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Abstract

In this paper, we forecast monthly stock returns of eight advanced economies using a time-
varying parameter vector autoregressive model (TVP-VAR). Compared to standard TVP-VARs,
our proposed model automatically detects whether time-variation in the parameters is needed
through the introduction of a latent threshold process that is driven by the absolute size of pa-
rameter changes. The advantage of this framework is that it can dynamically detect whether a
given regression coefficient is constant or time-varying during distinct time periods. We more-
over compare the performance of this model with a wide range of nested alternative time-varying
and constant parameter VAR models. Our results indicate that the threshold TVP-VAR outper-
forms its competitors in terms of point and density forecasts. A portfolio allocation exercise
confirms the superiority of our proposed framework. In addition, a copula-based analysis also
indicates that it pays off to adopt a multivariate modeling framework, especially during periods
of stress, like the recent financial crisis.

Keywords: International equity markets, Time-varying vector autoregression, Point and density

forecasts, Portfolio allocation.

JEL Codes: C32, G10, G17.

1 Introduction

The existing literature on forecasting international stock returns (for developed and developing

economies alike), based on a wide array of models and predictors is vast (see, for example, Rapach
∗Corresponding author: Rangan Gupta, Department of Economics, University of Pretoria, Pretoria, 0002, South Africa;

E-mail address: rangan.gupta@up.ac.za.
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et al. 2005, Welch and Goyal 2008, Rapach et al. 2013, , Rapach and Zhou 2013, Sousa et al. 2016,

Aye et al. 2017, Jordan et al. 2017a, Jordan et al. 2017b, among others). While practitioners in

finance require real-time forecasts of stock returns for asset allocation, academics are particularly

interested in stock return forecasts, since they have important implications for producing robust

measures of market efficiency, which in turn, helps to produce more realistic asset pricing models

(Rapach and Zhou, 2013). However, stock return forecasting is highly challenging, since it inher-

ently contains a sizeable unpredictable component. The resulting predictive performances therefore

usually strongly depend on the chosen indices, sample periods, models and potential predictors.

Recent literature has identified at least two common features of successful models as a means

to outperforming standard benchmark specifications in terms of predictive accuracy. First, a large

information set in terms of a vast number of predictors (i.e., macroeconomic, financial, technical,

institutional, behavioral; see Rapach and Wohar 2006, Rapach et al. 2010, Gupta et al. 2014,

Gupta et al. 2017a, or Gupta et al. 2017b) appears to be required in order to successfully challenge

standard random walk forecasts. Second, stock return predictions using a-theoretical techniques

(which tend to exploit information on the recent behaviour of stock prices based on statistical

approaches, and machine learning and computational intelligence techniques) typically tend to

perform better than theoretically motivated empirical models (see, for example, Chen et al. 2003;

Enke and Thawornwong 2005).

Against this backdrop, and particularly building on the latter point mentioned above, the objec-

tive of our paper is to forecast stock returns of eight developed markets (Canada, France, Germany,

Italy, Japan, Switzerland, the United Kingdom, and the United States) based on time-varying pa-

rameter vector autoregressive (TVP-VAR) models. The choice of these eight equity markets are quite

natural given their importance in the global economy, with these countries representing nearly two-

third of global net wealth, and nearly half of world output. Note that the decision to look at only

the past value of stock returns of the various economies in the model emanates from the evidence in

favor of increased co-movement between asset prices, and stock markets in particular, due to finan-

cial integration across economies (Diebold and Yilmaz 2009; Diebold and Yilmaz 2009). While this

regularity has received considerable attention in the academic literature on the dynamics of stock

markets, for some reason, this has not been exploited to its fullest in the forecasting literature.

An exception to this is the recent work by Huber et al. (2017), which advocates the use of large

Bayesian vector autoregressive (BVAR) model specifications with common stochastic volatility as a

means to forecasting monthly global equity indices. The time-varying specification of the covariance

structure moreover accounts for sudden shifts in the level of volatility. In an out-of-sample exercise,

the proposed model specification is moreover shown to markedly outperform the random walk for

both point and density forecasts. In addition, it is well-established that stock market movements

serve as a leading indicator for the wider economy (Stock and Watson 2003; Gupta and Hartley

2013; Plakandaras et al. 2017). Hence, we do not incorporate the information of any other pre-

dictors in our multivariate models, barring the lagged stock returns of the domestic and foreign
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economies. This helps us to ensure that our search for the best-suited forecasting model for stock

returns can be provided independent of fundamentals.

