCS p-values for forecasts from six volatility models at different forecasting horizons. The p-values are computed via a stationary
bootstrap (B=10000) using the range statistic Tr . The forecasts inM∗95% are identified by one asterisk.
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Table 7: MCS test results using squared and absolute loss functions

Squared loss function Absolute loss function

Horizons

h=1 h=10 h=20 h=1 h=10 h=20

Model pvMCS Model pvMCS Model pvMCS Model pvMCS Model pvMCS Model pvMCS

Aggregate index

APARCH 0.000 APARCH 0.000 APARCH 0.000 EGARCH 0.000 APARCH 0.000 APARCH 0.000

FIGARCH 0.000 FIGARCH 0.000 FIGARCH 0.000 APARCH 0.000 EGARCH 0.000 EGARCH 0.000

EGARCH 0.002 GARCH 0.000 GARCH 0.000 MSM 0.000 MSM 0.000 MSM 0.000

MSM 0.174∗ GJR 0.000 GJR 0.000 FIGARCH 0.015 GARCH 0.002 GARCH 0.011

GJR 0.174∗ MSM 0.006 MSM 0.002 GARCH 0.485∗ GJR 0.002 GJR 0.011

GARCH 1.000∗ EGARCH 1.000∗ EGARCH 1.000∗ GJR 1.000∗ FIGARCH 1.000∗ FIGARCH 1.000∗

House price futures

EGARCH 0.042 EGARCH 0.004 EGARCH 0.012 EGARCH 0.000 APARCH 0.000 APARCH 0.000

GARCH 0.042 APARCH 0.004 APARCH 0.012 APARCH 0.000 EGARCH 0.000 EGARCH 0.000

APARCH 0.269∗ FIGARCH 0.022 FIGARCH 0.029 GARCH 0.000 FIGARCH 0.000 FIGARCH 0.000

MSM 0.269∗ MSM 0.748∗ GARCH 0.671∗ GJR 0.000 GJR 0.000 GJR 0.000

GJR 0.269∗ GARCH 0.748∗ MSM 0.980∗ FIGARCH 0.000 GARCH 0.000 GARCH 0.000

FIGARCH 1.000∗ GJR 1.000∗ GJR 1.000∗ MSM 1.000∗ MSM 1.000∗ MSM 1.000∗

Note: MCS p-values for forecasts from six volatility models at different forecasting horizons. The p-values are computed via a stationary
bootstrap (B=10000) using the range statistic Tr . The forecasts inM∗95% are identified by one asterisk.
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Table 8: MCS test results using VaR-based loss function

