
  
University of Pretoria 

Department of Economics Working Paper Series 
 Forecasting Volatility and Co-volatility of Crude Oil and Gold Futures: Effects 
of Leverage, Jumps, Spillovers, and Geopolitical Risks Manabu Asai 
Soka University  Rangan Gupta 
University of Pretoria  Michael McAleer 
Asia University, University of Sydney, Erasmus University Rotterdam, Complutense University of 
Madrid, and Yokohama National University 
Working Paper: 2019-51 
July 2019 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
__________________________________________________________ 
Department of Economics 
University of Pretoria 
0002, Pretoria 
South Africa 
Tel: +27 12 420 2413 



Forecasting Volatility and Co-volatility of Crude Oil

and Gold Futures: Effects of Leverage, Jumps,

Spillovers, and Geopolitical Risks∗

Manabu Asai†

Faculty of Economics
Soka University, Japan

Rangan Gupta
Department of Economics

University of Pretoria, South Africa

Michael McAleer
Department of Finance, Asia University, Taiwan

and
Discipline of Business Analytics

University of Sydney Business School, Australia
and

Econometric Institute, Erasmus School of Economics
Erasmus University Rotterdam, The Netherlands

and
Department of Economic Analysis and ICAE
Complutense University of Madrid, Spain

and
Institute of Advanced Sciences

Yokohama National University, Japan

June 2019

∗The authors are most grateful to Yoshi Baba for very helpful comments and suggestions. The first author
acknowledges the financial support of the Japan Ministry of Education, Culture, Sports, Science and Technology,
Japan Society for the Promotion of Science (JSPS KAKENHI Grant Number 19K01594), and Australian Academy
of Science. The third author is most grateful for the financial support of the Australian Research Council, Ministry
of Science and Technology (MOST), Taiwan, and the Japan Society for the Promotion of Science.

†Corresponding author: m-asai@soka.ac.jp



Abstract

For purposes of forecasting the covariance matrix for the returns of crude oil and gold futures,
this paper examines the effects of leverage, jumps, spillovers, and geopolitical risks, using their
respective realized covariance matrices. In order to guarantee the positive definiteness of the
forecasts, we consider the full BEKK structure on the conditional Wishart model. By the spec-
ification, we can divide flexibly the direct and spillover effects of volatility feedback, negative
returns, and jumps. The empirical analysis indicates the benefits in accommodating the spillover
effects of negative returns and the geopolitical risks indicator for modelling and forecasting the
future covariance matrix.

Keywords: Commodity Markets; Co-volatility; Forecasting; Geopolitical Risks; Jumps; Leverage
Effects; Spillover Effects; Realized Covariance.
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1 Introduction

In the wake of recent financial market jitters, geopolitical risks, and a volatile financial and macroe-

conomic environment, following the Global Financial Crisis of 2007-2009, commodity markets have

attracted international investor attention as a fundamental investment strategy (Bampinas and

Panagiotidis (2015)). In this regard, the focus has not only been on gold, which is widely-regarded

as a “safe haven” as it helps in avoiding financial and macroeconomic risks (Baur and Lucey,

2010; Baur and McDermott, 2010; Reboredo, 2013a, 2013b; Agyei-Ampomah, Gounopolos, and

Mazouz, 2014; Gürgün and Ünalmis, 2014; Beckmann, Berger, and Czudaj, 2015, 2019; Balcilar,

Gupta, Pierdzioch, 2016; Bilgin, Gozgor, Lau, and Sheng, 2018; Bouoiyour, Selmi, and Wohar,

2018), but also on oil.

This is due to the recent financialization of the oil market which, in turn, has resulted in in-

creased participation of hedge funds, pension funds, and insurance companies in the market. The

oil market is now also considered as a profitable alternative investment in the portfolio decisions

of financial institutions (Akram, 2009; Tang and Xiong, 2012; Silvennoinen and Thorp, 2013;

Fattouh, Killian, and Mahadeva, 2013; Büyükşahin and Robe 2014, Bahloul et al., 2018). Under-

standably, accurate forecasts of not only gold and oil market volatilities, but also co-volatility, due

to strong evidence of volatility spillovers across these two commodities (Ewing and Malik, 2013;

Mensi et al., 2013; Yaya, Tumala, and Udomboso, 2016; Twari et al., 2018), are of paramount

importance to investors in the pricing of related derivatives and for devising hedging strategies

(Chang, McAleer, and Wang, 2018). Note that, by definition, (partial) co-volatility spillovers

occur when the returns shock from financial asset k affects the co-volatility between two financial

assets, i and j, one of which can be asset k (Chang, Li, and McAleer, 2018).

Not surprisingly, large number of studies have looked into forecasting not only the daily condi-

tional volatilities of gold and oil based on univariate and multivariate models from the Generalized

Autoregressive Conditional Heteroskedasticity (GARCH) family, but over the last decade, a bur-

geoning literature has focused on predicting realized volatility derived from intraday data,1 using

the Heterogeneous Autoregressive (HAR)-type model of Corsi (2009) (see for example, Pierdzioch,

Risse, and Rohloff (2016), Degiannakis and Filis (2017), and Fang, Honghai, and Xiao (2018) for

detailed reviews). Against this backdrop, given the evidence of significant volatility spillovers

across the gold and oil markets, and the importance of geopolitical risks for asset markets (Car-

1In a detailed survey, McAleer and Medeiros (2008) point out that rich information contained in intraday data
can produce more accurate estimates and forecasts of daily (realized) volatility.
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ney, 2016), the objective of this paper is to forecast both the volatilities and co-volatility of the

two most-traded commodities by incorporating the role of spillovers and geopolitical risks into the

model specification.

Note that, in a survey conducted in 2017 by Gallup of more than 1,000 investors, 75 percent

of respondents expressed concerns about the economic impact of the various military and diplo-

matic conflicts occurring worldwide, ranking geopolitical risks ahead of political and economic

uncertainty. Furthermore, the European Central Bank and the International Monetary Fund in

their annual bulletins have recently also highlighted geopolitical uncertainty as a salient risk to

the economic outlook (Caldara and Iacoviello, 2018). Specifically speaking, we forecast realized

volatilities and co-volatility of gold and oil futures derived from 5-minute intraday data over the

period September 27, 2009 to May 25, 2017 by accounting for volatility spillovers and a news-based

metric of geopolitical risks, as indicated above.

