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Abstract

In this paper, we estimate a Small Open Economy Dynamic Stochastic General

Equilibrium (SOEDSGE) model of the United Kingdom (UK), with the main fo-

cus being to test the hypothesis whether the Bank of England (BoE) responds to

(frequency-dependent) exchange rate movements or not. For our purpose, we use

an extended quarterly data set spanning the period of 1986:Q1 to 2018:Q1, which

in turn includes the zero lower bound situation, and also estimate the SOEDSGE

model based on observable data decomposed into its frequency components, under

the presumption that central banks is more comfortable in responding to to long-

term fundamental movements in exchange rates. We find that the BoE not only

responds to exchange rate movements in a statistically significant manner, but also
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that it primarily focuses on long-term movements of currency depreciations more

strongly than short-term fluctuations of the same.

Keywords: Small Open Economy DSGE Model, Monetary Policy Rule, Exchange

Rate, Structural Estimation, Bayesian Analysis, Wavelets
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1. Introduction

The United Kingdom (UK), just like the United States (US), is a major player

in the world economy, with monetary policy decisions of the Bank of England (BoE)

being of interest to both academicians and financial markets. Given this, what vari-

ables determine the interest rate-setting behaviour of the BoE is, understandably, an

important question. While the role of the output-gap and inflation rate in determin-

ing the policy rate of the BoE, and central banks across the world, is well-accepted

along the lines of the Taylor-rule (Taylor (1993)), whether information in exchange

rate movements should also be accounted for remains a debatable issue.

UK is a natural resource exporter, and hence, domestic business cycle fluctuations

are likely to have substantial international relative price components. In addition,

monetary policy is partly transmitted to the real economy through its effect on the

exchange rate. The BoE therefore may have a specific interest in explicitly reacting

to and smoothing exchange rate movements as a predictor of domestic volatility.

However, based on various alternative econometric approaches (for example, single-

equation interest rate rules, structural vector autoregressions (SVARs), Small Open

Economy Dynamic Stochastic General Equilibrium (SOEDSGE) models), evidence

regarding that the BoE responds to (nominal) exchange rate movements is mixed (see
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for example, Lubik and Schorfheide (2007), Dong (2013), Bjornland and Halvorsen

(2014)). 1

Low frequency movements in exchange rates are likely to be tied with funda-

mentals more than high-frequency movements of the same, which in turn could be

associated with speculation, and hence (harder to predict) random behaviour (Ra-

pach and Wohar (2002), Balke, Ma, and Wohar (2013)), Caraiani (2017)). Given this,

it is possible that central bankers find it more comfortable to respond to long-term

(i.e., low-frequency) movements of the exchange rate rather than its corresponding

short-term fluctuations. With this hypothesis in mind, the objective of this paper is

to revisit the question of whether the BoE respond to exchange rate movements, with

us now analyzing not only the aggregate nominal effective exchange rate deprecia-

tions, but also its various frequency components. Given the well-known econometric

issues associated with single-equation rule-type and atheoretical VAR approaches

in light of the Lucas Critique (Lucas (1976)), we estimate the SOEDSGE model of

Lubik and Schorfheide (2007) for the UK to provide an answer to our question, over

the period of 1986:Q1 to 2018:Q1. While, closed-economy frequency-based models

for the US economy has been estimated before (see, Caraiani (2015)for a detailed

discussion in this regard), to the best of our knowledge, this is the first attempt

to estimate a SOEDSGE model in both time and frequency-domains to determine

whether the BOE’s response to exchange rate movements is contingent on its fre-

quency components.

1But, some evidence in favor of the fact that the BoE does weigh in exchange rate movements
in its interest rate decisions can be observed when one allows for structural regime-switches (see for
example, Chen and Macdonald (2012), and Alstadheim, Bjornland, and Maih (2013)).
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The remainder of the paper is organized as follows: Section 2 lays out the basics

of the SOEDSGE and the frequency decomposition of the data using wavelet, Section

3 presents the data and results, with Section 4 concluding the paper.

2. Theoretical and Empirical Frameworks

In this section, we introduce the open-economy DSGE model used in the empirical

analysis, and detail the wavelet filtering method used to decompose the observable

data series used in the estimation of the DSGE model.