Following Huber et al. (2017), but realizing the well-established fact that stock returns evolve

in a nonlinear fashion (McMillan 2005), we extend the constant parameter approach of Huber

et al. (2017), into a time-varying framework. Specifically, we use a flexible variant of a TVP-VAR

model. This framework, as recently proposed by Huber et al. 2016, allows one to dynamically

detect whether a given regression coefficient is constant or time-varying by combining ideas from

the literature of latent threshold and mixture innovation models. In particular, this treshold TVP-

VAR (TTVP-VAR) approach introduces a set of latent thresholds that controls the degree of time-

variation separately for each parameter at each point in time. The proposed framework incorporates

a wide variety of competing models, like the standard time-varying parameter model, a change-

point model with an unknown number of regimes, mixtures between different models, and also the

simple constant parameter model. Finally, to assess systematically, in a data-driven fashion, which

predictors should be included in the model, Huber et al. 2016 impose a set of Normal-Gamma priors

on the initial state of the system.

While this is our primary proposed framework for forecasting equity returns of the eight ad-

vanced economies, we compare the performance of this model with a wide range of nested al-

ternative time-varying and constant parameter vector autoregressive models. To the best of our

knowledge, this is the first paper to produce point and density forecasts of equity returns using

time-varying approaches, and in particular, a threshold time-varying vector autoregressive model.

The remainder of the paper is organized as follows: Section 2 outlines the main econometric

model used in our forecasting exercise, while Section 3 presents the data and results, with the latter

including also a portfolio exercise. Finally, Section 4 concludes the paper.

2 Econometric framework

2.1 A time-varying parameter VAR for modeling international equity returns

Our goal is to construct a model that incorporates international linkages in financial markets. To

this end, we postulate that the growth rate of a set of N equity price indices in {yt}Tt=1 follows a

time-varying parameter VAR,

yt = (IM ⊗ x′t)βt +Qtvt, vt ∼ N (0, Ht), (2.1)

with

• xt = (yt−1, . . . , yt−p, 1)′ being a M = pN + 1 vector of lagged endogenous variables as well as

an intercept term,1

1In the empirical application, we use a single lag of yt based on computational reasons.
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• βt is a K = NM -dimensional vector of dynamic regression coefficients. Notice that βt is in

principle allowed to evolve over time according to some specific law of motion described in

Section ADD.

• vt is a set of N white noise shocks that follow a multivariate Gaussian distribution and Qt is

a lower uni-triangular (i.e. lower triangular with unit diagonal) matrix of dimension N ×N .

We store the v = N(N − 1)/2 free elements in Qt in a v-dimensional vector qt.

• Finally, Ht = diag(eh1t , . . . , ehNt) is a diagonal matrix that stores the variance parameters.

The model in Eq. (2.1) is the observation equation of a multivariate state space model that has been

proposed in Primiceri (2005) and Cogley and Sargent (2005). Notice that the elements in βt, vt and

ht = (h1t, . . . , hNt) feature a specific law of motion. Typically, researchers assume that the states

evolve according to a random walk with an unrestricted state innovation variance covariance ma-

trix. This, however, potentially leads to overfitting issues that might be detrimental for forecasting

accuracy. To circumvent such issues, we follow cite TTVP and use a parsimonious law of motion for

the latent states.

2.2 A parsimonious law of motion for the coefficients

We complete the model description by outlining a law of motion for βt, qt and ht. Following Huber

et al. (2016) we assume that the elements of ξt = (β′t, q
′
t)
′, ξit (i = 1, . . . , v + K) follow a random

walk process,

ξit = ξit−1 +
√
θjtηjt, ηjt ∼ N (0, 1), (2.2)

where θjt is a time-varying process innovation variance that follows

θjt = djtσ
2
j0,t + (1− djt)σ2j1,t, (2.3)

with σ2j0,t � σ2j1,t and

djt =

1 if |∆ξit| > cj

0 if |∆ξit| ≤ cj .
(2.4)

Equations (2.3) and (2.4) imply that if the absolute change in ξit is sufficiently large (i.e. exceeds

a threshold cj), the indicator dj equals unity and a rather large process innovation variance σ2j0,t is

adopted. By contrast, if the change is too small (i.e. below cj), the process innovation variance is

close to zero (σ2j1,t ≈ 0) and thus the change in the parameters ξjt is small, i.e. |∆ξjt| ≈ 0. One

key advantage of the proposed specification is that if parameter movements appear to be rather

small, we effectively zero them out while we allow for large swings. This strikes a balance between

using a model with a few regimes as opposed to a model with many regimes (T − 1 in the case
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of an unrestricted TVP model). In this paper, we follow TTVP and set σ2j1,t = 10−5 × σ̂2jt, with σ̂2jt
denoting the OLS variance from a time-invariant VAR model.