In addition, realizing the importance of jumps, that is, discontinuities, in the volatility pro-

cesses of gold and oil prices (Sévi, 2014; Prokopczuk, Symeonidis, and Wese Simen, 2015; Demirer

et al., 2019; Gkillas, Gupta, and Pierdzioch, 2019a), we also investigate the impact of jumps by

simultaneously accommodating leverage effects, in addition to spillovers and geopolitical risks,

in forecasting the volatilities and co-volatility of gold and oil markets, following the econometric

approach of Asai and McAleer (2017) (applied to three stocks traded on the New York Stock

Exchange (NYSE)). While some recent studies (see, for example, Demirer et al. (2018), Baur and

Smales (2018), Gkillas, Gupta, and Pierdzioch (2019b), Plakandaras, Gupta, and Wong (2019))

provide some, albeit weak, evidence of the role of geopolitical risks in predicting (in- and out-of-

sample) gold and oil price volatility, to the best of our knowledge, this is the first paper to forecast

volatilities and co-volatility of the two markets by accommodating geopolitical risks, jumps, lever-

age, and spillovers simultaneously in a model. In this regard, our paper can be considered to be

an extension of Asai, Gupta, and McAleer (2019), in which the authors provided forecasts of the

co-volatility of gold and oil using the information content of jumps and leverage.

The remainder of the paper is organized as follows: Section 2 explains the technique of Koike

(2016) for disentangling quadratic covariation to continuous part and jump variation, and develops

conditional Wishart models for guaranteeing the positive definiteness of forecasts of the covariance

matrix. Section 2 also discusses estimation of the models, and tests the effects of leverage, jumps,

spillovers, and geopolitical risks. Section 3 outlines the high frequency data of prices of crude oil

and gold futures, and presents the empirical results. Finally, Section 4 provides some concluding
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remarks.

2 Econometric Methodology

2.1 Quadratic Covariation and Integrated Co-Volatility

Let X∗
s and Y ∗

s denote latent log-prices at time s for two futures X and Y . Define p∗(s) =

(X∗
s , Y

∗
s )

′, and let W (s) and Q(s) denote bivariate vectors of independent Brownian motions and

counting processes, respectively. Let K(s) be the 2× 2 matrix process controlling the magnitude

and transmission of jumps, such that K(s)dQ(s) is the contribution of the jump process to the

price diffusion. Under the assumption of a Brownian semimartingale with finite-activity jumps

(BSMFAJ), p∗(s) follows the stochastic differential equation:

dp∗(s) = µ(s)ds+ σ(s)dW (s) +K(s)dQ(s), 0 ≤ s ≤ T (1)

where µ(s) is a 2×1 vector of continuous and locally-bounded variation processes, and σ(s) is the

2× 2 matrix, such that Σ(s) = σ(s)σ′(s) is positive definite.

Assume that the observable log-price process is the sum of the latent log-price process in equa-

tion (1) and the microstructure noise process. Denote the log-price process as p(s) = (Xs, Ys)
′.

Consider non-synchronized trading times of the two assets, and let T and Θ be the set of trans-

action times of X and Y , respectively. Denote the counting process governing the number of

observations traded in assets X and Y up to time T as nT and mT , respectively. By definition,

the trades in X and Y occur at times T = {τ1, τ2, . . . , τnT } and Θ = {θ1, θ2, . . . , θmT }, respec-

tively. For convenience, the opening and closing times are set as τ1 = θ1 = 0 and τnT = θmT = T ,

respectively.

The observable log-price processes are given by:

Xτi = X∗
τi + εXτi and Yθj = Y ∗

θj
+ εYθj , (2)

where εX ∼ iid(0, σ2
εX), εY ∼ iid(0, σ2

εY ), and (εX , εY ) are independent of (X,Y ).

Define the quadratic covariation (QCov) of the log-price process over [0, T ] as:

QCov = plim
∆→∞

⌊T/∆⌋∑
i=1

[p(i∆)− p((i− 1)∆)] [p(i∆)− p((i− 1)∆)]′ . (3)

Then we obtain:

QCov =

∫ T

0
Σ(s)ds+

∑
0<s≤T

K(s)K ′(s). (4)
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The first term on the right-hand side of (4) is the integrated co-volatility (ICov) matrix over [0, T ],

while the second term is the matrix of jump variability. We are interested in disentangling these

two components from the estimates of QCov for the purpose of forecasting QCov.

There are several estimators for QCov and Icov (see the survey in Asai and McAleer (2017)).

Among them, we use the estimators of Christensen, Kinnebrock, and Podolskij (2010) for QCov

and Koike (2016) for ICov, respectively. The estimator of Koike (2016) is consistent under non-

synchronized trading times, jumps and microstructure noise for the bivariate process in (2). Note

that the realized kernel (RK) estimator of Barndorff-Nielsen et al. (2011) is positive (semi-)definite

and robust to microstructure noise under non-synchronized trading times. However, the robustness

to jumps is still an open and unresolved issue for the multivariate RK estimator.

As in Asai and McAleer (2017), we also apply thresholding of Bickel and Levina (2008) to

guarantee the positive (semi-)definiteness of the estimators. Denote the estimators of QCov, ICov

and jump component at day t as Ωt, Ct and Jt, respectively. Note that Jt is close to Ωt − Ct,

as it is obtained by thresholding the latter. Thus the thresholding produces a remaining error

matrix, Et = Ωt − Ct − Jt, for the realization of equation (4), where Ωt, Ct and Jt are positive

(semi-)definite. We exclude Et in the empirical analysis.

In addition, we disentangle the observed return series into continuous and jump components

by applying the technique of Aı̈t-Sahalia and Jacod (2012). For purposes of notation, define the

return for X as rxt = xt − xt−1. Denote the continuous and jump components of the return as

rcxt and rjxt , respectively. In the empirical analysis, we use returns for examining leverage and

co-leverage effects on volatility and co-volatility, respectively. When the models include the ICov

and jump components, we use the continuous return rather than the observed return itself.

2.2 Conditional Wishart Model

Let Ωt−h+1:t denote the h-horizon average, defined by:

Ωt−h+1:t =
1

h
(Ωt + · · ·+Ωt−h+1) ,

where h = 5 and h = 22 give the weekly and monthly averages, respectively. In order to examine

the effects of leverage, jump, and spillover effects, we consider the following structure for Ωt−h+1:t

(h = 1, 5, 22):

Ωt−h+1:t = (1/ν)H
1/2
t WtH

1/2
t , Wt ∼ iid W2(ν, I2), (5)
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where Ht is an m ×m positive definite matrix, H
1/2
t is a square root of a matrix defined by the

eigenvalue decomposition, and Wm(ν,A) denotes the m-dimensional Wishart distribution with

degrees-of-freedom parameter, ν, and m×m scale matrix, A. By the specification, Ωt−h+1:t|Ht ∼

W2(ν, (1/ν)Ht), which yields E(Ωt−h+1:t|Ht) = Ht and V (Ωij,t−h+1:t|Ht) = (1/ν)(H2
ij,t+Hii,tHjj,t)

(i, j = 1, 2).