2.1. An Open Economy DSGE Model

The model we use is one of the reference models used in the past to answer to

the question whether the central banks react or not to exchange rates, Lubik and

Schorfheide (2007). The model is a simplified version of the reference model in Gali

and Monacelli (2005).

yt = Etyt+1 − (τ + α (2 − α) (1 − τ)) (Rt − Etπt+1) − ρz zt−

α (τ + α (2 − α) (1 − τ)) Et∆qt+1 + α (2 − α)
1 − τ

τ
Et∆y

∗
t+1

(1)

The first equation is an open economy IS curve. Here, yt is the output, Rt the

nominal interest rate, πt the domestic inflation, qt the terms of trade and y∗t the

foreign output. The parameter α is the import share, while τ is the intertemporal

substitution elasticity.

4



πt = βEtπt+1 + αβEt∆qt+1 − α∆qt +
κ

τ + α (2 − α) (1 − τ)
(yt − ȳt) (2)

Equation 2 is the open economy economy equivalent of a New Keynesian Phillips

curve. Here ȳ is the potential output, i.e. that level of output when prices nominal

rigidities are missing. The parameter κ is determined by factors like labor supply

and demand elasticities or by price stickiness. The potential output is defined below,

in equation 3.

ȳt = −α(1 − τ) (2 − α)

τ
y∗t (3)

πt = ∆et + ∆qt (1 − α) + π∗
t (4)

Equation 4 above shows the link between domestic inflation πt, nominal exchange

rate et, terms of trade qt as well as foreign inflation, denoted by π∗
t .

Rt = ρrRt−1 + (1 − ρr) (ψ1πt + ψ2yt + ψ3∆et) + εr3t (5)

The last equation, equation 5, introduces a standard Taylor, modified to include

the reaction to exchange rate movements. The parameter ρr characterizes the de-

gree of interest rate smoothing, while ψ1, ψ2, ψ3 correspond to inflation, output and

exchange rate movements.

∆qt = ρq∆qt−1 + εqt (6)
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Following the original paper, Lubik and Schorfheide (2007), changes in terms of

trade are assumed to follow an AR(1) process, equation 6. Finally, AR(1) processes

are also assumed for world technology, zt, foreign output y∗t and foreign inflation π∗
t ,

see equations 7-9.

zt = ρz zt−1 + εzt (7)

y∗t = ρy∗y
∗
t−1 + εy∗t (8)

π∗
t = ρπ∗π∗

t−1 + επ∗
t

(9)

2.2. Wavelet Decomposition

A known issue in estimating DSGE model is that the filtering of the series must

not use forward information, but only the backward observations to derive the current

filtered value. This is a known issue for several filtering methods, including the

double-sided Hodrick-Prescott filter. In the context of wavelets, the standard filtering

using wavelets suffers from the same deficiency. To address this shortcoming, we use

the redundant wavelet transform, see Aussem, Campbell, and Murtagh (1998) and

Zheng, Starck, Campbell, and Murtagh (1999). This approach has already been used

in Caraiani (2017) to forecast exchange rate on different frequencies.

The approach we use is based on the redundant Haar Wavelet Transform. The

main advantage being that it performs the time-scale decomposition using only the

previous data-points. Below, we present the algorithm for general redundant discrete

wavelet transform, which is also known as the à trous wavelet transform.

We start from a series c0(k). The initial series is decomposed into wavelets com-

ponents, as well as a smooth component. At each scale j the latter is denoted by
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cj(k). The initial series can be written as the scalar product at samples k of the

function f(x) and the scaling function φ(x).

c0(k) =< f(x), φ(x− k) > (10)

The scalar function is selected such that the following equation holds (also known

as the dilation equation)

1

2
φ(
x

2
) =

∑
l

h(l)φ(x− l) (11)

h stands for the low-pass filter, corresponding to φx. Based on these equations,

we can derive the smooth component at resolution j for any observation k as follows:

cj(k) =
1

2j
< f(x), φ

(x− k)

2j
> (12)

For two consecutive resolutions, the difference between them can be denoted by

wj. Thus, we obtain:

wj(k) = cj−1(k) − cj(k) (13)

This can also be written as:

wj(k) =
1

2j
< f(x), ψ

(x− k)

2j
> (14)

Thus, we obtained the discrete wavelet transform using the the à trous algorithm.

ψ denotes wavelet function given by:
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1

2
ψ(
x

2
) = φ(x) − 1

2
φ(
x

2
) (15)

Using this algorithm, we can decompose the initial series as the sum of wavelet

components wj and a smooth component cp:

c0(k) = cp +

p∑
j=1

wj(k) (16)

3. Empirical Analysis

3.1. Data

The SOEDSGE model is fitted to data on output growth, inflation, nominal

interest rates, exchange rate changes, and terms of trade changes. We consider

seasonally adjusted quarterly data for the UK covering the period of 1986:Q1 to

2018:Q1. The series were obtained (primarily) from the Main Economic Indicators

(MEI) database of the Organisation for Economic Co-operation and Development

(OECD). The output series is real GDP in per-capita terms, inflation is computed

using the Consumer Price Index. The nominal interest rate is a short-term rate.

