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Abstract 

The study proposes an alternative modelling specification for the real prices of gold and silver 

that allows the long run trend and cyclical behaviour to be modelled simultaneously by 

incorporating two differencing parameter in a fractional integration framework.  However, we 

also consider the separate cases of a standard I(d) process, with a pole or singularity at the 

zero frequency and a cyclical I(d) model that incorporates a single pole in the spectrum at a 

non-zero frequency.  We use annual data spanning from 1833 to 2013 for gold and 1792 to 

2013 for silver. Based on the more flexible model that permits a pole at both zero (trend) and 

non-zero (cycle) frequencies, we find that in general the estimates associated to the long run 

or zero frequency appear to be above 1 in case of gold and below 1 for silver, while the order 

of integration associated with the cyclical frequency is slightly above 0 in the majority of the 

cases in the two series. Further, higher orders of integration are associated to the long run 

component compared with the cyclical one. The implications for these findings are 

highlighted. 
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1. Introduction 

Commodity prices are generally known to be very volatile leading to uncertainty over future 

revenue and cost streams. This consequently inhibits planning, deters investment and hence 

acts as a drag on future growth and poverty reduction prospects (Blattman et al., 2007; 

Poelhekke and van der Ploeg, 2009). The recent global economic and financial crisis which 

led to significant increase in commodity prices between 2003 and 2008 has renewed interest 

in modelling commodity price behaviour. The real prices of energy and metals more than 

doubled in five years from 2003 to 2008, while the real price of food commodities increased 

75% (Erten and Ocampo, 2013).  When the global economic growth slowed down, this led to 

diminishing demand pressures on commodity prices. However, commodity prices have started 

to recover very fast, and this has been attributed to the rapid growth of the emerging markets 

and dramatic increase in worldwide demand for commodities  (Rossen, 2014).  

Given the swings in prices, the need to model the trend and cycle behaviour of metal 

prices in general and gold and silver prices in particular cannot be overstressed. They are 

important for both the producing and consumer countries and for both the private and 

government. For the producing countries especially in developing countries, export earnings 

from metals are often the main source of revenue for many governments. The revenues may 

either come from direct ownership of resource extraction companies or the tax revenues and 

royalties obtained from private firms (Harvey et al., 2012).  For the consumer countries, they 

are a key input factor in many industries and hence drastic price increases can affect these 

industries negatively through higher input costs (Rossen, 2014).  Therefore, the dynamics of 

commodity prices are of great importance for worldwide economic activity (Labys, 2006) and 

as such fluctuations in their prices may have a major impact on overall macroeconomic 

performance and living standards in these countries (Deaton 1999; Cashin et al. 2002; Rossen, 

2014).  
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Precious metals are considered as leading indicators of inflation or as a variable which 

can transmit the outlook of monetary policy to the economy (Greenspan, 1993). In other 

words, the pro-cyclical character of the demand for precious metals has underlined their roles 

as safe-havens against inflation and stores of value and may provide important information as 

to where the real economy is heading (Baur and Lucey, 2010; Gil-Alana et al., 2015). Thus, 

precious metals offer valuable diversification opportunities to investors and serve as monetary 

medium when the market is uncertain (Arouri et al., 2012; Batten et al., 2010).  

Due to their diverse industrial uses and investment purposes, metals play an important 

role in the construction industry, the electrical industry and the automotive manufacturing 

among others (Rossen, 2014). Gold for instance is used in various sectors (e.g., jewellery, 

electronics, computers, medical, and aerospace) and is viewed as the most influential metal 

because of its multifunctions such as storage of value, reserve for money issuance, anti-

inflation shelter and financial instrument among others (Mui and Chu, 1993). The gold market 

operates as a type of insurance against extreme movements in the value of traditional assets 

during unstable financial markets (Shafiee and Topal, 2010). It takes the  the form of a store 

of value held in the inventories of central banks as a reserve that keeps its purchasing power 

and acts as a stabilizing force in the financial system, reducing losses in the face of negative 

swings in the market (Baur and Mcdermott, 2010). Silver also has multiple industrial and 

investment uses which has the potential of making its price more volatile than other 

commodities (Harper et al., 2013). Silver can be transformed from its natural state and used in 

the technology and medical industries to produce items such as solar energy, water 

purification, and X-Ray devices. Moreover, silver is also used in the electronics, and 

automobile industries to produce components for computers and antifreeze materials. Further, 

silver can also be used as an investment vehicle by investors who seek profits or to diversify 

their investment portfolio or hedge (Harvey et al., 2012). 
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Overall, understanding  the price developments in the gold and silver markets may 

help in forecasting their prices as well as aiding investment decisions and economic planning 

This also has important implications for profitable capacity expansion by both private and 

government-owned mining companies (Davis and Samis, 2006; Radetzki 2008; Arezki et al. 