For specifying Ht, we accommodate the effects of leverage, jumps, spillovers, and geopolitical

risks. Define ht = vec(Ht), ωt−h:t−1 = vec(Ωt−h:t−1), ct−h:t−1 = vec(Ct−h:t−1) (h = 1, 5, 22), and

jt = vec(Jt). For the structure of Ht, we consider six kinds of specifications:

ht = κ+A∗
dωt−1 +A∗

wωt−5:t−1 +A∗
wωt−22:t−1, (6)

ht = κ+A∗
dωt−1 +A∗

wωt−5:t−1 +A∗
wωt−22:t−1 +A∗

aξt−1, (7)

ht = κ+A∗
dωt−1 +A∗

wωt−5:t−1 +A∗
wωt−22:t−1 +A∗

aξt−1 + λgt−1, (8)

ht = κ+A∗
dct−1 +A∗

wct−5:t−1 +A∗
wct−22:t−1 +A∗

jjt−1, (9)

ht = κ+A∗
dct−1 +A∗

wct−5:t−1 +A∗
wct−22:t−1 +A∗

jjt−1 +A∗
ant−1, (10)

ht = κ+A∗
dct−1 +A∗

wct−5:t−1 +A∗
wct−22:t−1 +A∗

jjt−1 +A∗
ant−1 + λgt−1, (11)

where A∗
i (i = d,w,m, j, a) are 4× 4 matrices of parameters, κ and λ 4× 1 vectors of parameters,

gt is a geopolitical risks indicator, ξt = vec(ζtζ
′
t), ζt = (rxt 1(r

x
t < 0), ryt 1(r

y
t < 0))

′
, nt = vec(ηtη

′
t),

ηt = (rcxt 1(rc
x
t < 0), rcyt 1(rc

y
t < 0))

′
, and 1(z < 0) is the indicator function which takes one if

z < 0, and zero otherwise.

For the parameters, we consider the BEKK (Baba, Engle, Kroner, and Kraft) specification (see

Baba et al. (1985) and Engle and Kroner (1995)) in order to guarantee the positive definiteness

of Ht. We suppress the subscript i of A∗
i (i = d,w,m, j, a). In the BEKK specification, A∗ takes

the following form:

A∗ =
4∑

k=1

(Ak ⊗Ak), A1 =

(
a11,1 a12,1
a21,1 a22,1

)
, A2 =

(
0 0

a21,2 a22,2

)
,

A3 =

(
0 a12,3
0 a22,3

)
, A4 =

(
0 0
0 a22,4

)
,

with a22,k > 0. Proposition 2.3 of Engle and Kroner (1995) shows that there is no equivalent

representation for the set of Ak matrices. For the remaining parameters:

κ = vec(KK ′), K =

(
k11 0
k21 k22

)
, λ = vec(Λ), Λ =

(
λ11 λ21

λ21 λ22

)
,
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with k11 > 0. By the specification, we obtain the alternative form of (11):

Ht =KK ′ +AdCt−1A
′
d +AwCt−5:t−1A

′
w +AmCt−22:t−1A

′
m

+AjJt−1A
′
j +Aaηt−1η

′
t−1A

′
a + Λgt.

(12)

The BEKK structure (12) implies that Ht for (6), (7), (9), and (10) is always positive definite.

When gt ≥ 0, the positive definiteness for (8) and (11) depends on the values of Λ. In order

to reserve the possibility for the (i, i)th element of Λ to take negative values, we do not impose

restrictions such as Λ = λ̌λ̌′ with a 2× 1 vector λ̌.

The models in (5) with (6), (9), and (10) are multivariate extensions of the volatility forecasting

models of Andersen, Bollerslev, and Diebold (2007) and Corsi et al. (2010). The model (5) and

(6) with h = 1 belongs to the conditional autoregressive Wishart (CAW) model of Golosnoy,

Gribisch, and Liesenfeld (2012). As this specification uses the heterogeneous autoregression (HAR)

introduced by Corsi (2009), we refer to equations (5) and (6) as the heterogeneous autoregressive

conditional Wishart (HAR-CW) model. Equation (7) includes the spillovers of asymmetric effects,

as in Kroner and Ng (1997), which we refer to as the HAR-A-CW model. Model (5) with (9)

decomposes the past values of Ωt into those of Ct and Jt, and accommodates the HAR terms of

Ct and the spillover effects of jump variation and co-variation.

The specification in (10) adds to (9) the spillovers of the leverage effects. We refer to equations

(5) with (9) and (10) as the HAR-TCJ-CW and HAR-TCJA-CW models, respectively. Note

that we use continuous returns for the HAR-TCJA-CW model, corresponding to the ICov in its

specification. As (8) adds to (7) the effect of geopolitical risks, we refer to the model in (5) with

(8) as the HAR-AG-CW model. In the same manner, we refer to the model in (5) and (10) as the

HAR-TCJAG-CW model.

Instead of the above specifications, we may consider a regression model for ώt−h+1:t = vech(Ωt−h+1:t)

as:

ώt−h+1:t = κ† +A†
dćt−1 +A†

wćt−5:t−1 +A†
wćt−22:t−1 +A†

j j́t−1 +A†
ańt−1 + et, (13)

where et is the 3× 1 vector of disturbance, ćt−h:t−1 = vech(Ct−h:t−1) (h = 1, 5, 22), j́t = vech(Jt),

ńt = vech(ηtη
′
t), κ

† is the 3× 1 vector, and A†
i (i = d,w,m, j, a) are 3× 3 matrices. The number

of parameters in (13) is the same as the number of free parameters in (10). In other words, the

BEKK structure produces a positive definite matrix using no additional parameters.
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2.3 Estimation of CW Models and Tests for Effects of Spillover and Geopolit-
ical Risks

Define θ = (ν, vech(K)′, vec(Ad)
′, vec(Aw)

′, vec(Am)′, vec(Aj)
′, vec(Aa)

′)′ for the HAR-TCJA-CW

model. The log-likelihood function is given by:

L(θ) =
T∑
t=1

lt, (14)

where

lt = − log Γm(ν/2) +
mν

2
log(ν/2)− ν

2
log |Ht|

+
ν −m− 1

2
log |Ωt−h+1:t| −

ν

2
tr
(
H−1

t Ωt−h+1:t

)
with m = 2, and Γm(z) is the multivariate gamma function defined by:

Γm(z) = πm(m−1)/4
m∏
j=1

Γ (z + (1− j)/2) .

We obtain the maximum likelihood estimator, θ̂, by maximizing the log-likelihood function (14).

