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Abstract 

This paper makes use of two types of extreme value distributions, namely: the generalised 

extreme value distribution often referred to as the block of maxima method (BMM), and the 

peak-over-threshold method (POT) of the extreme value distributions, to model the financial 

tail risks associated with the empirical daily log-return distributions of the sharia-compliant 

stock index and three regional conventional stock markets from 01/01/1998 to 16/09/2014. 

These include the Dow Jones Islamic market (DJIM), the U.S. S&P 500, the S&P Europe 

(SPEU), and the Asian S&P (SPAS50) indexes. Using the maximum likelihood (ML) method 

and the bootstrap simulations to estimate the parameters of these extreme value distributions, 

we find a significant difference in the tail risk behaviour between the Islamic and the 

conventional stock markets. We find that the Islamic market index exhibits fat tail behaviour 

in its right tail with high likelihood of windfall profit during extreme market conditions 

probably due to the ban on short selling strategies in Islamic finance. However, the 

conventional stock markets are found to be more risky than the Islamic markets, and exhibit 

fatter tail behaviour in both left and right tails. Our findings suggest that during extreme 

market conditions, short selling strategies lead to larger financial losses in the right tail than 

in the left tails.  
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1. Introduction 

Extreme episodes, better known as Black Swan events, have the worrying feature that when 

they occur they have great or extreme effects despite their paucity.  These rare events exist in 

economics, finance, ecology, earth sciences and biometry, among others. However, in 

economics and finance, these “worst-case” episodes have become more recurrent than before, 

but they kept their overwhelming consequences. Examples of financial extreme events 

include the Black Monday of the stock market crash that took place on October 19, 1987, the 

turmoil in the bond market in February 1994, the 1997 Asian currency crisis, and the 

2007/2008 global financial crisis. Such crises are a major concern for regulators, financial 

institutions and investors because of their heavy and widespread consequences.  

As a consequence, many economists and financial analysts have shown increasing interest 

in examining the behavior of financial markets, testing financial stress and managing risks 

during those events. Frank Graham (1930) indicates that drastic events such as the 1920-1923 

hyperinflation in Germany offer a much better way to test competing theories than normal 

events. The current research hopes to do so by taking into account the impact of the recent 

financial crises such as the 2007/2008 global financial crisis on the risks in different financial 

markets by applying the extreme value theory. 

This paper examines the extraordinary behavior of certain random variables specifically 

the seemingly different conventional and Islamic stock returns, using the recently developed 

models known as the extreme value theory methods which quantify risks in left and right tail 

distributions. During extreme financial crises, these variables are characterized by extreme 

value changes and have very small probabilities of occurrence. The extreme value theory 

relies on extreme observations to derive the tail distributions. The risk is measured more 

efficiently using this model than by modeling the entire distributions of the random variables. 

Then the link between the extreme value theory and risk management is that the EVT fits 

extreme quantiles better than the conventional methods for tail-heavy data. In risk 

management, two types of extreme value distributions are frequently used namely the 

generalized extreme value distribution often referred to as the block of maxima method 

(BMM), and the Pareto distribution referred to as the peak-over-threshold method (POT).  

While these methods have been applied to conventional stock markets to model the tail 

risks associated with the empirical return distributions, to our knowledge only Frad and 

Zouari (2014) used only the POT method but not the BMM method and applied it to DJIM. 
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Moreover, these authors have not applied this method to compare the left (long position) and 

right (short position) tail risks in Islamic and regional conventional stock markets which may 

be ostensibly different markets. Specifically, this study models the tail risks associated with 

the empirical return distributions of four global financial markets which include the U.S. S&P 

500 index (SP500), the S&P Europe index (SPEU), the Asian S&P index (SPAS50) and the 

Dow Jones Islamic market (DJIM).   

Accordingly, our main objective of this study is to use both the BMM and the POT 

methodologies in order to model the tail risk behaviour associated with the occurrence of 

extreme events in the Islamic and conventional stock markets. We also consider the left and 

the right tails of the empirical return distribution to estimate financial losses as a result of a 

long or short position on these markets. 

The comparison between the Islamic and conventional markets in the tail distributions is 

relevant and useful because the Islamic stocks are arguably viewed as a viable financial 

system that can endure financial crises better than the conventional system and can also be 

used as a diversification vehicle to reduce the risk in conventional portfolios. In essence, 

Islamic finance may offer products and instruments that are fortified by greater social 

responsibility, ethical and moral values and sustainable finance.  