2014). 

 A number of studies have modelled the trend and cycle features of commodity prices 

using methods which range from informal graphical inspection of the data to rigorous 

statistical decomposition techniques and recently to fractional integration approach. The 

results from these studies are mixed. For instance, Cheung and Lai (1993) used the rescaled 

range technique and showed that gold returns exhibit long memory but the authors showed 

that this is mostly due to a small number of observations relating to Middle Eastern political 

tension and the activities of the Hunt Brothers in 1979. Arouri et al (2012) used several 

parametric and semiparametric methods including ARFIMA- FIGARCH model and found 

strong evidence of long range dependence in the daily conditional return and volatility 

processes of four precious metals: gold, silver, platinum and palladium. Uludag and 

Lkhamazhapov (2014) used a similar approach as Arouri et al (2012), and found evidence of 

anti-persistence in spot returns and a lack of long memory property in gold futures returns. 

They concluded that long memory is a true feature of the data and not due to structural breaks. 

Ewing and Malik (2013) used the GARCH model and found evidence of persistence in the 

volatility of gold with and without structural breaks. Gil-Alana et al. (2015) analysed the 

persistence properties of five metal prices- gold, silver, platinum, palladium, and rhodium- 

within a fractional integration framework while accounting for structural breaks. In general 

they find evidence of long memory behaviour and hence long range dependence across time 

in the precious metals examined. 
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Laby’s et al. (2000) examine the chronology, frequency, duration, and amplitude of 

twenty one primary commodity price series (including gold and silver) over the period 1960 

to 1995. Using Structural Time Series (STS) method, they provide evidence for cyclical 

behavior in the expansion, contraction, and overall phases for a number of commodities. Their 

results suggest the predominance of two kinds of cycles at least at that stage. Over the total 

time span the first cycle usually shows a periodicity of less than twelve months or one year. 

This was confirmed for most of the commodities. The second cycle shows a periodicity close 

to two years or more. This is particularly evident for cocoa, copper, corn and tea, though the 

amplitude of the cycles is low. Ciner (2001) examined the long run trend in prices of gold and 

silver futures contracts listed on the Tokyo Commodity Exchange. Using daily closing prices 

from 1992 to 1998 along with Johansen’s cointegration analysis, the results indicated that the 

long run stable relationship between gold and silver future prices had disappeared.  

Cashin and McDermott (2002) employ the industrial commodity price index of The 

Economist, covering the period 1862-1999 and find a downward trend of 1.3% per annum in 

real commodity prices with no breaks in the trend function.  Zanias (2005) employs  index of 

24 annual non-fuel primary commodity prices from 1900 to 1998 and identifies two structural 

breaks (1920 and 1984) and shows the 20th century decline in commodity prices is almost 

exclusively explained by these shifts in the mean as opposed to any gradual trending effect.  

Cuddington and Jerrett (2008) use band-pass (BP) filters developed by Baxter and 

King (1999) and Christiano and Fitzgerald (2003) to search for evidence of super cycles in 

price of six base metals traded in London Metal Exchange (LME) - aluminum, copper, lead, 

nickel, tin, and zinc. They find considerable evidence of three past super cycles in real metal 

prices, defined as cyclical components with expansion phases from 10 to 35 years. They also 

show that the amplitude of the super cycles is large with variations of 20 to 40% above and 

below the long-run trends. Harvey et al. (2010) employ a unique disaggregated dataset, 
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comprised of 25 separate commodity time series and spanning the 17th to the 21st centuries. 

Using test procedures for the presence of a linear trend and a broken trend which are robust to 

whether shocks are generated by an I(0) or I(1) process, they show that five price series 

(Aluminum, Banana, Rice, Sugar and Tea) present a significant and downward trend over all 

or some fraction of the sample period. Of the remainder, nineteen reveal a zero trend (Beef, 

Coal, Cocoa, Coffee, Copper, Cotton, Gold, Hide, Jute, Lamb, Lead, Nickel, Oil, Pig Iron, 

Silver, Tin, Wheat, Wool and Zinc), whilst only Tobacco has a significant positive trend over 

the full sample period. Jacks et al. (2011), examine eleven price datasets that overlap 

intertemporarily from 1700- 2005. Their results suggest that nominal commodity prices have 

typically provided greater volatility than manufactures, even prior to the industrial revolution, 

noting that volatility itself is not a function of time per se, but increase in periods of war or 

autarky and decrease in periods of internationalisation and trade. 