We can establish the asymptotic normality of the maximum likelihood estimator for the con-

ditional Wishart model by simplifying the results of Zhou, Zhu, and Li (2018) for the matrix-F

distribution. Note that we are unable to use the approach of McAleer et al. (2008) based on the

vector random coefficient (VRC) process for the BEKK-GARCH model, as it is hard to derive

a VRC representation for the conditional Wishart model (see also the discussion and caveats in

McAleer (2019)).

For examining the effects of leverage, jumps, spillovers, and a geopolitical risks indicator, we

use equations (6)-(11). Define the null hypotheses as Hkl,v
0 : a∗k2l2,d = a∗k2l2,w = a∗k2l2,m = 0,

Hkl,j
0 : a∗k2l2,j = 0, Hkl,a

0 : a∗k2l2,a = 0, and Hkl,g
0 : λkl = 0 for k, l = 1, 2. We divide Hkl,v

0 , Hkl,j
0 ,

and Hkl,a
0 (k, l = 1, 2) into two categories: one is the test for the ‘direct effect’ with k = l, while

the other is the test for ‘spillover effects’ with k ̸= l. In each category, we test the effects of

volatility feedback, jumps, and negative returns. For the geopolitical risks, Hkl,g
0 indicates that

there is no effect on the (k, l)th element of Ht.

Table 1 shows the null hypotheses to be tested in our empirical analysis. We carry out Wald

tests for the hypotheses Hkl,v
0 (k, l = 1, 2), while we use t tests for the remaining hypotheses. The

Wald statistics have the asymptotic χ2(3) distribution under the respective null hypotheses.
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3 Empirical Analysis

We consider the effects of jumps, leverage, spillovers, and geopolitical risks for two futures contracts

traded on the New York Mercantile Exchange (NYMEX), namely West Texas Intermediate (WTI)

Crude Oil and Gold. The trades at NYMESX cover 24 hours with the CME Globex system. Using

the future prices every 5-minute, we calculate Ωt, Ct, and Jt by the approach of Koike (2016), as

the estimates of the matrices of quadratic co-variation, integrated co-volatility, and the matrix of

jump co-variations, respectively. We also calculate the corresponding open-close returns and their

continuous components, rt and rct, respectively, for the two futures.

The sample period covers September 27, 2009 to May 25, 2017, giving 1978 observations.

Table 2 presents the descriptive statistics for rt and Ct. The empirical distribution of the returns

is highly leptokurtic, while that of volatility is skewed to the right, with heavy tails. Figures 1

and 2 display the times series plots of returns and the estimates of quadratic variation, integrated

volatility, and jump variation. The values jump variations are relatively small for most days,

but there exist obvious non-negligible variations. Figure 3 illustrates the product of two returns,

the estimates of quadratic co-variation, integrated co-volatility, and jump co-variability. Figure 3

implies the time series dependence on QCov and ICov can be found, especially for the year 2011.

Our measure of geopolitical risks, is based on on the work of Caldara and Iacoviello (2018).2

Caldara and Iacoviello (2018) construct the GPR index by counting the occurrence of words

related to geopolitical tensions, derived from automated text-searches in 11 leading national and

international newspapers (The Boston Globe, Chicago Tribune, The Daily Telegraph, Financial

Times, The Globe and Mail, The Guardian, Los Angeles Times, The New York Times, The Times,

The Wall Street Journal, and The Washington Post). They then calculate an index by counting, in

each of the above-mentioned 11 newspapers, the number of articles that contain the search terms3

related to geopolitical risks for every day. Figure 4 shows the time series plot of the geopolitical

risks indicator.

In the following, we consider two kinds of periods for estimation and forecasting. Period 1

2The data can be downloaded from: https://www2.bc.edu/matteo-iacoviello/gpr.htm.
3The search identifies articles containing references to six groups of words: Group 1 includes words associated

with explicit mentions of geopolitical risks, as well as mentions of military-related tensions involving large regions
of the world and a U.S. involvement; Group 2 includes words directly related to nuclear tensions; Groups 3 and 4
include mentions related to war threats and terrorist threats, respectively; Groups 5 and 6 aim at capturing press
coverage of actual adverse geopolitical events (as opposed to just risks) which can be reasonably expected to lead
to increases in geopolitical uncertainties, such as terrorist acts or the beginning of a war.
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starts on October 27, 2009 and ends on August 18, 2015, with 1500 observations, while Period 2

covers October 4, 2011 to May 25, 2017, with 1456 observations. The first 1000 observations for

each period are used for estimation, while the remaining observations are retained for forecasting.

We treat crude oil futures as the first variable, and gold futures as the second.

Table 3 reports AIC and BIC for six models with respect to six kinds of covariance matrices

over 2 periods. For the daily covariance model, AIC chose the HAR-TCJA (HAR-TCJAG) model

for Period 1 (Period 2), while the HAR-A-CW model has the smallest BIC. Regarding the weekly

covariance model, AIC selected HAR-A-CW, and HAR-CW has the smallest BIC for both periods.

For the monthly covariance model, HAR-A-CW has the smallest AIC and BIC for both periods.

The results indicate that including leverage effects often improves the information criterion, and

that accommodating the geopolitical risks indicator can improve the daily covariance model.

Among the hypotheses listed in Table 1, we first examine the direct effects on volatility from its

past volatility, jumps, and negative returns. The null hypotheses are Hkk,v
0 : a∗k2k2,d = a∗k2k2,w =

a∗k2k2,m = 0, Hkk,j
0 : a∗k2k2,j = 0 and Hkk,a

0 : a∗k2k2,a = 0 (k = 1, 2), with the parameters defined in

equations (6)-(11). Table 4 shows the results of the direct tests for the daily covariance model.

While the direct effects from past volatility and returns are significant at the five percent level,

the effects of past jumps are insignificant. The result is against the findings by Asai, Gupta, and

McAleer (2019), and might be caused by the structure for guaranteeing positive definiteness of the

covariance matrix. The sign of the t statistics for testing Hkk,a
0 : a∗k2k2,a = 0 (k = 1, 2) indicates

that a negative return increases future volatility, showing the existence of leverage effects.

Tables 5 and 6 report the results for the direct tests for the weekly and monthly covariance

models, respectively. All test statistics reject the null hypotheses of no effects at the five percent

level, except for a∗44,a = 0 for the second period of the monthly covariance models with jumps. Note

that, even for this case, a∗44,a is significant for the models without jumps. The results indicate

that the effects of jumps and negative returns are positive and significant in explaining future

volatility.