Discrete VaR-based loss function Continuous VaR-based loss function

Horizons

h=1 h=10 h=20 h=1 h=10 h=20

Model pvMCS Model pvMCS Model pvMCS Model pvMCS Model pvMCS Model pvMCS

Boston

APARCH 0.011 FIGARCH 0.012 FIGARCH 0.020 APARCH 0.012 FIGARCH 0.015 FIGARCH 0.018

FIGARCH 0.144∗ GJR 0.029 GJR 0.074∗ FIGARCH 0.142∗ GJR 0.035 GJR 0.065∗

EGARCH 0.144∗ GARCH 0.085∗ GARCH 0.105∗ EGARCH 0.142∗ GARCH 0.093∗ GARCH 0.100∗

GARCH 0.144∗ APARCH 0.933∗ APARCH 0.665∗ GARCH 0.142∗ APARCH 0.941∗ APARCH 0.681∗

GJR 0.488∗ EGARCH 0.933∗ EGARCH 0.665∗ GJR 0.491∗ EGARCH 0.941∗ EGARCH 0.681∗

MSM 1.000∗ MSM 1.000∗ MSM 1.000∗ MSM 1.000∗ MSM 1.000∗ MSM 1.000∗

Chicago

FIGARCH 0.001 FIGARCH 0.000 FIGARCH 0.000 FIGARCH 0.001 FIGARCH 0.000 FIGARCH 0.000

EGARCH 0.129∗ APARCH 0.024 APARCH 0.031 EGARCH 0.133∗ APARCH 0.019 APARCH 0.036

APARCH 0.161∗ GJR 0.024 GJR 0.546∗ APARCH 0.173∗ GJR 0.019 GJR 0.567∗

MSM 0.331∗ GARCH 0.024 GARCH 0.546∗ MSM 0.336∗ GARCH 0.019 GARCH 0.567∗

GARCH 0.331∗ MSM 0.617∗ MSM 0.665∗ GARCH 0.336∗ MSM 0.595∗ MSM 0.671∗

GJR 1.000∗ EGARCH 1.000∗ EGARCH 1.000∗ GJR 1.000∗ EGARCH 1.000∗ EGARCH 1.000∗

Denver

APARCH 0.000 MSM 0.154∗ MSM 0.006 APARCH 0.000 MSM 0.146∗ MSM 0.005

MSM 0.000 EGARCH 0.926∗ GJR 0.776∗ MSM 0.000 EGARCH 0.895∗ GJR 0.779∗

EGARCH 0.022 APARCH 0.926∗ GARCH 0.776∗ EGARCH 0.020 APARCH 0.895∗ GARCH 0.779∗

FIGARCH 0.080∗ GARCH 0.926∗ EGARCH 0.776∗ FIGARCH 0.042 GARCH 0.895∗ EGARCH 0.779∗

GARCH 0.080∗ GJR 0.926∗ FIGARCH 0.776∗ GARCH 0.042 GJR 0.895∗ FIGARCH 0.779∗

GJR 1.000∗ FIGARCH 1.000∗ APARCH 1.000∗ GJR 1.000∗ FIGARCH 1.000∗ APARCH 1.000∗

Las Vegas

FIGARCH 0.001 FIGARCH 0.007 FIGARCH 0.005 FIGARCH 0.002 FIGARCH 0.008 FIGARCH 0.006

APARCH 0.001 EGARCH 0.494∗ GJR 0.133∗ APARCH 0.002 EGARCH 0.514∗ GJR 0.126∗

EGARCH 0.001 GJR 0.859∗ GARCH 0.333∗ EGARCH 0.002 GJR 0.843∗ GARCH 0.335∗

GARCH 0.071 GARCH 0.859∗ EGARCH 0.836∗ GARCH 0.064∗ GARCH 0.843∗ EGARCH 0.853∗

MSM 0.665∗ MSM 0.957∗ APARCH 0.836∗ MSM 0.644∗ MSM 0.932∗ APARCH 0.853∗

GJR 1.000∗ APARCH 1.000∗ MSM 1.000∗ GJR 1.000∗ APARCH 1.000∗ MSM 1.000∗

Los Angeles

FIGARCH 0.001 APARCH 0.000 APARCH 0.000 FIGARCH 0.000 APARCH 0.000 APARCH 0.000

APARCH 0.001 FIGARCH 0.004 FIGARCH 0.002 APARCH 0.000 FIGARCH 0.005 FIGARCH 0.002

EGARCH 0.001 GJR 0.782∗ GARCH 0.373∗ EGARCH 0.000 GJR 0.798∗ GARCH 0.417∗

GJR 0.578∗ GARCH 0.782∗ GJR 0.583∗ GJR 0.557∗ GARCH 0.798∗ GJR 0.612∗

GARCH 0.876∗ EGARCH 0.782∗ MSM 0.949∗ GARCH 0.901∗ EGARCH 0.798∗ MSM 0.951∗

MSM 1.000∗ MSM 1.000∗ EGARCH 1.000∗ MSM 1.000∗ MSM 1.000∗ EGARCH 1.000∗

Note: MCS p-values for forecasts from six volatility models at different forecasting horizons. The p-values are computed via a stationary
bootstrap (B=10000) using the range statistic Tr . The forecasts inM∗95% are identified by one asterisk.
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Table 9: MCS test results