For ht, we follow Kastner and Frühwirth-Schnatter (2014) and assume that the log-volatilities

follow an AR(1) process,

hjt = µj + ρj(hjt−1 − µj) + εjt, εjt ∼ N (0, ς2j ), (2.5)

for j = 1, . . . , N . Hereby we let µj denote the unconditional mean of hjt, ρj the autoregressive

parameter and ς2j is the variance of the log-volatility process.

2.3 Prior specification

Our prior setup closely follows Hotz-Behofsits et al. (2018). More specifically, we use weakly infor-

mative Gamma priors on σ−2j1,t ∼ G(0.001, 0.001) and uniform priors on the thresholds,

cj |σj0,t ∼ U(π0σj0,t, π1σj0,t). (2.6)

We specify π0 = 0.1 and π1 = 1.5. This prior choice bounds the thresholds away from zero, implying

that high frequency movements in ξjt are effectively shrunk towards zero.

On the initial state ξj0 we use a normal-gamma (NG) shrinkage prior (see Griffin and Brown,

2010),

ξj0|τ2j ∼ N (0, τ2j ), τ2j ∼ G(δ, δλ/2), λ ∼ G(n0, n1). (2.7)

The scaling parameters τ2j follow a Gamma distribution that depends on δ and λ. The hyperparam-

eter δ controls the excess kurtosis of the marginal prior obtained by integrating out the local scaling

parameters τ2j . Small values imply a heavy tailed prior that allows for non-zero values of ξj0 in the

presence of a large global shrinkage parameter λ. The parameter λ pulls all elements in ξ0 to zero.

Given its importance we use an additional Gamma prior and consequently infer λ from the data. In

what follows we set δ = 0.1 and n0 = n1 = 0.01, introducing significant amounts of shrinkage but

at the same time allow for heavy tails and thus sufficient flexibility to capture signals.

Finally, we follow Kastner and Frühwirth-Schnatter (2014) and use a weakly informative Gaus-

sian prior on µj , a Beta prior on (ρj + 1)/2 ∼ B(25, 5) and a non-conjugate Gamma prior on

ς2j ∼ G(1/2, 1/2). This choice translates into a Gaussian prior on ±ςj ∼ N (0, 1).

Estimation of the model is carried out using Markov chain Monte Carlo (MCMC) techniques.

Our MCMC algorithm simulates the latent states on an equation-by-equation basis using forward-

filtering backward-sampling (FFBS) techniques (Carter and Kohn, 1994; Frühwirth-Schnatter, 1994).

The thresholds are simulated using a Griddy Gibbs step that is based on constructing an approxi-

mation to the cumulative distribution function of the conditional posterior of cj and then perform

inverse transform sampling. Here it suffices to say that this is computationally straightforward since
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the conditional posterior is proportional to the density of a univariate Gaussian distribution times

the uniform prior. The state innovation variances σ2j0,t are simulated from an inverted Gamma

distribution that takes a standard form. Last, the log-volatilities and the parameters of the state

equation are obtained by using the algorithm outlined in Kastner and Frühwirth-Schnatter (2014)

and implemented in the R package stochvol (Kastner, 2016).

The algorithm is repeated 20,000 times with the first 15,000 draws being discarded as burn-in.

Convergence appears to be no issue with average inefficiency factors well below 30 in almost all

cases. Repeated estimation based on randomly initializing certain coefficients also indicates that

our algorithm performs well empirically.