Second, we examine the spillover effects. Tables 7-9 show the results for the tests for spillover

effects for the daily, weekly, and monthly covariance models, respectively. In most cases, the test

statistics are insignificant at the five percent level. The exceptions are found in several cases for

the null hypothesis H12,a
0 : a∗14,a = 0. The result that a∗14,a > 0 shows that a negative return of

gold futures increases the one-step-ahead volatility of crude oil futures. When the fluctuations
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in returns of the gold futures are high, the negative returns may affect the volatility of crude oil

futures.

Third, we investigate the effects of geopolitical risks based on the HAR-AG-CW and HAR-

TCJAG-CW models. Table 9 shows the t-test statistics and P -values. For the daily covariance

model, λ11 is significant for three of four cases, but the sign is indeterminate. Regarding the weekly

covariance model, λ11 is significant for the HAR-AG-CW model. For the monthly covariance

model, γ11 is significant for three of four cases, and λ12 is significant in one case. In Table 9, λ22

is insignificant in all cases. The result λ11 ̸= 0 indicates that the geopolitical risks tends to affect

the future volatility of crude oil.

For in-sample estimation, there is no spillover effects from volatility and jumps. Instead,

we often found spillovers from negative returns of gold futures to volatility of crude oil futures.

Regarding the geopolitical risks indicator, the empirical results show that part of the variation of

the future volatility of crude oil futures can be explained by the indicator.

We compare out-of-sample forecasts of six kinds of CW models. We estimate each model

using the first 1000 observations, and obtain a forecast, Ω̂f
1001 We re-estimate each model fixing

the sample size at 1000, and obtain new forecasts based on the updated parameter estimates.

For comparing the out-of-sample forecasts, we extend the idea of Patton (2011) for univariate

volatility models. Patton (2011) examined the functional form of the loss function for comparing

volatility forecasts using imperfect volatility proxies, such that the forecasts are robust to the

presence of noise in the proxies.

As an extension of Patton (2011), we state that a loss function is “robust” if the ranking of any

two forecasts of the co-volatility matrix, Ω̂
(1)
T+j and Ω̂

(2)
T+j , by expected loss is the same whether

the ranking is performed using the true covariance matrix or an unbiased volatility proxy, Ώt. In

the univariate case, Patton (2011) showed that squared forecast error and quasi-likelihood type

loss functions are robust to the forecast error and the standardized forecast error, respectively.

We consider their multivariate counterparts, as follows:

MSFE : L(Ώt, Ω̂
(i)
T+j) = tr

[(
Ω̂
(i)
T+j − Ώt

)2
]
, (15)

QLIKE : L(Ώt, Ω̂
(i)
T+j) = tr

(
Ώ−1
t Ω̂

(i)
T+j

)
− log

∣∣∣Ώ−1
t Ω̂

(i)
T+j

∣∣∣−m, (16)

which are expected to be robust to the forecast error, Ω̂
(i)
T+j − Ώt, and the standardized forecast

error, Ώ−1
t Ω̂

(i)
T+j , respectively.
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Table 11 shows the results of MSFE and QLIKE for the six models for 2 periods and the total

period. For forecasting the future covariance matrices, MSFE and QLIKE selected the models

without jumps. For forecasts of the daily and weekly covariance models, the HAR-A-CW model

often has the smallest MSFE and QLIKE. Regarding the monthly covariance model, the HAR-CW

and HAR-A-CW models are competitive, but the differences are negligible.

4 Concluding Remarks

In this paper, we investigated the effects of leverage, jumps, spillovers, and geopolitical risks on

forecasting the covariance matrix for the returns of crude oil and gold futures. For this purpose,

we considered the Conditional Wishart (CW) model with a full BEKK specification to guarantee

positive definiteness of the covariance matrix and flexibility of the parameters simultaneously.

The specification enables us to distinguish the direct and spillover effects of volatility feedbacks,

negative returns, and jumps. In the empirical analysis, we used five-minute data of crude oil

and gold futures to estimate the quadratic covariation, the continuous covariance matrix, and the

matrix of variations of jumps.

It was found that: (i) there are no spillover effects from volatility and jumps; (ii) negative

returns of gold increase the future volatility of crude oil, (iii) it is better to use previous values of

the quadratic covariation than its continuous and jump components for forecasting the covariance

matrix; and (iv) accommodating the geopolitical risks indicator often improves the forecasts of

the future volatility of crude oil. The CW model can be improved by combining the structures of

the Full BEKK model and the Diagonal GARCH model of Ding and Engle (2001). In other words,

we may use the structure of the Diagonal GARCH model for volatility feedbacks (and jumps),

while we consider the Full BEKK specification for the spillover effects arising from the negative

returns. This remains a topic for future research.

The innovative technical developments and empirical findings in the paper have important

implications for modelling and testing the statistical significance in forecasting both the volatility

and co-volatility of (gold and oil) futures returns, and the associated impacts of leverage, jumps,

spillovers and geopolitical risks. As the use of intraday data can produce more accurate estimates

and forecasts of daily (realized) volatility, the paper examined the use of 5-minute data to evaluate

the empirical performance of alternative models to forecast covariance matrices. Consequently,

when (co-)volatility is interpreted as (joint) uncertainty, it becomes a key input to investment

11



decisions and portfolio choices (Poon and Granger, 2003). The modelling strategy proposed in

the paper and the associated empirical results should be of immense value to portfolio managers in

gauging accurately the risks of investing in multiple assets and in constructing optimal portfolios.
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Table 1: Null Hypotheses for Testing the Direct, Spillover, and Geopolitical Risks Effects

H11,v
0 No direct effects from volatility of X to volatility of X

H22,v
0 No direct effects from volatility of Y to volatility of Y

H11,j
0 No direct effects from jump variation of X to volatility of X

H22,j
0 No direct effects from jump variation of Y to volatility of Y

H11,a
0 No direct effects from negative return of X to volatility of X

H22,a
0 No direct effects from negative return of Y to volatility of Y

H12,v
0 No spillover effects from volatility of Y to volatility of X

H21,v
0 No spillover effects from volatility of X to volatility of Y

H12,j
0 No spillover effects from jump variation of Y to volatility of X

H21,j
0 No spillover effects from jump variation of X to volatility of Y

H12,a
0 No spillover effects from negative return of Y to volatility of X

H21,a
0 No spillover effects from negative return of X to volatility of Y

H11,g
0 No effect from geopolitical risks index to volatility of X

H22,g
0 No effect from geopolitical risks index to volatility of Y

H12,g
0 No effect from geopolitical risks index to co-volatility of (X,Y )

Table 2: Descriptive Statistics of Returns, Volatility and Co-Volatility

Stock Mean Std.Dev. Skew. Kurt.