Discrete VaR-based loss function Continuous VaR-based loss function

Horizons

h=1 h=10 h=20 h=1 h=10 h=20

Model pvMCS Model pvMCS Model pvMCS Model pvMCS Model pvMCS Model pvMCS

Miami

FIGARCH 0.000 FIGARCH 0.000 FIGARCH 0.000 FIGARCH 0.000 FIGARCH 0.000 FIGARCH 0.000

APARCH 0.002 GARCH 0.390∗ GJR 0.133∗ APARCH 0.002 GARCH 0.386∗ GJR 0.120∗

EGARCH 0.002 APARCH 0.410∗ GARCH 0.151∗ EGARCH 0.002 APARCH 0.419∗ GARCH 0.142∗

MSM 0.025 GJR 0.410∗ APARCH 0.698∗ MSM 0.030 GJR 0.419∗ APARCH 0.723∗

GARCH 0.025 MSM 0.410∗ EGARCH 0.698∗ GARCH 0.030 MSM 0.419∗ EGARCH 0.723∗

GJR 1.000∗ EGARCH 1.000∗ MSM 1.000∗ GJR 1.000∗ EGARCH 1.000∗ MSM 1.000∗

New York

FIGARCH 0.003 FIGARCH 0.186∗ FIGARCH 0.029 FIGARCH 0.004 FIGARCH 0.222∗ FIGARCH 0.032

EGARCH 0.003 MSM 0.837∗ GJR 0.847∗ EGARCH 0.004 MSM 0.856∗ GJR 0.870∗

APARCH 0.012 GARCH 0.837∗ APARCH 0.847∗ APARCH 0.016 GARCH 0.856∗ APARCH 0.870∗

MSM 0.087∗ GJR 0.837∗ GARCH 0.847∗ MSM 0.093∗ GJR 0.856∗ GARCH 0.870∗

GJR 0.087∗ APARCH 0.837∗ EGARCH 0.847∗ GJR 0.093∗ APARCH 0.856∗ EGARCH 0.870∗

GARCH 1.000∗ EGARCH 1.000∗ MSM 1.000∗ GARCH 1.000∗ EGARCH 1.000∗ MSM 1.000∗

San Diego

APARCH 0.032 APARCH 0.044 APARCH 0.004 APARCH 0.037 APARCH 0.049 APARCH 0.004

FIGARCH 0.032 FIGARCH 0.425∗ FIGARCH 0.288∗ FIGARCH 0.037 FIGARCH 0.484∗ FIGARCH 0.336∗

EGARCH 0.032 GJR 0.769∗ GARCH 0.425∗ EGARCH 0.037 GJR 0.773∗ GARCH 0.460∗

MSM 0.100∗ GARCH 0.769∗ GJR 0.593∗ MSM 0.105∗ GARCH 0.773∗ GJR 0.622∗

GJR 0.715∗ EGARCH 0.769∗ EGARCH 0.593∗ GJR 0.681∗ EGARCH 0.773∗ EGARCH 0.622∗

GARCH 1.000∗ MSM 1.000∗ MSM 1.000∗ GARCH 1.000∗ MSM 1.000∗ MSM 1.000∗

San Francisco

FIGARCH 0.000 FIGARCH 0.000 FIGARCH 0.000 FIGARCH 0.000 FIGARCH 0.000 FIGARCH 0.000

APARCH 0.000 GARCH 0.001 GARCH 0.003 APARCH 0.000 GARCH 0.002 GARCH 0.002

EGARCH 0.000 GJR 0.003 GJR 0.004 EGARCH 0.000 GJR 0.003 GJR 0.003

GARCH 0.000 MSM 0.024 MSM 0.012 GARCH 0.000 MSM 0.024 MSM 0.012

GJR 0.000 APARCH 0.024 APARCH 0.012 GJR 0.000 APARCH 0.024 APARCH 0.012

MSM 1.000∗ EGARCH 1.000∗ EGARCH 1.000∗ MSM 1.000∗ EGARCH 1.000∗ EGARCH 1.000∗

Washington D. C.