Harvey et al. (2012) disentangle trend and cyclical components for relative commodity 

prices using new and ultra-long aggregate commodity price time series, covering the period 

1650- 2010. Employing quasi-feasible GLS-based testing approach, it is shown that the trend 

path of the commodity series can be split into four regimes (i.e. 1650 to the early 1820s, the 

early 1820s to the early 1870s, the early 1870s to the mid-1940s, and the mid-1940s to 2010). 

Moreover, using Christiano and Fitzgerald (2003) BP filter, they find that long-run cycles 

(often called super-cycles) last for approximately twenty seven years, but appear to be 

increasing in periodicity over the 20th century, whereas shorter-run cycles last for 

approximately four years but appear to be decreasing in periodicity. 

Gutiérrez et al. (2013) use the Dow Jones Industrial Average and Gold Fix ratio to 

establish the evolution of gold prices in relation to the NYSE. Results based on Fourier 

analysis shows that gold prices are found to evolve cyclically with a dominant period of 37 

years. Rossen (2014) explores the dynamics (co-movement, price cycles and long-run trends) 
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of monthly twenty metal prices including gold and silver during January 1910 and December 

2011. Results based on the asymmetric band-pass (BP) filter by Christiano and Fitzgerald 

(2003) show that price cycles are asymmetric; the number of cycles varies signifiicantly 

depending on the specific metal under consideration, the majority of the metal price series can 

be characterized by four super cycles consistent with previous studies However, there is no 

evidence of duration dependence and the long-run component of metal prices considerably 

varies over the set of mineral commodities.  

In this paper we propose an alternative modelling specification for the real prices of 

gold and silver. Classical methods include the trend stationary I(0) and the nostationary unit 

roots (I(1)) models. However, during the last twenty years fractional integration has become 

an alternative plausible way of modelling many economic time series. This specification 

imposes the existence of a pole or singularity in the spectrum at the zero frequency, which is 

usually associated with the long run trend behaviour.  However, another inherent feature 

observed in many series, including gold and silver prices, is the existence of a cyclical pattern 

that many times is reduced to the short run dynamics and incorporated throughout a simple 

AR(2) process with complex roots. In this paper, we incorporate cycles in the long run 

dynamics by means of allowing the existence of another pole in the spectrum at a non-zero 

frequency. Thus, we consider three different specifications: a) a standard I(d) process, with a 

pole or singularity at the zero frequency; b) a cyclical I(d) model that incorporates a single 

pole in the spectrum at a non-zero frequency, and c) a general model that incorporates the two 

features in a single framework and that includes two poles in the spectrum of the series. 

Therefore, this latter model incorporates two fractional differencing parameters, one at the 

long run or zero frequency and another one at a non-zero (cyclical) frequency. To the best of 

our knowledge, this is the first attempt to modeltrendand cyclical properties of long-span gold 

and silver prices simultaneously in a fractional integration framework.   
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The outline of the paper is as follows: Section 2 describes the models employed in the 

paper and the methodology used. Section 3 presents the data and the main empirical results, 

while Section 4 concludes the paper. 

 

2. The models 

Assuming that {ut, t = 0, ±1, ...} is a covariance stationary I(0) process, three models are 

examined in this work.  

 

a) The standard I(d) model 

It is specified as: 

,...,1,0t,ux)L1( tt
d     (1) 

where d can be any real value, L is the lag-operator (Lxt = xt-1) and ut is I(0), defined for our 

purposes as a covariance stationary process with a spectral density function that is positive 

and finite at any frequency in the spectrum. 

The I(d) model of the form given by equation (1) were introduced by Granger (1980, 

1981), Granger and Joyeux (1980) and Hosking (1981) and since then have been widely 

employed to describe the behaviour of many economic time series (see, e.g., Diebold and 

Rudebusch, 1989; Sowell, 1992a; Gil-Alana and Robinson, 1997; etc.). Note that the 

parameter d plays a crucial role in describing the degree of dependence (long run persistence) 

of the series. Specifically, if d = 0 in (1), xt = ut, and the series is I(0), potentially including 