Return
Crude Oil 0.0256 0.6824 −0.4784 8.0378
Gold 0.0185 1.4887 −0.0573 5.0225
Volatility
Crude Oil 0.4238 0.5070 7.2211 90.688
Gold 1.5152 1.6510 3.3689 19.071
Co-Volatility
(Crude Oil, Gold) 0.1368 0.2844 −0.7851 37.359

Note: The sample period is from September 27, 2009 to May 25, 2017.
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Table 3: Model Selection via Information Criteria

Daily Cov. Weekly Cov. Monthly Cov.
Model AIC BIC AIC BIC AIC BIC
Period 1: 10/27/2009 – 09/10/2013
HAR-CW −355.78 10.49 −7437.03 −7070.75† −14182.25 −13815.97
HAR-A-CW −481.63 −9.01† −7531.33† −7058.71 −14388.47† −13915.85†

HAR-AG-CW −475.56 32.51 −7526.20 −7018.13 −14382.64 −13874.57
HAR-TCJ-CW −418.77 53.85 −6280.54 −5807.92 −10136.50 −9663.88
HAR-TCJA-CW −521.07† 57.89 −6312.06 −5733.10 −10161.00 −9582.04
HAR-TCJAG-CW −515.07 99.33 −6306.92 −5692.51 −10156.13 −9541.72
Period 2: 10/04/2011 – 08/15/2015
HAR-CW −1467.93 −1101.65 −8299.37 −7933.09† −15325.34 −14959.06
HAR-A-CW −1582.16 −1109.54† −8376.23† −7903.61 −15556.15† −15083.53†

HAR-AG-CW −1589.47 −1081.40 −8374.82 −7866.75 −15551.21 −15043.14
HAR-TCJ-CW −1524.57 −1051.95 −7177.73 −6705.11 −10899.95 −10427.33
HAR-TCJA-CW −1614.63 −1035.67 −7202.43 −6623.47 −10921.92 −10342.96
HAR-TCJAG-CW −1621.66† −1007.25 −7199.68 −6585.27 −10919.24 −10304.83
Note: ‘†’ denotes the model selected by AIC and BIC among the six models.
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Table 4: Tests of Direct Effects on the Daily Covariance Models

Model H11,v
0 H22,v

0 H11,j
0 H22,j

0 H11,a
0 H22,a

0

Period 1: 10/27/2009 – 09/10/2013
HAR-CW 1244.6 598.80

[0.0000] [0.0000]
HAR-A-CW 976.96 486.47 6.5807 5.0878

[0.0000] [0.0000] [0.0000] [0.0000]
HAR-AG-CW 973.80 472.28 6.6953 5.0695

[0.0000] [0.0000] [0.0000] [0.0000]
HAR-TCJ-CW 890.37 469.33 0.1037 1.1754

[0.0000] [0.0000] [0.9173] [0.2398]
HAR-TCJA-CW 108.05 406.33 0.0874 1.1021 5.6778 5.0523

[0.0000] [0.0000] [0.9304] [0.2704] [0.0000] [0.0000]
HAR-TCJAG-CW 701.14 396.18 0.0785 1.0578 5.6843 5.1483

[0.0000] [0.0000] [0.9374] [0.2901] [0.0000] [0.0000]
Period 2: 10/04/2011 – 08/15/2015
HAR-CW 1308.3 809.83

[0.0000] [0.0000]
HAR-A-CW 994.18 712.48 6.7084 3.1948

[0.0000] [0.0000] [0.0000] [0.0014]
HAR-AG-CW 992.24 697.83 6.7504 3.1691

[0.0000] [0.0000] [0.0000] [0.0015]
HAR-A-CW 947.57 577.37 0.1068 1.3661

[0.0000] [0.0000] [0.9149] [0.1719]
HAR-TCJ-CW 788.02 484.08 0.0874 1.4859 6.1482 3.0904

[0.0000] [0.0000] [0.9303] [0.1373] [0.0000] [0.0020]
HAR-TCJA-CW 789.73 480.60 0.0005 1.5404 6.2133 3.0167

[0.0000] [0.0000] [0.9996] [0.1235] [0.0000] [0.0026]
Note: We perform Wald tests for the hypotheses H11,v

0 and H22,v
0 , while we use t

tests for the remaining hypotheses. The entries show the test statistics. P -values are
given in brackets.
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Table 5: Tests of Direct Effects on the Weekly Covariance Models

Model H11,v
0 H22,v

0 H11,j
0 H22,j

0 H11,a
0 H22,a

0

Period 1: 10/27/2009 – 09/10/2013
HAR-CW 15126 6935.9

[0.0000] [0.0000]
HAR-A-CW 14204 6336.3 6.9584 4.9890

[0.0000] [0.0000] [0.0000] [0.0000]
HAR-AG-CW 14844 6374.4 7.0026 4.9485

[0.0000] [0.0000] [0.0000] [0.0000]
HAR-TCJ-CW 6530.8 3788.2 12.458 5.8031

[0.0000] [0.0000] [0.0000] [0.0000]
HAR-TCJA-CW 6162.2 3478.1 9.1037 5.7926 4.8802 3.3982

[0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0007]
HAR-TCJAG-CW 5935.0 3376.1 8.9475 5.7807 4.8987 3.0912

[0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0020]
Period 2: 10/04/2011 – 08/15/2015
HAR-CW 15758 6513.5

[0.0000] [0.0000]
HAR-A-CW 14206 6160.3 8.2330 2.7083

[0.0000] [0.0000] [0.0000] [0.0068]
HAR-AG-CW 14233 6159.3 8.3836 2.7029

[0.0000] [0.0000] [0.0000] [0.0069]
HAR-TCJ-CW 8379.4 3371.1 12.463 5.2151

[0.0000] [0.0000] [0.0000] [0.0000]
HAR-TCJA-CW 7523.8 2825.2 10.659 5.1418 6.6795 2.0230

[0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0431]
HAR-TCJAG-CW 7594.6 2944.0 10.583 5.1519 6.2988 2.0000

[0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0455]
Note: We perform Wald tests for the hypotheses H11,v

0 and H22,v
0 , while we use t

tests for the remaining hypotheses. The entries show the test statistics. P -values are
given in brackets.
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Table 6: Tests of Direct Effects on the Monthly Covariance Models

Model H11,v
0 H22,v

0 H11,j
0 H22,j

0 H11,a
0 H22,a

0

Period 1: 10/27/2009 – 09/10/2013
HAR-CW 97492 53456

[0.0000] [0.0000]
HAR-A-CW 98506 56199 10.168 5.8479

[0.0000] [0.0000] [0.0000] [0.0000]
HAR-AG-CW 98289 54744 10.225 5.8021

[0.0000] [0.0000] [0.0000] [0.0000]
HAR-TCJ-CW 18805 10757 13.124 3.6226

[0.0000] [0.0000] [0.0000] [0.0003]
HAR-TCJA-CW 17301 10450 9.8033 3.7172 5.0165 2.6162

[0.0000] [0.0000] [0.0000] [0.0002] [0.0000] [0.0089]
HAR-TCJAG-CW 17547 10105 9.5076 3.8152 4.3201 2.4460

[0.0000] [0.0000] [0.0000] [0.0001] [0.0000] [0.0144]
Period 2: 10/04/2011 – 08/15/2015
HAR-CW 105989 53583