However, given the zero lower bound situation of the monetary policy instrument in

the wake of the “Great Recession”, we use the shadow short rate developed by Wu

and Xia (2016), based on its availability, over the period of 1990 (till the end of the

sample), and the regular short-term-rate prior to that. Note that, the shadow short

rate is the nominal interest rate that would prevail in the absence of its effective lower

bound, with it derived by modeling the (three-factors) term structure of the yield

curve, and has been shown by Wu and Xia (2016) to be a close approximation of the
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short-term rate during the conventional periods of monetary policy decision-making.

As nominal exchange rate variable we use a nominal trade-weighted exchange rate

index, whereas the terms of trade are measured as the (natural log) ratio of export

and import price indices. We de-mean the data prior to estimation.

3.2. Estimating the DSGE Model across Time and Frequency

We provide estimations for the DSGE model for both the aggregate demeaned

series, as well as the wavelet components. Although there is some effort to estimate

structural equations along different wavelet components, see Gallegati, Gallegati,

Ramsey, and Semmler (2011), or structural DSGE models, see Caraiani (2015), a

problem that negatively affected previous work was the fact that the wavelet de-

composition did not take into account the forward character of standard wavelet

transform. In contrast, in this paper, we use a redundant wavelet transform based

on the Haar wavelet that is purely backward looking.

In Table 1, we first provide estimations for the aggregate series. We also provide

estimations for the wavelet components, W1 to W4 in Tables 2 to 5. Each component

Wi captures the changes in the interval [2i, 2i+1]. Thus the W1 component measures

the dynamics between 2 and 4 quarters while the W4 component does the same for

the changes between 16 and 32 quarters (4 to 8 years). Based on the results, we

make the following two main observations:

First from Table 6, using the marginal data densities obtained under the models

allowing for response of the interest rate to exchange rate movements and then

restricting it to zero, we find that the former (unrestricted) model has a better fit

than the restricted version of the same, with the results holding for not only the
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aggregate data, but also in the cases of the wavelet components (W1, W2, W3 and

W4). In terms of the Bayes factor reported in the same table, we can say that

the unrestricted model performs significantly better for the aggregate series, and

the wavelet components W2, W3 and W4, with the highest gain obtained under the

longest frequency considered (W4), i.e., at changes in exchange rates at between 16

and 32 quarters.2

Second, when comparing the results across Tables 1 to 5, we observe that, for some

of the parameters, there is a tendency to move in certain patterns across the different

frequencies. For example, the autocorrelation coefficients are stronger at detail W4

as compared to detail W1. The coefficient attached to inflation is also weaker at

the first detail W1, while there is also a tendency toward stronger responses of the

interest rate to exchange rate, although for the latter case, this is not verified for

W4. The results are similar in essence with the findings in the previous related work,

like Caraiani (2015) or Sala (2015). It must be noted however, that Caraiani (2015)

did not find a clear pattern for the Taylor rule coefficients, but mostly for structural

parameters related to the behavior of households and firms in the New Keynesian

DSGE model used by the author.

In sum, we can draw two main conclusions: (a) The marginal densities of the

DSGE model increases for the frequency-based estimations when compared to the

aggregate series, with the fit increasing massively in a consistent manner as the

2Using the original data span of Lubik and Schorfheide (2007) ending in 2003, the biggest gain
in terms of the Bayes factor was observed under the aggregate series, with the results available upon
request from the authors. Clearly then, over the recent periods, the BoE has started to respond
more strongly to the exchange rate depreciations, and in particular to long-frequency movements
of the same.
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BoE targets lower frequency movements in the exchange rate, and; (b) While, the

response of interest rate to exchange rate movements is the strongest under the

aggregate series (which makes sense given that the original data series is the sum

of all four frequency components),3 the explanatory power of the structural model

to explain the behavior of the economy of the UK, especially in terms of the BoE

responding to exchange rate depreciations, particularly at longer horizons, is much

higher than not responding at all.