The Islamic and conventional markets differ in several ways (Dridi and Hassan, 2010; 

Chapra, 2008; Dewi and Ferdian, 2010). First, Islamic markets prefer growth and small cap 

stocks, but conventional markets opt for value and mid cap stocks. Second, Islamic finance 

restricts investments in certain sectors (e.g. alcohol, tobacco, rearms, gambling, nuclear 

power and military-weapons activities, etc.). Third, unlike the conventional finance, Islamic 

finance also restricts speculative financial transactions such as financial derivatives like 

futures and options which have no underlying real transactions, government debt issues with 

a fixed coupon rate, and hedging by forward sale, interest-rate swaps and any other 

transactions involving items not physically in the ownership of the seller (e.g., short sales).  

Therefore, the research contends that Islamic stock markets have low correlations and limited 

long-run relationships with the conventional markets, whereby they can provide financial 

stability and diversification. The more recent literature underlines the superiority of Islamic 

stock investing in outperforming conventional investments, particularly under the recent 

global financial crisis (Jawadi et al., 2013). 
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The novelty of this paper is that it makes use of two extreme value distributions, namely 

the generalized Pareto distribution and the generalized extreme value distribution, to 

simultaneously model both the left and right tails of the empirical return distribution. The 

paper use the maximum likelihood and the bootstrap techniques to estimate the parameters of 

these two distributions. In addition, unlike previous studies (e.g., Longin, 1996; McNeil and 

Frey, 2000; Xubiao and Gong, 2009), this paper provides reliable confidence intervals within 

which the tail risk measures are expected to be found. These confidence intervals are vital in 

assessing the investor’s risk tolerance level. For example, a risk lover investor is likely to 

have a risk measure that is close to the upper bound of the confidence interval, while a risk 

averse investor is expected to be near the lower bound of the confidence interval.   

The results show that the POT method  generates more elaborate estimates of the shape 

parameters than those suggested by the maximum likelihood (ML) and the bootstrap 

simulation methods. They also provide evidence that  the US SP500 and the Eurozone SPEU 

exhibit fat tail behavior in their right tails, whereas the Islamic DJIM, the Asian SPAS50, and 

the Eurozone SPEU exhibit fatter tail behaviour in their left tails. In addition, the paper 

attempts to answer the question of whether Islamic market is different from conventional 

market during extreme market conditions. Applying the single the analysis of variance 

(ANOVA) technique to the tail distribution data, we find that the Islamic DJIM market is 

significantly different from the conventional markets, which is likely to be due to its Sharia 

rules. 

The paper is organized as follows. After this introduction, Section 2 presents a review of 

the literature on Islamic stock markets and the use of extreme value theory (EVT) 

distributions in finance. Section 3 discusses the modeling of extreme events using the BMM 

and the POT methods. Section 4 presents the empirical analysis while section 5 concludes the 

paper 

 

2. Literature review     

      Many studies have used the EVT to measure the downside risk for conventional markets 

but to our knowledge this theory has not been applied to a comparison between conventional 

and Islamic stock markets. The EVT is becoming popular for its ability to focus directly on 

the tail of the empirical return distribution, and therefore it performs better than other 

theoretical distributions in predicting extreme events (Dacorogna et al., 1995).  To reflect the 
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volatility dynamics in the tail risk estimation, McNeil and Frey (2000) used a GARCH 

process with EVT and find quite interesting results that favors the extreme value theory. 

Other studies on EVT-based tail risk estimation include among others Gençay and Selçuk 

(2004), who investigated the relative performance of market risk models for the daily stock 

market returns of nine different emerging markets. They use the EVT to generate tail risk 

estimates. Their results indicate that the EVT-based tail risk estimates are more accurate at 

higher quantiles. Using U.S. stock market data, Longin (2005) shows how EVT can be useful 

to know more precisely the characteristics of the distributions of asset returns, and finally 

help to select a better model by focusing on the tails of the distribution. A survey of   some 

major applications of EVT to finance is provided by Rocco (2011).  

The literature on Islamic finance can be divided into four categories.  These include the 

characteristics of Islamic finance, the relative performance of this financial system in 

comparison to that of other socially responsible and faith-based investments, possible links 

between Islamic banks and markets and their conventional counterparts, and the potential 

performance between the two business systems during the global crisis and the shrinking gap 

between them. Therefore, this review is conducted on the basis of these four themes. 