[0.0000] [0.0000]
HAR-A-CW 114102 60018 10.299 2.3873

[0.0000] [0.0000] [0.0000] [0.0170]
HAR-AG-CW 114587 60043 10.235 2.3892

[0.0000] [0.0000] [0.0000] [0.0170]
HAR-TCJ-CW 26702 7637.8 12.906 2.4480

[0.0000] [0.0000] [0.0000] [0.0144]
HAR-TCJA-CW 26840 6730.2 11.090 2.5625 3.1839 1.2732

[0.0000] [0.0000] [0.0000] [0.0104] [0.0015] [0.2029]
HAR-TCJAG-CW 27427 7512.0 11.128 2.5828 3.1186 1.3508

[0.0000] [0.0000] [0.0000] [0.0098] [0.0018] [0.1768]
Note: We perform Wald tests for the hypotheses H11,v

0 and H22,v
0 , while we use t

tests for the remaining hypotheses. The entries show the test statistics. P -values are
given in brackets.
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Table 7: Tests of Spillover Effects on the Daily Covariance Models

Model H21,v
0 H12,v

0 H21,j
0 H12,j

0 H21,a
0 H12,a

0

Period 1: 10/27/2009 – 09/10/2013
HAR-CW 0.2681 0.7538

[0.9659] [0.8605]
HAR-A-CW 0.0009 0.6086 1.4674 5.5389

[1.0000] [0.8945] [0.1423] [0.0000]
HAR-AG-CW 0.0003 0.3501 1.4585 5.0694

[1.0000] [0.9504] [0.1447] [0.0000]
HAR-TCJ-CW 0.0132 0.3111 0.2061 0.1892

[0.9996] [0.9579] [0.8367] [0.8499]
HAR-TCJA-CW 0.0008 0.4262 0.0874 0.0798 0.7934 3.3141

[1.0000] [0.9348] [0.9364] [0.8450] [0.4275] [0.0009]
HAR-TCJAG-CW 0.0008 0.3532 0.0785 0.0721 0.8914 3.2252

[1.0000] [0.9497] [0.9426] [0.8602] [0.3727] [0.0013]
Period 2: 10/04/2011 – 08/15/2015
HAR-CW 0.0026 0.20520

[1.0000] [0.5617]
HAR-A-CW 0.0059 0.9392 0.1416 1.0107

[0.9999] [0.8160] [0.8874] [0.3122]
HAR-AG-CW 0.0065 0.2656 0.1551 0.9495

[0.9999] [0.9664] [0.8767] [0.3423]
HAR-TCJ-CW 0.0003 3.0456 0.0488 0.0441

[1.0000] [0.3846] [0.9611] [0.9648]
HAR-TCJA-CW 0.0018 0.7205 0.0324 0.3588 0.0970 0.7887

[1.0000] [0.8684] [0.9742] [0.7197] [0.9228] [0.4303]
HAR-TCJAG-CW 0.0021 0.3652 0.0081 0.1053 0.0886 0.7227

[1.0000] [0.9473] [0.9935] [0.9161] [0.9294] [0.4699]
Note: We perform Wald tests for the hypotheses H12,v

0 and H21,v
0 , while we use t

tests for the remaining hypotheses. The entries show the test statistics. P -values are
given in brackets.
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Table 8: Tests of Spillover Effects on the Weekly Covariance Models

Model H21,v
0 H12,v

0 H21,j
0 H12,j

0 H21,a
0 H12,a

0

Period 1: 10/27/2009 – 09/10/2013
HAR-CW 0.1869 0.3117

[0.9797] [0.9578]
HAR-A-CW 0.0018 0.7844 0.1133 1.8145

[1.0000] [0.8532] [0.9098] [0.0696]
HAR-AG-CW 0.0028 0.3619 0.1108 1.8895

[1.0000] [0.9480] [0.9117] [0.0588]
HAR-TCJ-CW 0.0016 0.0034 0.0128 0.0722

[1.0000] [0.9999] [0.9898] [0.9424]
HAR-TCJA-CW 0.0011 0.0084 0.0035 0.1386 0.0497 1.5286

[1.0000] [0.9998] [0.9972] [0.8959] [0.9604] [0.1264]
HAR-TCJAG-CW 0.0011 0.0075 0.0015 0.1684 0.0064 1.5488

[1.0000] [0.9998] [0.9988] [0.8663] [0.9949] [0.1214]
Period 2: 10/04/2011 – 08/15/2015
HAR-CW 0.0477 3.8799

[0.9973] [0.2747]
HAR-A-CW 0.0038 1.6697 0.0556 1.1598

[0.9999] [0.6437] [0.9557] [0.2461]
HAR-AG-CW 0.0078 0.6179 0.0505 1.1107

[0.9998] [0.8923] [0.9597] [0.2685]
HAR-TCJ-CW 0.0005 1.0131 0.0226 0.0152

[1.0000] [0.7981] [0.9820] [0.9878]
HAR-TCJA-CW 0.0021 0.3899 0.0094 0.0344 0.0091 1.3441

[1.0000] [0.9423] [0.9925] [0.9725] [0.9927] [0.1789]
HAR-TCJAG-CW 0.0017 0.3589 0.0083 0.0801 0.0060 1.3533

[1.0000] [0.9486] [0.9934] [0.9361] [0.9952] [0.1760]
Note: We perform Wald tests for the hypotheses H12,v

0 and H21,v
0 , while we use t

tests for the remaining hypotheses. The entries show the test statistics. P -values are
given in brackets.
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Table 9: Tests of Spillover Effects on the Monthly Covariance Models

Model H21,v
0 H12,v

0 H21,j
0 H12,j

0 H21,a
0 H12,a

0

Period 1: 10/27/2009 – 09/10/2013
HAR-CW 0.0956 0.9043

[0.9924] [0.8244]
HAR-A-CW 0.0236 6.1819 0.0912 0.9857

[0.9990] [0.1031] [0.9273] [0.3243]
HAR-AG-CW 0.0330 5.4193 0.0948 1.0266

[0.9984] [0.1435] [0.9245] [0.3046]
HAR-TCJ-CW 0.0277 0.0011 0.0069 0.9459

[0.9988] [1.0000] [0.9945] [0.3442]
HAR-TCJA-CW 0.0091 0.0032 0.0000 1.0269 0.0514 1.1392

[0.9998] [1.0000] [1.0000] [0.3044] [0.9590] [0.2546]
HAR-TCJAG-CW 0.0062 0.0015 0.0007 1.0266 0.0095 1.1370

[0.9999] [1.0000] [0.9995] [0.3046] [0.9924] [0.2555]
Period 2: 10/04/2011 – 08/15/2015
HAR-CW 0.0062 0.3542