4. Conclusions

The existing literature provides mixed evidence in terms of whether the BoE

responds to exchange rate movements or not. Given this, we revisit this question, but

now we analyze not only aggregate nominal effective exchange rate depreciations, but

also its various frequency components, with the belief that low- frequency movements

in exchange rates are likely to be tied with fundamentals more than high-frequency

movements of the same, and hence, central bankers might find it more comfortable to

respond to such long-term fluctuations. We estimate a SOEDSGE model to provide

an answer to our question, over the extended period (relative to existing studies)

of 1986:Q1 to 2018:Q1, which in turn, also include the zero lower bound period

of the interest rates. Unlike the conflicting evidence in existing studies, we find

3This observation, though statistically insignificant as in Bjornland and Halvorsen (2014), is
also verified when we compare the impulse response of the interest rate to an exchange rate shock
for the aggregate and wavelet-decomposed data series, obtained from a VAR model, whereby the
shock is identified using a Choleski decomposition (i.e., with a recursive ordering of output growth,
inflation, terms of trade changes, nominal interest rates, and exchange rate changes). Complete
details of these results are available upon request from the authors.
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evidence that the BoE not only responds to exchange rate movements in a statistically

significant manner (likely driven by the extended sample), but also the fact that it

primarily focuses on long-term movements of currency depreciations more strongly

than short-term fluctuations of the same.
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Table 1: Results from Metropolis-Hastings for Aggregate Series

Prior Posterior

Dist. Mean Stdev. Mean Stdev. HPD inf HPD sup

κ gamma 0.500 0.2500 0.474 0.1046 0.3078 0.6327
ψ1 gamma 1.500 0.5000 3.120 0.3418 2.5576 3.6670
ψ2 gamma 0.250 0.1500 0.095 0.0273 0.0492 0.1390
ψ3 gamma 0.250 0.1500 0.237 0.0601 0.1380 0.3350
τ beta 0.500 0.2000 0.239 0.0448 0.1666 0.3074
ρr beta 0.500 0.1000 0.801 0.0292 0.7560 0.8496
ρq beta 0.400 0.2000 0.060 0.0386 0.0031 0.1139
ρπ∗ beta 0.800 0.1000 0.426 0.0648 0.3197 0.5327
ρy∗ beta 0.900 0.1000 0.996 0.0033 0.9918 1.0000
ρz beta 0.200 0.0500 0.582 0.0073 0.5729 0.5897
εr invg 0.500 4.0000 0.167 0.0205 0.1339 0.1991
εq invg 1.500 4.0000 0.543 0.0344 0.4862 0.5980
εy∗ invg 1.500 4.0000 0.461 0.1151 0.2900 0.6317
επ∗ invg 0.500 4.0000 1.402 0.0892 1.2563 1.5461
εz invg 1.000 4.0000 0.385 0.0458 0.3087 0.4553
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Table 2: Results from Metropolis-Hastings for W1 Component

Prior Posterior

Dist. Mean Stdev. Mean Stdev. HPD inf HPD sup

κ gamma 0.500 0.2500 2.804 0.4439 2.0656 3.5245
ψ1 gamma 1.500 0.5000 1.926 0.4362 1.1912 2.6131
ψ2 gamma 0.250 0.1500 0.666 0.3300 0.1516 1.2275
ψ3 gamma 0.250 0.1500 0.096 0.0341 0.0401 0.1499
τ beta 0.500 0.2000 0.652 0.0668 0.5472 0.7676
ρr beta 0.500 0.1000 0.430 0.0694 0.3166 0.5439
ρq beta 0.400 0.2000 0.025 0.0180 0.0012 0.0492
ρπ∗ beta 0.800 0.1000 0.135 0.0256 0.1025 0.1703
ρy∗ beta 0.900 0.1000 0.125 0.0426 0.0551 0.1885
ρz beta 0.200 0.0500 0.117 0.0267 0.0755 0.1618
εr invg 0.500 4.0000 0.131 0.0194 0.1005 0.1612
εq invg 1.500 4.0000 0.394 0.0250 0.3522 0.4336
εy∗ invg 1.500 4.0000 0.643 0.2161 0.3406 0.9760
επ∗ invg 0.500 4.0000 0.751 0.0497 0.6696 0.8298
εz invg 1.000 4.0000 0.544 0.1379 0.3275 0.7702