The early literature deals with the unique characteristics of the Islamic financial system, 

particularly the prohibitions against the payment and receipt of interest. It also deals with the 

Islamic industry screens that restrict investment in businesses related to the sharia-forbidden 

activities (Abd Rahman, 2010; Bashir, 1983; Robertson, 1990; Usmani, 2002; Iqbal and 

Mirakhor, 2007 among others).  

The more recent strand of the literature investigates the links between Islamic and 

conventional financial markets in terms of relative returns and relative volatility. The 

comparison also focuses on the relative performance during the recent global financial crisis 

and relies on some characteristics of Islamic markets. The markets are represented by indexes 

from different regions where some are a subset of the Dow Jones indexes, while others 

belong to the FTSE indexes, among others. The available data series of the indexes related to 

individual Muslim countries are not comprehensive and short in length. The literature also 

uses different methodologies to achieve the stated goals, ranging from the traditional linear 

autoregressive models to more sophisticated nonlinear models and tests (Ajmi et al., 2014; 

Hakim and Rashidian, 2002; Dewandaru et al.,2013; Boubaker and  Sghaier, 2014).  
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More recently, Dania and Malhotra (2013) find evidence of a positive and significant 

return spillover from the conventional market indexes in North America, European Union, 

Far East, and Pacific markets to their corresponding Islamic index returns. Sukmana and 

Kholid (2012) examine the risk performance of the Jakarta Islamic stock index (JAKISL) and 

its conventional counterpart Jakarta Composite Index (JCI) in Indonesia using GARCH 

models. Their result shows that investing in the Islamic stock index is less risky than 

investing in the conventional counterpart. 

  Girard and Kabir (2008) compare the differences in return performance between Islamic 

and non-Islamic indexes. After controlling for the firm, market and global factors, the authors 

do not find significant differences in terms of performance between these types of 

investments.  Hashim (2008) examines the effect of adopting Islamic screening rules on stock 

index returns and risk, using monthly data from FTSE Global Islamic index. The results show 

that the performance of the FTSE Global Islamic is superior to that of the well 

diversified socially responsible index, the FTSE4Good.  

The literature also explores the potential importance of Islamic finance, particularly 

during the recent global financial crisis. Chapra (2008) indicates that excessive lending, high 

leverage on the part of the conventional financial system and lack of an adequate market 

discipline have created the background for the global crisis. This author contends that the 

Islamic finance principles can help introduce better discipline into the markets and preclude 

new crises from happening. Dridi and Hassan (2010) compare the performance of Islamic 

banks and conventional banks during the recent global financial crisis in terms of the crisis 

impact on their profitability, credit and asset growth and external ratings.  Those authors find 

that the two business models are impacted differently by the crisis. Dewi and Ferdian (2010) 

also argue that Islamic finance can be a solution to the financial crisis because it prohibits the 

practice of Riba. Ahmed (2009) claims that the global financial crisis has revealed the 

misunderstanding and mismanagement of risks at institutional, organizational and product 

levels. This author also suggests that if institutions, organizations and products had followed 

the principles of Islamic finance, they would have prevented the current global crisis from 

happening.
1
  More recently, Jawadi et al. (2014) measure financial performance for Islamic 

                                                             
1
 There is also a growing literature on Islamic banks (see for example, Cihak and Hesse, 2010; Abd Rahman, 

2010; Hesse et al., 2008). Sole (2007) also presents a “good” review of how Islamic banks have become 

increasingly more integrated in the conventional banking system. 
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and conventional stock indexes for three regions (the U.S., Europe and the World) before and 

after the subprime crisis and point to the attractiveness of performance of Islamic stock 

returns, particularly after the subprime crisis. Arouri et al. (2011) pursue a different approach. 

While comparing the impacts of the financial crisis on Islamic and conventional stock 

markets in the same three global areas and finding less negative effects on the former than the 

latter, these authors examine diversified portfolios in which the Islamic stock markets 

outperform the conventional markets. They demonstrate that diversified portfolios of 

conventional and Islamic investments lead to less systemic risks.  

To our knowledge, only Frad and Zouari (2014) use the EVT -POT method and apply it 

to DJIM to identify the extreme observations that exceed a given threshold for this index. Our 

study uses both the BMM and POT methods to examine the tail risk for the Islamic and 

regional conventional stock markets. 

 

3.  Methodology 

The process of fitting log-returns series to the extreme value distributions is described 

below. We will discuss both the BMM and POT methods. 