[0.9999] [0.9495]
HAR-A-CW 0.0320 0.0052 0.1126 2.5827

[0.9985] [0.9999] [0.9104] [0.0098]
HAR-AG-CW 0.0297 0.0046 0.1167 2.4502

[0.9986] [0.9999] [0.9071] [0.0143]
HAR-TCJ-CW 0.0053 0.0403 0.0059 0.0649

[0.9999] [0.9979] [0.9695] [0.5160]
HAR-TCJA-CW 0.0073 0.0272 0.0005 0.6696 0.0052 1.1204

[0.9998] [0.9988] [1.0000] [0.5031] [0.9958] [0.2626]
HAR-TCJAG-CW 0.0087 0.0339 0.0002 0.8350 0.0519 1.2969

[0.9998] [0.9984] [0.9998] [0.4037] [0.9586] [0.1947]
Note: We perform Wald tests for the hypotheses H12,v

0 and H21,v
0 , while we use t

tests for the remaining hypotheses. The entries show the test statistics. P -values are
given in brackets.
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Table 10: Tests for Effects of Geopolitical Risks

Period 1: 10/27/2009 – 09/10/2013 Period 2: 10/04/2011 – 08/15/2015
Model λ11 λ12 λ22 λ11 λ12 λ22

HAR-AG-CW
Daily Cov. 0.2569 0.3636 −0.1652 3.3611∗ −0.6431 0.0625

[0.7973] [0.7162] [0.8688] [0.0008] [0.5202] [0.9501]
Weekly Cov. −0.7679 0.0202 −0.1481 2.0644∗ −0.1869 0.0161

[0.4425] [0.9838] [0.8823] [0.0390] [0.8518] [0.9872]
Monthly Cov. −0.1878 0.1751 −0.1118 0.4956 −0.3039 0.0950

[0.8510] [0.8610] [0.9110] [0.6202] [0.7612] [0.9243]
HAR-TCJAG-CW

Daily Cov. 0.0553 0.0235 0.0156 3.0660∗ −0.7036 0.1839
[0.9559] [0.9812] [0.9876] [0.0022] [0.4817] [0.8541]

Weekly Cov. −0.5571 −0.3855 0.1332 0.8548 −0.6374 0.2211
[0.5774] [0.6998] [0.8941] [0.3926] [0.5238] [0.8250]

Monthly Cov. −0.1617 −0.4181 0.4538 0.0895 −0.6652 −0.1907
[0.8715] [0.6758] [0.6500] [0.9287] [0.5059] [0.8488]

Note: The entries show the t test statistics. P -values are given in brackets. ‘∗’ denotes significance
at the 5% level.
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Table 11: Out-of-Sample Forecast Evaluation

MSFE QLIKE
Model Period 1 Period 2 Total Period 1 Period 2 Total
Daily Covarinace Models
HAR-CW 1.4880 0.8856∗ 2.1486 0.4592 0.5484 0.3614
HAR-A-CW 1.4457 0.8914 2.0535∗ 0.4382 0.5145 0.3545
HAR-AG-CW 1.4455∗ 0.8906 2.0539 0.4348∗ 0.5084∗ 0.3541∗

HAR-TCJ-CW 1.8906 1.0748 2.7851 0.7607 0.8739 0.6366
HAR-TCJA-CW 1.7518 1.0202 2.5540 0.7114 0.8076 0.6058
HAR-TCJAG-CW 1.7501 1.0170 2.5539 0.7063 0.7965 0.6074
Weekly Covarinace Models
HAR-CW 0.0970 0.0569 0.1410 0.0253∗ 0.0231∗ 0.0279∗

HAR-A-CW 0.0939 0.0561 0.1354 0.0257 0.0234 0.0281
HAR-AG-CW 0.0938∗ 0.0560∗ 0.1352∗ 0.0257 0.0234 0.0282
HAR-TCJ-CW 0.4489 0.2390 0.6789 0.1250 0.1150 0.1360
HAR-TCJA-CW 0.4317 0.2294 0.6536 0.1232 0.1133 0.1340
HAR-TCJAG-CW 0.4317 0.2287 0.6543 0.1231 0.1132 0.1339
Monthly Covarinace Models
HAR-CW 0.0069 0.0045∗ 0.0095 0.0022∗ 0.0019 0.0025∗

HAR-A-CW 0.0068∗ 0.0046 0.0093∗ 0.0022 0.0019∗ 0.0026
HAR-AG-CW 0.0068 0.0046 0.0093 0.0022 0.0019 0.0027
HAR-TCJ-CW 0.3028 0.1571 0.4626 0.0922 0.0833 0.1019
HAR-TCJA-CW 0.3013 0.1556 0.4610 0.0916 0.0825 0.1016
HAR-TCJAG-CW 0.3000 0.1541 0.4600 0.0913 0.0820 0.1015
Note: The table reports the mean squared forecast error (MFSE) and quasi-likelihood-based
measure (QLIKE), defined by (15) and (16), respectively. The values in Total are not
necessarily the same as the sums of those of Periods 1 and 2 due to rounding errors. Period
1 indicates 09/11/2013 – 08/18/2015, while Period 2 is 08/19/2015 – 05/25/2017. ‘∗’ denotes
the model which has the smallest value of the six models in the corresponding period.
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Figure 1: Return and Estimates of Quadratic Variation, Integrated Volatility, and Jump Variabil-
ity for Crude Oil Futures

Note: Figure 1 shows the (1, 1)-elements of Ωt, Ct, and Jt.
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Figure 2: Return and Estimates of Quadratic Variation, Integrated Volatility, and Jump Variabil-
ity for Gold Futures

Note: Figure 2 shows the (2, 2)-elements of Ωt, Ct, and Jt.
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Figure 3: Product of Returns and Estimates of Quadratic Covariation, Integrated Covolatility,
and Jump Co-variability for Crude Oil and Gold Futures

Note: Figure 3 shows the (2, 1)-elements of Ωt, Ct, and Jt.
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Figure 4: Geopolitical Risks Indicator

Note: Figure 4 shows the share of the daily geopolitical risks indicator suggested by Carldara and Iacoviello (2018).
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