3 Forecasting international equity returns

3.1 Data overview and model specification

The data used in this paper are monthly stock price indices of eight industrialized economies namely,

Canada (S&P TSX 300 Composite Index), France (CAC All-Tradable Index), Germany (CDAX Com-

posite Index), Italy (Banca Commerciale Italiana Index), Japan (Nikkei 225 Index), Switzerland (All

Share Stock Index), the United Kingdom (FTSE All Share Index), and the United States (S&P500

Index). The data on the indices are derived from the Global Financial Database. The stock price

indices are converted into log returns, i.e., the first-difference of the natural logarithm of the in-

dices multiplied by 100 to convert into percentage. The period covered in our paper is 1997:M03

to 2017:M02. While the end date corresponds to data availability at the time of writing this paper,

the starting date is chosen to ensure that we have a decade each of data around the global financial

crisis of 2007. Also note that, 1997 is the onset of the Dot-com bubble, and hence is a good starting

point with the equity markets being in turmoil.

3.2 Competing models and design of the forecasting exercise

Our empirical forecasting design is recursive. This implies that we specify an initial estimation pe-

riod of 1997:M03 to 2002:M02, and compute the one-step-ahead predictive densities for 2002:M03.

The initial estimation period is then subsequently expanded by a single month and this procedure

is repeated until the final observation in the sample (2017:02) is reached. Forecasts are then eval-

uated using log predictive scores (LPS) motivated in, for instance, Geweke and Amisano (2010).

To assess the merits of our empirical model we include a wide range of nested alternatives. The

first one is a variant of the TVP-VAR with SV proposed in Primiceri (2005). The main differences

stem from the fact that we use shrinkage priors on the initial state of the system and Gamma

priors on the inverse of the state innovation variances. Notice that this model is nested within

our approach by setting djt = 1 ∀j, t. The next model considered is a TVP-VAR with SV but with

shrinkage priors on all regions of the parameter space. This model introduces a NG shrinkage
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prior on both, the initial state and the state innovation variances.2 Moreover, we include three

constant parameter VARs with SV. The first one uses a non-conjugate Minnesota prior where the

tuning parameters are integrated out in a Bayesian fashion and the second one is a VAR with a

NG shrinkage prior (see Huber and Feldkircher, 2017). The third specification is the VAR equipped

with a SSVS prior proposed in George et al. (2008). Finally, inclusion of an AR(1) model and a

random walk enable assessing whether using a multivariate framework pays off in predictive terms.

All models considered feature a stochastic volatility specification in the errors.

3.3 Forecasting results

Table 1 presents a summarization of the out-of-sample predictive performance for the model frame-

works under scrutiny. The bottom panel of the table provides summary metrics for the model-

specific forecasting performance in terms of point forecasts. Specifically, we focus on well-known

root mean-squared forecasting errors (RMSE) as a means to compare the predictive accuracy among

the models considered. For all the models under scrutiny, point forecasts have been produced using

the respective posterior mean estimates of the parameters of interest. The summary metrics for

the point predictions provided in the bottom panel of the table are moreover standardized with

respect to random-walk forecasts. Values below unity thus indicate predictive outperformance rel-

ative to random-walk predictions in terms of point predictions, while values above one indicate

underperformance.

The top panel of Table 1 provide summary metrics for the respective out-of-sample forecast per-

formance in terms of marginal log predictive scores (LPS). While standard RMSEs only focus on

point forecasts, log predictive scores provide a well known measure for comparing forecast perfor-

mance by explicitly accounting for the entire predictive density. As such, log predictive scores aim

to enrich the comparison of predictive performances by also accounting for predictive uncertainty.

Similar to the point forecasts, Table 1 also presents the respective measures for the density predici-

tons relative to random-walk forecasts. Specifically, negative values indicate underperformance

relative to the random-walk benchmark, and conversely, positive values for the respective density

forecasts indicate outperformance.

As expected, overall results for point predictions show that random-walk forecasts are partic-

ularly poor as compared to the other specifications. RMSEs of almost all indices under scrutiny

appear to be well below unity. Also density forecasts show a relatively poor predictive performance

of the (stochastic volatility-augmented) random walk specifications. The autoregressive specifica-

tion with stochastic volatility (AR-SV), however, appears to perform much better. The table shows

that the proposed modeling framework sketched above (TTVP) appears to perform particularly well

2For a detailed description of the model and the prior setup, see Feldkircher et al. (2017) and Hotz-Behofsits et al.
(2018).
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in terms of producing both accurate point predictions as well as density predictions. Almost in all

indices under scrutiny, the proposed specifications ranks among the best performing approaches.