ARMA structures with the autocorrelations decaying at an exponential rate. If d belongs to the 

interval (0, 0.5), the series is still covariance stationary but the autocorrelations take longer to 

disappear than in the I(0) case. If d is in the interval [0.5, 1), the series is no longer covariance 

stationary; however, it is still mean-reverting with shocks affecting it disappearing in the long 

run. Finally, if d ≥  1 the series is nonstationary and non-mean-reverting. 
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 There exist many methods for estimating and testing d in equation (1). Some of them 

are parametric while others are semiparametric and they can be specified in the time or in the 

frequency domain. In this paper we use a parametric method that uses the Whittle function in 

the frequency domain (Dahlhaus, 1989) along with a Lagrange Multiplier (LM) test proposed 

by Robinson (1994) and that it has been used in numerous empirical applications (Gil-Alana 

and Robinson, 1997; Gil-Alana, 2000; Gil-Alana and Henry, 2003; etc.) . 

 

b) The cyclical I(d) model 

This specification is based on the Gegenbauer process, and it is defined as: 

,...,2,1,)cos21( 2  tuxLLw tt
d

r   (2)  

wherewr and d are real values, and ut is I(0). For practical purposes we define wr = 2πr/T, with 

r = T/s, and thus s will indicate the number of time periods per cycle, while r refers to the 

frequency that has a pole or singularity in the spectrum of xt. Note that if r = 0 (or s = 1), the 

fractional polynomial in (2) becomes (1 – L)2d, which is the polynomial associated with the 

previous case of fractional integration at the long-run or zero frequency. This type of process 

was introduced by Andel (1986) and subsequently analysed by Gray, Zhang and Woodward 

(1989, 1994), Giraitis and Leipus (1995), Chung (1996a,b), Gil-Alana (2001a) and Dalla and 

Hidalgo (2005) among others. It can be shown that denoting μ = coswr, for all d ≠  0, 
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(see, for instance, Magnus et al., 1966, Rainville, 1960, etc. for further details on Gegenbauer 

polynomials). Gray et al. (1989) showed that xt in (2) is (covariance) stationary if d < 0.5 for 

│μ = coswr│< 1 and if d <0.25 for│μ│= 1. 

 Here, we will employ first a testing parametric method of Dalla and Hidalgo (2005). It 

tests the null hypothesis of no cycles against the alternative of strong cycles of form as in (2). 

Additionally, we will employ the methods of Giraitis et al. (2001) and Hidalgo (2005), testing 

both r and d in equation (2) in a parametric and a semiparametric way respectively. 

 

c) A model with two poles at the spectrum 

The third model combines the two previous approaches in a single framework. Thus, the 

model examined in the following: 

,...,2,1t,ux)LLwcos21()L1( tt
d2

r
d 21   (3) 

where d1 is the order of integration corresponding to the long-run or zero frequency, and d2 is 

the order of integration with respect to the non-zero (cyclical) frequency, and ut is assumed 

once more to be an I(0) process. As in the previous cases, d1 and d2 are allowed to be real 

values and thus they are not restricted to be integers.  

Dealing with the model in equation (3), Robinson (1994) propose a Lagrange 

Multiplier (LM) test  

,),(),(: 2121 o
T

oo
T

o ddddddH    (4) 

in (3), where xt are the regression errors in a model of form: 

,...,2,1t,xzy tt
T

t      (5) 

whereyt is the observed time series; β is a (kx1) vector of unknown parameters, and zt is a 

(kx1) vector of deterministic terms, that might include, for example, an intercept (i.e. zt = 1) 

or an intercept with a linear trend (zt = (1,t)T). The specific form of the test statistic (denoted 
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by R̂ ) is presented in the Appendix. Under very general regularity conditions, Robinson 

(1994) showed that for this particular version of his tests, 

,Tas,R̂ d  2
2    (6) 

where T indicates the sample size, and “→d” stands for convergence in distribution. Thus, 

unlike in other procedures, we are in a classical large-sample testing situation. A test of (5) 

will reject Ho against the alternative Ha: d  do if R̂ > 2
,2  , where Prob ( 2

2 > 2
,2  ) = . There 

are several reasons for using this approach. First, this test is the most efficient in the Pitman 

sense against local departures from the null, that is, if it is implemented against local 

departures of the form: Ha: d = do + T-1/2, for  0, the limit distribution is a ),(2
2 v  with a 

non-centrality parameter v that is optimal under Gaussianity of ut. Moreover, Gaussianity is 

not necessary for the implementation of this procedure, a moment condition of only order 2 

being required.   