FIGARCH 0.001 FIGARCH 0.000 FIGARCH 0.000 FIGARCH 0.001 FIGARCH 0.000 FIGARCH 0.000

APARCH 0.001 GJR 0.391∗ GARCH 0.322∗ APARCH 0.001 GJR 0.390∗ GARCH 0.336∗

EGARCH 0.001 APARCH 0.391∗ APARCH 0.322∗ EGARCH 0.001 APARCH 0.390∗ APARCH 0.336∗

MSM 0.233∗ EGARCH 0.391∗ EGARCH 0.322∗ MSM 0.227∗ EGARCH 0.390∗ EGARCH 0.336∗

GARCH 0.233∗ GARCH 0.391∗ GJR 0.322∗ GARCH 0.227∗ GARCH 0.390∗ GJR 0.336∗

GJR 1.000∗ MSM 1.000∗ MSM 1.000∗ GJR 1.000∗ MSM 1.000∗ MSM 1.000∗

Note: MCS p-values for forecasts from six volatility models at different forecasting horizons. The p-values are computed via a stationary
bootstrap (B=10000) using the range statistic Tr . The forecasts inM∗95% are identified by one asterisk.
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Table 10: MCS test results

Discrete VaR-based loss function Continuous VaR-based loss function

Horizons

h=1 h=10 h=20 h=1 h=10 h=20

Model pvMCS Model pvMCS Model pvMCS Model pvMCS Model pvMCS Model pvMCS

Aggregate index

APARCH 0.000 APARCH 0.000 APARCH 0.000 APARCH 0.000 APARCH 0.000 APARCH 0.000

FIGARCH 0.000 FIGARCH 0.001 FIGARCH 0.001 FIGARCH 0.001 FIGARCH 0.002 FIGARCH 0.001

MSM 0.025 GARCH 0.017 GARCH 0.004 MSM 0.021 GARCH 0.023 GARCH 0.006

EGARCH 0.068∗ GJR 0.017 GJR 0.012 EGARCH 0.084∗ GJR 0.023 GJR 0.017

GARCH 0.068∗ MSM 0.023 MSM 0.016 GARCH 0.084∗ MSM 0.033 MSM 0.020

GJR 1.000∗ EGARCH 1.000∗ EGARCH 1.000∗ GJR 1.000∗ EGARCH 1.000∗ EGARCH 1.000∗

House price futures

EGARCH 0.000 APARCH 0.000 APARCH 0.000 EGARCH 0.000 APARCH 0.000 APARCH 0.000

APARCH 0.000 FIGARCH 0.000 FIGARCH 0.000 APARCH 0.000 FIGARCH 0.000 FIGARCH 0.000

FIGARCH 0.000 EGARCH 0.012 EGARCH 0.009 FIGARCH 0.000 EGARCH 0.013 EGARCH 0.010

GJR 0.000 GJR 0.051 GJR 0.061 GJR 0.000 GJR 0.057 GJR 0.056

GARCH 0.000 GARCH 0.690∗ GARCH 0.731∗ GARCH 0.000 GARCH 0.688∗ GARCH 0.747∗

MSM 1.000∗ MSM 1.000∗ MSM 1.000∗ MSM 1.000∗ MSM 1.000∗ MSM 1.000∗

Note: MCS p-values for forecasts from six volatility models at different forecasting horizons. The p-values are computed via a stationary
bootstrap (B=10000) using the range statistic Tr . The forecasts inM∗95% are identified by one asterisk.
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Figure 1: Daily housing returns and squared returns
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Figure 2: Daily housing returns and squared returns
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Figure 3: Daily housing returns and squared returns
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Figure 4: Daily Composite 10 housing price and house price futures index returns and squared returns
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Figure 5: ACFs for housing returns and squared returns

31



References Segnon/Gupta/Lesame/Wohar

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Returns Los Angeles

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Squared returns Los Angeles

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Returns Las Vegas

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F
Squared returns Las Vegas

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Returns Miami

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Squared returns Miami

Figure 6: ACFs for housing returns and squared returns
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Figure 7: ACFs for housing returns and squared returns
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Figure 8: ACFs for daily composite and future housing returns and their squared returns
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