Interestingly, the estimation framework without a threshold (TVP) appears to produce forecasts

which are much more imprecise. For all equity indices considered, TVP markedly underperforms

relative TTVP. This finding holds true for both RMSEs and log predictive scores. Accounting for

potential structural breaks in the equity trajectories thus appears particularly beneficial. Due to po-

tential problems of overfitting the data, for some series, the standard TVP setup even hardly man-

ages to outperform random walk predictions. The over-parameterization problem in the standard

TVP specification results in the poorest predictive performance among the competing specifications

under scrutiny (other than the random walk).

While a stand-alone TVP parameterization seems to perform relatively poor due to overfitting

problems, the additional use of Bayesian shrinkage in terms of a normal-gamma prior (TVP NG)

appears to markedly improve forecast performance. For all country-specific indices in the sample,

TVP NG produces more precise out-of-sample forecasts as compared to TVP for both RMSEs as

well as log predictive scores. However, comparing results for TVP NG with those of TTVP shows

that TTVP tends to slightly outperform the former. This outperformance is particularly pronounced

when focusing on point predictions. For all indices considered TTVP produces slightly lower overall

RMSEs as compared to TVP NG. This finding also translates to density forecast metrics. Only for

United Kingdom, TVP NG appears to slightly outperform TTVP in terms of log predictive scores.

The joint performance for density forecasts, however, also indicates TTVP as performing best.

Turning attention to the remaining constant-parameter specifications (Minn-VAR, NG-VAR and

SSVS) shows that all of these appear to outperform the standard TVP specification both in terms of

point as well as density predictions. Among the three specifications, the vector autoregressive model

using a Minnesota prior specification (Minn-VAR) appears to produce the most precise forecasts.

The constant-parameter VAR specification with a normal-gamma shrinkage prior specification (NG-

VAR) only slightly underperforms relative to the Minnesota specification. A much more notable,

however, not particularly remarkable drop in forecast performance relative to the Minnesota speci-

fication, can be seen in the predictive summary metrics for the VAR specification using a stochastic

search variable selection (SSVS) prior.

Comparing the normal-gamma shrinkage setting with time-variation in the parameters (TVP

NG), with its constant-parameter counterpart (NG-VAR) reveals that the former slightly outperforms

the latter in terms of joint log predictive scores. However, inspection of the index-specific predictive

performances in terms of log predictive scores reveals that the constant parameter setting slightly

outperforms TVP NG in almost all cases. Turning attention to the metrics on point predictions

corroborate these findings. NG-VAR produces lower RMSEs as compared to TVP NG for all indices

under scrutiny.

While Table 1 presents overall metrics for out-of-sample forecast performance, Figure 1 de-

picts the evolution of the cumulative log predictive scores for the specifications under scrutiny over
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Table 1: Evaluation of point and density forecasts

TTVP TVP TVP NG Minn-VAR NG-VAR SSVS AR-SV
Log predictive scores

Joint 774.593 311.458 650.631 639.294 630.625 631.966 406.095
UK 27.991 -16.812 28.293 40.246 37.624 40.142 36.797
CA 47.283 -9.371 46.907 47.618 47.486 43.990 50.564
FR 62.280 12.192 58.153 60.542 58.912 59.206 65.620
JP 50.883 -1.012 47.285 48.972 50.877 47.789 54.153
DE 66.972 14.706 47.888 62.608 62.697 64.259 55.989
IT 57.147 10.255 38.962 30.521 41.295 38.934 46.380

US 37.727 -26.596 33.194 28.591 28.288 26.950 40.829
CH 46.966 -15.535 46.768 45.382 44.029 39.767 50.837

Root mean square errors

UK 0.720 0.941 0.726 0.719 0.720 0.721 0.721
CA 0.727 1.013 0.733 0.722 0.722 0.726 0.727
FR 0.711 0.905 0.721 0.701 0.705 0.703 0.700
JP 0.728 1.040 0.743 0.720 0.723 0.723 0.723
DE 0.710 0.905 0.711 0.696 0.696 0.697 0.702
IT 0.730 0.917 0.735 0.715 0.732 0.742 0.732

US 0.745 1.023 0.752 0.739 0.740 0.740 0.748
CH 0.697 0.936 0.700 0.687 0.692 0.692 0.694

time. The model-specific cumulative log predictive scores are measured relative to the random-walk

benchmark, which is given by the zero line. Country-specific performance profiles are provided in

the Appendix. Figure 1 corroborates the overall finding of Table 1, showing a clear outperformance

of the proposed model framework (TTVP) as compared to the alternative specifications. In the

beginning of the sampling period, a time-varying parameter specification with a normal-gamma

shrinkage prior (TVP NG) appeared to slightly outperform TTVP. However, around the year 2009,

TTVP appeared to supersede the alternative specifications in terms of forecast performance. During

the economic and financial turmoils (2003/2004 and 2008/2009) the modeling framework without

the threshold specification (TVP), appeared to perform particularly well in terms of density predic-

tions. This is mainly due to the overall larger variance in the predictive densities of TVP, resulting

in a less severe penalization of large forecast errors as compared to competing specifications.