 

3. Data and empirical results 

The data examined correspond to the annual data forreal prices of gold (1833 – 2013) and 

silver (1792 – 2013) in natural logarithmic form, with the start and end points of the samples 

purely driven by data availability at the time of writing this paper. The data on nominal prices 

(London PM Fix US dollar per ounce) for gold and silver is obtained from www.kitco.com, 

while the annual Consumer Price Index (CPI) data used to deflate the nominal prices to obtain 

the real values of gold and silver prices, are derived from the website of Professor Robert Sahr 

(http://oregonstate.edu/cla/polisci/sahr/sahr). Figure 1 displays the time series plots (in logs) 

along with their first differences. The first differenced data display some heteroscedastic 

behaviour but the methods employed in this paper for estimating and testing the differencing 

parameters seem to be robust to this feature. 

[Insert Figures 1 – 3 about here] 
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 The correlograms and the periodograms of the series and the first differenced data are 

displayed in Figures 2 and 3 respectively. The correlograms show a cyclical pattern that is 

clearer observed for the gold real prices. The periodograms of the original data show the 

highest value at the zero frequency while those of the first differenced data display the highest 

values at a non-zero frequency. 

 We start by presenting the results for the case of the standard case of I(d) models. 

Table 1 displays the estimates of d (and the 95% confidence interval) for the three standard 

cases of no regressors, an intercept, and an intercept with a linear time trend, assuming that ut 

is a white noise process, an AR(1) and that it follows the model of Bloomfield, which is a 

non-parametric approach of modelling the I(0) error term.1 

[Insert Table 1 about here] 

 Starting with the deterministic terms, the first thing we note is that an intercept seems 

to be sufficient to describe the deterministic part of the model. Focussing first on the gold 

prices, we see that if ut is white noise, the estimated value of d is 1.32, and the unit root null 

hypothesis is rejected in favour of higher orders of integration, however, allowing for 

autocorrelated disturbances, the estimated ds are below 1, and the unit root is almost rejected. 

Looking at the silver log-prices, the three estimates of d are below 1, the unit root cannot be 

rejected with white noise errors, and this hypothesis is decisively rejected in favour of mean 

reversion (d < 1) with autocorrelated errors. 

 Next we focus on strong cycles and consider the model given by equation (2). Here 

first we perform the Dalla and Hidalgo’s (2005) method and the results reject the null 

hypothesis of no cycles in the two series in favour of cyclical long range dependence. 

Estimating the location for the pole or singularity at the spectrum with the semiparametric 

method of Hidalgo (2005), the estimates range in the two series between 4 and 9 periods 

                                                 
1 This nonparametric approach of Bloomfield (1973) accommodates very well in the context of fractional 
integration (Velasco and Robinson, 2000; Gil-Alana, 2001b, 2004; etc.) 
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depending on the choice of the bandwidth parameter number. Tables 2a and 2b displays the 

estimates of d in (2) for r = 4, 5, 6, 7 and 8, again for the three cases of no regressors, an 

intercept, and an intercept with a linear trend. Table 2a refers to the case of white noise 

disturbances, while Table 2b focuses on autocorrelated AR(1) errors. 

[Insert Tables 2a and 2b about here] 

 As with the previous model, the most significant results are those based on an 

intercept but with no linear trend.  Generally the estimates of d are positive in the two series 

though more evidence of significant positive values of d is found in the gold real prices data.  

Employing the exponential spectral model of Bloomfield (1973) for the I(0) error term ut in 

(2) produced estimates of d fairly similar to those reported in Table 2b for the case of AR(1) 

errors. 

 Finally, we employ model (3), which is a more flexible specification than (1) and (2) 

in the sense that it allows us to jointly estimated the fractional differencing parameters 

corresponding to the zero and non-zero frequencies. Table 3a refers to the case of white noise 

errors, while Tables 3b and 3c displays the estimates for the cases of AR(1) and Bloomfield-

type disturbances. Focussing on the case with an intercept and starting with Table 3a (white 

noise) we see that for gold, d1 is above 1 in all cases ranging from 1.15 (r = 7, 8) to 1.30 (r = 

5), while d2 is slightly above 0.2 for 4 values of r and close to 0 if r = 4. Looking at the results 

for silver in the same table, d1is slightly below 1 and d2 is slightly above 0 for the five values 

presented for r. 