Table 3: Results from Metropolis-Hastings for W2 Component

Prior Posterior

Dist. Mean Stdev. Mean Stdev. HPD inf HPD sup

κ gamma 0.500 0.2500 1.429 0.2410 1.0274 1.7964
ψ1 gamma 1.500 0.5000 2.751 0.4167 2.0531 3.3984
ψ2 gamma 0.250 0.1500 0.185 0.0992 0.0300 0.3305
ψ3 gamma 0.250 0.1500 0.161 0.0437 0.0902 0.2321
τ beta 0.500 0.2000 0.713 0.0674 0.6068 0.8246
ρr beta 0.500 0.1000 0.562 0.0612 0.4588 0.6575
ρq beta 0.400 0.2000 0.319 0.1018 0.1580 0.4865
ρπ∗ beta 0.800 0.1000 0.456 0.0611 0.3559 0.5568
ρy∗ beta 0.900 0.1000 0.749 0.0509 0.6670 0.8321
ρz beta 0.200 0.0500 0.241 0.0373 0.1817 0.3025
εr invg 0.500 4.0000 0.094 0.0133 0.0725 0.1132
εq invg 1.500 4.0000 0.198 0.0090 0.1863 0.2108

(Continued on next page)
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Table 3: (continued)

Prior Posterior

Dist. Mean Stdev. Mean Stdev. HPD inf HPD sup

εy∗ invg 1.500 4.0000 0.777 0.3060 0.3912 1.2052
επ∗ invg 0.500 4.0000 0.477 0.0297 0.4283 0.5253
εz invg 1.000 4.0000 0.263 0.0537 0.1791 0.3481

Table 4: Results from Metropolis-Hastings for W3 Component

Prior Posterior

Dist. Mean Stdev. Mean Stdev. HPD inf HPD sup

κ gamma 0.500 0.2500 0.378 0.0778 0.2536 0.5016
ψ1 gamma 1.500 0.5000 2.769 0.4317 2.0326 3.4240
ψ2 gamma 0.250 0.1500 0.179 0.0769 0.0484 0.3062
ψ3 gamma 0.250 0.1500 0.175 0.0473 0.0960 0.2471
τ beta 0.500 0.2000 0.690 0.0692 0.5749 0.8069
ρr beta 0.500 0.1000 0.668 0.0423 0.6000 0.7414
ρq beta 0.400 0.2000 0.708 0.1219 0.5238 0.9107
ρπ∗ beta 0.800 0.1000 0.831 0.0423 0.7592 0.9013
ρy∗ beta 0.900 0.1000 0.914 0.0385 0.8552 0.9816
ρz beta 0.200 0.0500 0.437 0.0335 0.3840 0.4927
εr invg 0.500 4.0000 0.076 0.0072 0.0641 0.0873
εq invg 1.500 4.0000 0.189 0.0025 0.1863 0.1922
εy∗ invg 1.500 4.0000 0.804 0.2895 0.3758 1.2188
επ∗ invg 0.500 4.0000 0.227 0.0143 0.2039 0.2504
εz invg 1.000 4.0000 0.179 0.0246 0.1402 0.2164
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Table 5: Results from Metropolis-Hastings for W4 Component

Prior Posterior

Dist. Mean Stdev. Mean Stdev. HPD inf HPD sup

κ gamma 0.500 0.2500 0.285 0.0514 0.2019 0.3716
ψ1 gamma 1.500 0.5000 2.604 0.2640 2.2327 2.9773
ψ2 gamma 0.250 0.1500 0.035 0.0177 0.0072 0.0621
ψ3 gamma 0.250 0.1500 0.054 0.0248 0.0146 0.0934
τ beta 0.500 0.2000 0.571 0.0635 0.4682 0.6735
ρr beta 0.500 0.1000 0.521 0.0431 0.4685 0.5917
ρq beta 0.400 0.2000 0.566 0.1345 0.3478 0.7560
ρπ∗ beta 0.800 0.1000 0.918 0.0271 0.8730 0.9614
ρy∗ beta 0.900 0.1000 0.979 0.0135 0.9608 0.9999
ρz beta 0.200 0.0500 0.323 0.0479 0.2577 0.3903
εr invg 0.500 4.0000 0.072 0.0048 0.0636 0.0794
εq invg 1.500 4.0000 0.189 0.0022 0.1863 0.1915
εy∗ invg 1.500 4.0000 0.498 0.1400 0.2987 0.7116
επ∗ invg 0.500 4.0000 0.080 0.0050 0.0723 0.0885
εz invg 1.000 4.0000 0.355 0.0808 0.2407 0.4824

Table 6. Bayes Factors

Aggregate W1 W2 W3 W4

Marginal Data Densities (ψ3 > 0) -389.94 198.3 474.65 597.42 711.97

Marginal Data Densities (ψ3 = 0) -397.72 197.8 466.55 573.23 611.09

Bayes Factor 2381.810 1.708 3291.13 exp(24.18) exp(100.87)
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