3.4 Dissecting the log predictive likelihood

The previous section highlighted sustained predictive gains for most multivariate models consid-

ered. One additional question that typically arises centers on whether the gains stem from a positive

feedback on the univariate marginal predictive densities or arise from joint modeling all elements

in yt simultaneously. To this end, we follow Dovern et al. (2016) and decompose the joint log
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predictive likelihood of model j as follows,

log p(yt+1|y1:t,Mj) =

N∑
j=1

log p(yjt+1|y1:t,Mj) + log c{P−1(y1t+1), . . . , P
−1(yNt+1)}. (3.1)

Herewith, we let p(yt+1|y1:t,Mj) denote the predictive likelihood of model j,Mj , evaluated at the

outcome yot+1, p(yjt+1|y1:t,Mj) are the N univariate marginal predictive likelihoods, P (yjt+1) is the

corresponding cdf and c(•) denotes the probability density function of a Gaussian copula. Eq. (3.1)

indicates that the joint LPS can be decomposed in terms of a sequence of univariate marginal log

scores and a copula term that establishes the covariance structure of the predictive density.

Fig. 5 provides a graphical representation of Eq. (3.1) for the three top performing models over

time. A few findings are worth mentioning. First, notice that across the (multivariate) models, we

observe a pronounced degree of time variation in the contribution of the copula term to the overall

predictive likelihood. Especially during periods that are characterized by economic stress such as the

recent financial crisis, it seems to pay off to adopt a multivariate model and to exploit information

from the cross section in an effective manner. This effect is especially pronounced during the recent

financial crisis, where the marginal log predictive scores have been grossly negative and the copula

term contributed positive to the joint predictive performance of the model. Second, we also observe

some periods with a negative contribution, especially during the first part of the sample. This hints

towards periods where most multivariate models fail to adequately recover the predictive covariance

structure. Third, and finally, the strong overall predictive performance of the TTVP specification is

complemented by a particularly accurate modeling of the predictive covariance structure.

3.5 A portfolio exercise

Next, we assess whether using our multivariate models also leads to better economic performance,

as measured by (annualized) Sharpe ratios. More specifically, we assume that the models considered

are used to guide the behavior of an investor who aims to invest in all N markets considered. To

this end, two trading strategies are consequently adopted.

The first one is based on the well-known global minimum-variance portfolio (GMV) strategy that

aims to minimize the portfolio variance. Let pit|t−1 denote the mean of the one-step-ahead predictive

density of model i, Pit|t−1 the corresponding predictive variance and wit is a N -dimensional model-

specific weight vector (all quantities condition on information up to time t − 1. The optimization

problem is
minimize

wit

witPit|t−1w
′
it

subject to
N∑
j=1

wit = 1.
(3.2)
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The second strategy, labeled the target global minimum variance portfolio (TGMV) augments Eq. (3.2)

by an additional constraint. This constraint states that the weights are chosen such that the portfolio

variance is minimized subject to a pre-specified target return τ∗. In what follows we choose three

target returns τ∗ ∈ {10%12 ,
15%
12 ,

20%
12 }.

Table 2 shows annualized Sharpe ratios across models. In general, using economic evaluation

criteria corroborate the findings based on LPS described above. Considering model performance for

the different strategies suggests that the TVP NG specification yields the highest Sharpe ratio for

the GMV strategy, being closely tracked by a simple AR(1) model with SV. This, however, does not

carry over to the TGMV strategy. Here we find that a VAR equipped with the SSVS prior excels. The

TTVP specification as well as the remaining linear VARs also display a rather strong performance.