[Insert Tables 3a, 3b and 3c about here] 

 Table 3b refers to AR(1) disturbances. For gold, the estimates of d ranges between 

0.53 (r = 5) and 0.89 (r = 6, 7), while d2 is equal to 0.03 with r = 4 and it ranges between 0.12 

and 0.17 in the remaining cases. For silver, d1 oscillates between 0.55 (r = 8) and 0.68 (r = 4), 

while d2 is very close to 0. Using the exponential spectral model of Bloomfield (1973) (in 
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Table 3c) the estimates are very close to those based on white noise disturbances. Thus, for 

gold d1 is above 1 and d2 above 0, and for silver, the estimates of d1 are slightly below 1 while 

those of d2 are slightly above 0. Thus, we can conclude by saying that higher orders of 

integration are associated to the long run component compared with the cyclical one. Thus, 

the estimates associated to the long run or zero frequency seem to be above 1 in case of gold 

and below 1 for silver, while the order of integration associated with the cyclical frequency is 

slightly above 0 in the majority of the cases in the two series. 

 

4. Conclusions 

The study proposes an alternative modelling specification for the real prices of gold and 

silver. We use annual data covering the period 1883-2013.  We consider both the long run 

trend behaviour and the cycle patterns in these two series within a fractional integration 

framework.  We incorporate cycles in the long run dynamics by means of allowing the 

existence of additional pole in the spectrum at a non-zero frequency. In other words, the 

model incorporates two fractional differencing parameters, one at the long run or zero 

frequency and another one at a non-zero (cyclical) frequency. This is an extension to the 

conventional fractional integration model that imposes the existence of a pole or singularity in 

the spectrum at the zero frequency, usually associated with the long run trend behaviour.  

However, we also consider the separate cases of a standard I(d) process, with a pole or 

singularity at the zero frequency and a cyclical I(d) model that incorporates a single pole in 

the spectrum at a non-zero frequency.  We consider the estimates of the differencing 

parameter for the three standard cases of no regressors, an intercept, and an intercept with a 

linear time trend, and assuming that the residual is a white noise process, an AR(1) and that it 

follows the model of Bloomfield. The most significant specification is that with intercept 

only.  
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Results based on the standard I(d) process shows that real gold price is non-mean 

reverting while real silver price is mean reverting. In other words we find evidence of long 

memory behaviour in the gold price inflation rate but not in the silver inflation rate.Based on 

the cyclical I(d) model,  the null hypothesis of no cycles in the two series is rejected in favour 

of cyclical long range dependence and the location for the pole or singularity at the spectrum 

in the two series is estimated to be between 4 and 9 periods depending on the number of the 

bandwidth parameter chosen.  Finally, results from the more flexible model indicates that in 

general the estimates associated to the long run or zero frequency appear to be above 1 in case 

of gold and below 1 for silver, while the order of integration associated with the cyclical 

frequency is slightly above 0 in the majority of the cases in the two series. Further, higher 

orders of integration are associated to the long run component compared with the cyclical one.  

These results have important implications for policy. For instance in the event of 

exogenous shocks, the effects will be permanent in gold and strong policy measures need to 

be adopted to ensure that gold price returns to its original trend. The persistent property in 

gold and the cyclical long range dependence property in both gold and silver is important for 

monetary policy especially with respect to inflation targeting since these properties are likely 

to affect the persistence nature of the aggregate inflation of an economy. This will have 

implications for economic variables such as interest rates, consumption, investment, and 

output growth. More so, the findings have implications for portfolio diversification, 

forecasting of gold and silver prices and overall economic planning. 

At this stage, it is important to point out that, since we use long span data, gold and and silver 

prices are likely to have witnessed structural breaks. And as indicated by Cheung and Lai  

(1993), and Diebold and Inoue (2001), presence of structural breaks can lead to spurious 

evidence in favour of long-memory. In light of this, future research should be aimed at re-

estimating these models by allowing for breaks in the data generating process. In addition, the 



16 
 

forecasting properties of the models developed in this paper, should also be an interesting area 

of further investigation. 
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Appendix 

The test statistic proposed by Robinson (1994) for testing Ho (4) in the model given by  

equations (3) and (5) is given by: 
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function gu above is a known function coming from the spectral density of ut: 
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Note that these tests are purely parametric and, therefore, they require specific modelling 

assumptions about the short-memory specification of ut. Thus, if ut is white noise, gu 1, and 
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if ut is an AR process of the form (L)ut = t, gu = (ei)-2, with 2 = V(t), so that the AR 

coefficients are a function of . 