Notice that, consistent with the findings based on LPS, the standard TVP model seems to display

an inferior performance across the space of different portfolio allocation schemes. Comparing the

results for different target returns yields comparable insights except that for τ∗ = 20%
12 we find that

the TVP NG and the AR(1) model yield Sharpe ratios that are qualitatively identical, outperforming

all remaining models by quite large margins.

GMV TGMV
GMV τ∗ = 10%

12
15%
12

20%
12

TTVP 0.782 0.856 0.808 0.538
TVP 0.613 0.724 0.726 0.715
TVP NG 0.787 0.787 0.787 0.787
Minn-VAR 0.801 0.805 0.820 0.476
NG-VAR 0.829 0.836 0.828 0.569
SSVS 0.828 0.863 0.872 0.628
RW-SV 0.771 0.695 0.687 0.649
AR-SV 0.787 0.787 0.787 0.787

Table 2: Annualized Sharpe ratios across different portfolio allocation strategies

4 Concluding remarks

The empirical regularity of increased co-movement between stock markets due to financial integra-

tion across economies has not been exploited to its fullest in the forecasting literature. Against this

backdrop, this paper forecasts stock return of eight developed markets namely, Canada, France, Ger-

many, Italy, Japan, Switzerland, the United Kingdom, and the United States based on time-varying

parameter vector autoregressive models. In the process, this paper puts forth a novel approach to

estimate time-varying parameter models in a Bayesian framework by assuming that the state inno-

vations follow a threshold model, with the threshold variable being the absolute period-on-period

change of the corresponding states. This implies that if the (proposed) change is sufficiently large,
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the corresponding variance is set to a positive value, otherwise it is set close to zero, suggesting that

the states remain virtually constant. In the process, this threshold time-varying parameter vector

autoregressive (TTVP-VAR) model with stochastic volatility is capable of discriminating between a

wide array of competing models, especially that feature many to few structural breaks in the re-

gression parameters. While this is our primary proposed framework for forecasting equity returns

of the eight advanced economies, we compare the performance of this model with a wide range

of nested alternative time-varying and constant parameter vector autoregressive models. Based on

an out-of-sample period of 2002:M03 to 2017:M02, given an in-sample of 1997:M03 to 2002:M02,

our results indicate that the TTVP-VAR outperforms its competitors for both point and density fore-

casts. A portfolio allocation exercise also confirms the superiority of our proposed model. We also

observed sustained predictive gains for most multivariate models considered. Given this, and the

fact that the joint log predictive scores can be decomposed in terms of a sequence of univariate

marginal log scores and a copula term, we indicate that it pays off to adopt a multivariate model

and to exploit information from the cross section in an effective manner, especially during periods

of stress, like the recent financial crisis. This observation in turn validates our decision to take

multivariate approach under the premise of increased co-movement between stock markets due to

financial integration.

As part of future research, one could extend our analysis to other financial markets, like bonds

and currencies, as well as to commodity markets. Given spillovers across asset classes, it would

make sense to incorporate the various asset classes together in the vector autoregressive model

proposed here, and then conduct a forecasting exercise.

13



References

Aye GC, Balcilar M and Gupta R (2017) International stock return predictability: Is the role of US
time-varying? Empirica 44(1), 121–146

Carter CK and Kohn R (1994) On Gibbs sampling for state space models. Biometrika 81(3), 541–553
Chen AS, Leung MT and Daouk H (2003) Application of neural networks to an emerging financial

market: Forecasting and trading the Taiwan Stock Index. Computers & Operations Research
30(6), 901–923

Cogley T and Sargent TJ (2005) Drifts and volatilities: monetary policies and outcomes in the post
WWII US. Review of Economic dynamics 8(2), 262–302

Diebold FX and Yilmaz K (2009) Measuring financial asset return and volatility spillovers, with
application to global equity markets. The Economic Journal 119(534), 158–171

Dovern J, Feldkircher M and Huber F (2016) Does joint modelling of the world economy pay off?
Evaluating global forecasts from a Bayesian GVAR. Journal of Economic Dynamics and Control
70, 86–100

Enke D and Thawornwong S (2005) The use of data mining and neural networks for forecasting
stock market returns. Expert Systems with Applications 29(4), 927–940

Feldkircher M, Huber F and Kastner G (2017) Sophisticated and small versus simple and size-
able: When does it pay off to introduce drifting coefficients in Bayesian VARs? arXiv preprint
arXiv:1711.00564
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Fig. 5: Contribution of the copula term to the joint predictive likelihood
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