 The point estimates were obtained by choosing the values that minimise Robinson’s 

(1994) test statistic over a grid of values for d1, d2 and r. These parameter estimates were 

practically identical to those obtained by maximising the Whittle function in the frequency 

domain (Dahlhaus, 1989). The confidence intervals were obtained by choosing the values of 

the differencing parameters were the null hypotheses tested could not be rejected at the 5% 

level. 
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TABLES AND FIGURES 
 
 
Figure 1: Log of real gold and silver prices and their first differences  

Real gold prices Real silver prices 

First differences of real gold prices First differences of real silver prices 
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Figure 2: Correlograms of log of real gold and silver prices and their first differences 

Real gold  prices Real silver  prices 

First differences of real gold prices First differences of real silver  prices 

 
The thick lines give the 95% confidence band for the null hypothesis of no autocorrelation. 
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Figure 3: Periodograms of log of real gold and silver prices and their first differences  

Real gold prices Real silver prices 

First differences of real gold prices First differences of real silver prices 

The horizontal axis refers to the discrete Fourier frequencies λj = 2πj/T, j = 1, …, T/2. 
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Table 1: Estimates of d in an I(d) model at the zero frequency (Model (1)) 
i) Log of real gold prices 

ut (disturbances) No regressors An intercept A linear time trend 

White noise 1.00   (0.92,   1.10) 1.32   (1.17,   1.56) 1.33   (1.17,   1.56) 

AR (1) 1.29   (1.13,   1.50) 0.78   (0.57,   0.99) 0.42   (0.16,   0.91) 

Bloomfield (1) 1.01   (0.86,   1.21) 0.77   (0.59,   1.00) 0.76 (0.59,   1.00) 

ii)         Log of real silver prices 

ut (disturbances) No regressors An intercept A linear time trend 

White noise 0.94   (0.87,   1.04) 0.92   (0.82,   1.05) 0.92   (0.82,   1.05) 

AR (1) xxx 0.71   (0.56,   0.88) 0.70   (0.49,   0.88) 

Bloomfield (1) 0.93   (0.81,   1.07) 0.72   (0.60,   0.88) 0.71   (0.57,   0.88) 
In bold, the significant models according to the deterministic terms. 
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Table 2a: Estimates of d in a cyclical I(d) model (Model (2)) 

ii) Log of real gold prices 

White noise ut No regressors An intercept A linear time trend 

r   =  4    -0.098  (-0.198,  0.040) -0.097  (-0.197,  0.041) -0.092  (-0.193,  0.050) 

r   =  5    0.233  (0.063,  0.460) 0.233  (0.063,  0.460) 0.239  (0.069,  0.466) 

r   =  6    0.318  (0.195,  0.467) 0.318  (0.195,  0.466) 0.318  (0.196,  0.465) 

r   =  7    0.314  (0.207,  0.438) 0.313  (0.207,  0.438) 0.312  (0.206,  0.435) 

r   =  8    0.296  (0.191,  0.413) 0.296  (0.191,  0.412) 0.293  (0.189,  0.409) 

ii)          Log of real silver prices   

White noise ut No regressors An intercept A linear time trend 

r   =  4    0.092  (-0.018,  0.243) 0.091  (-0.019,  0.243) 0.093  (-0.018,  0.245) 

r   =  5    0.125  (0.035,  0.233) 0.125  (0.035,  0.233) 0.126  (0.036,  0.234) 

r   =  6    0.099  (0.028,  0.182) 0.099  (0.028,  0.182) 0.099  (0.028,  0.182) 

r   =  7    0.040  (-0.041,  0.131) 0.040  (-0.041,  0.132) 0.040  (-0.041,  0.132) 

r   =  8    0.007  (-0.073,  0.098) 0.007  (-0.074,  0.098) 0.006  (-0.074,  0.097) 

In bold, the significant models according to the deterministic terms. 
 
 
 
Table 2b: Estimates of d in a cyclical I(d) model (Model (2)) 

i) Log of real gold prices  

AR(1)-type ut No regressors An intercept A linear time trend 

r   =  4    0.065  (-0.067,  0.254) 0.066  (-0.066,  0.256) 0.066  (-0.066,  0.257) 

r   =  5    0.117  (-0.002,  0.274) 0.117  (-0.001,  0.275) 0.120  (0.001,  0.280) 

r   =  6    0.142  (0.048,  0.262) 0.142  (0.049,  0.263) 0.146  (0.053,  0.268) 

r   =  7    0.146  (0.054,  0.271) 0.146  (0.053,  0.270) 0.151  (0.057,  0.277) 

r   =  8    0.111  (0.012,  0.239) 0.110  (0.012,  0.238) 0.115  (0.017,  0.245) 

ii)          Log of real silver prices   

AR(1)-type ut No regressors An intercept A linear time trend 

r   =  4    0.091  (-0.019,  0.242) 0.091  (-0.018,  0.242) 0.093  (-0.018,  0.244) 

r   =  5    0.155  (0.042,  0.303) 0.155  (0.042,  0.303) 0.158  (0.044,  0.307) 

r   =  6    0.159  (0.057,  0.289) 0.159  (0.057,  0.289) 0.162  (0.059,  0.291) 

r   =  7    0.047  (-0.066,  0.195) 0.048  (-0.065,  0.195) 0.049  (-0.063,  0.197) 

r   =  8    -0.039  (-0.142,  0.088) -0.039  (-0.142,  0.089) -0.038  (-0.142,  0.089) 

In bold, the significant models according to the deterministic terms. 
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Table 3a: Estimates of d1 and d2 in a longrun + cyclical I(d) model (Model (3)) 

i) Log of real gold prices  

White noise ut No regressors An intercept A linear time trend 

 d1 d2 d1 d2 d1 d2 

r   =  4    1.04 0.74 1.27 -0.06 1.27 -0.06 

r   =  5    1.02 0.91 1.30 0.23 1.30 0.23 

r   =  6    1.00 0.91 1.21 0.25 1.21 0.25 

r   =  7    0.99 0.90 1.15 0.25 1.15 0.25 

r   =  8    1.00 0.88 1.15 0.22 1.15 0.22 

ii)         Log of real silver prices   

White noise ut No regressors An intercept A linear time trend 

 d1 d2 d1 d2 d1 d2 

r   =  4    0.93 0.07 0.93 0.06 0.93 0.06 

r   =  5    0.90 0.17 0.90 0.14 0.90 0.14 

r   =  6    0.87 0.16 0.86 0.14 0.86 0.14 

r   =  7    0.85 0.13 0.85 0.10 0.85 0.10 

r   =  8    0.86 0.08 0.84 0.08 0.84 0.08 
In bold, the significant models according to the deterministic terms. 
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Table 3b: Estimates of d1 and d2 in a longrun + cyclical I(d) model (Model (3)) 

ii) Log of real gold prices  

AR-type ut No regressors An intercept A linear time trend 

 d1 d2 d1 d2 d1 d2 

r   =  4    0.86 -0.02 0.72 0.03 0.71 0.03 

r   =  5    1.25 0.05 0.53 0.17 0.52 0.18 

r   =  6    1.25 0.05 0.89 0.15 0.89 0.15 

r   =  7    1.25 0.08 0.89 0.15 0.86 0.14 

r   =  8    0.90 0.19 0.76 0.12 0.76 0.12 

ii)          Log of real silver prices   

AR.-type ut No regressors An intercept A linear time trend 

 d1 d2 d1 d2 d1 d2 

r   =  4    0.68 0.01 0.68 0.01 0.57 0.01 

r   =  5    0.73 0.06 0.61 0.05 0.61 0.05 

r   =  6    0.72 0.06 0.62 0.05 0.62 0.05 

r   =  7    0.69 -0.02 0.57 -0.02 0.54 -0.02 

r   =  8    0.69 -0.07 0.55 -0.06 0.54 -0.06 
In bold, the significant models according to the deterministic terms. 
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Table 3c: Estimates of d1 and d2 in a longrun + cyclical I(d) model (Model (3)) 

iii) Log of real gold prices  

Bloomfield-type ut No regressors An intercept A linear time trend 

 d1 d2 d1 d2 d1 d2 

r   =  4    1.34 0.05 1.34 0.05 1.34 0.05 

r   =  5    1.29 0.03 1.30 0.03 1.30 0.03 

r   =  6    1.21 0.25 1.21 0.25 1.21 0.25 

r   =  7    1.14 0.25 1.15 0.25 1.15 0.25 

r   =  8    1.11 0.24 1.11 0.24 1.11 0.24 

ii)         Log of real silver prices   

Bloomfield.-type ut No regressors An intercept A linear time trend 

 d1 d2 d1 d2 d1 d2 

r   =  4    0.95 0.05 0.92 0.05 0.92 0.05 

r   =  5    0.90 0.14 0.90 0.14 0.90 0.14 

r   =  6    0.86 0.14 0.86 0.14 0.86 0.14 

r   =  7    0.85 0.10 0.85 0.10 0.85 0.10 

r   =  8    0.85 0.08 0.84 0.08 0.84 0.08 
In bold, the significant models according to the deterministic terms. 
 
 
 