3.1. The Block of Maxima  

Let 
1X , 

2
X , …, 

n
X  be a sequence of iid random variables representing negative 

returns for the left tail (or positive returns for the right tail) of the distribution of a portfolio 

with common density function F. In what follows, fluctuations of the sample maxima 

(minima) are investigated. Let 
11

XR =  be the largest rate of return in the portfolio; and 

1 2max( , ,..., )
m n

R X X X=  the maximal returns or maxima for the right tail of the same 

portfolio.  Corresponding results for the minima (left tail) can be easily obtained by changing 

the sign of the maxima into negative: 

1 2 1 2min( , ,..., ) max( , ,..., )
n n

X X X X X X= − − − −                                                                    (1) 

Assuming that the maxima (minima) are independent and identically distributed, we 

obtain the density function as follows: 

1 2Pr ( ) Pr ( , ,..., ) ( ) ( ) ( ) ( )n

m nob R x ob X x X x X x F x F x F x F x≤ = ≤ ≤ ≤ = × × × =⋯ ; x R∀ ∈ , 

n N∈                                                                                                                   (2) 
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where F(x) is cumulative distribution function of the random variable x. 

Following Embrechts, Kluppelberg, and Mikosch (1997), extreme events happen in 

the tail of the empirical distribution. Therefore, the asymptotic behavior of the extreme 

returns/losses 
m

R  must be related to the density function in its right-hand tail for positive 

returns or in its left hand tail for maximum/largest losses. If the series of maximum/largest 

losses of a portfolio during each quarterly or yearly block are centered with a mean 
n

d  and 

standard deviation
n

c , then its density function can be expressed as:  

m n
m n n

n

R -d
Prob x =Prob(R u )=F(u )

c

  
≤ ≤  

    

                                                                   (3)  

where ( )
n n n n

u u x c x d= = + , ( )
n

F u  is the limit distribution of 
m

R , while 
n

d  and 
n

c  are the 

location and scale parameters, respectively. Given some continuous density function H such 

that m n

n

R -d

c
 converges in distribution in H, Embrechts et al. (1997) show that H belongs to 

the type of one of the following three density functions: 

Fréchet: 

0,  for  0

( ) 0

exp( ),  for 0

x

x

x x
α

ϕ α
−

 ≤


= ∀ >
 − >                                       (4)

  

Weibull: 

exp( ( ) ), 0

( ) 0

1, 0

x x

x

x

α

φ α

 − − ≤


= >
 >                                          (5)

 

Gumbel: ( ) exp( ),x
x e x Rψ −= − ∈                                                        (6)  

The density functions are called standard extreme value distributions. 

  

3.1.1. Generalised extreme value distribution 

  Let X  be a vector of extreme returns representing the maximum returns (positive or 

negative) of each quarterly or yearly block period as depicted in Figure 1 below, and denote 

by F, the density function of X . The limiting distribution of the normalised maximum 

returns X is known to be the generalised extreme value distribution.  

 

PLACE FIGURE 1 HERE 
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Figure 1 shows the hypothetical returns for a long position on the SP500 index during five 

consecutive years. The maximum returns of each year block denoted by
2X , 

5X , 
7X , 

11X  

and 
13X have a limiting distribution known as the generalised extreme value distribution 

expressed as: 

1/

( , , )
( ) exp 1

x
H x

ξ

ξ µ σ

µ
ξ

σ

−
 − 

= − +  
                                                                                    (7)

 

 

ξ  represents the shape parameter of the tail distribution, µ  its location, and σ  its scale 

parameter. When 1 0ξ α −= >  Equation (7) corresponds to the Fréchet distribution, when 

1 0ξ α −= <  Equation (7) corresponds to the Weibull distribution, and when 0ξ =  Equation 

(7) corresponds to the Gumbel distribution, as shown in Equations (4), (5) and (6), 

respectively. Following Gilli and Kellezi (2006); we re-parameterise the generalised extreme 

value distribution above in order to include a tail risk measure which is referred to as the 

“return level”: 

( ) ( )

( )
1/

, ,

exp

1
exp log 1 ; 0

1
1 ;                                             =0

K
k

k

R
x R

x R
k

H x

k

ξξ

ξ σ

σ

ξ
ξ

σ

ξ

−
−

 −
−  
 

       − − + − ∀ ≠           = 

  − ∀  

                                 (8) 

where k

nR represents the return level that is the maximum loss expected in one out of k  

periods of length n  computed as:  

 
1

, ,

1
1

k

nR H
k

ξ µ σ
−  

= − 
 

                                                                         (9) 

 

 

The ML method is used to estimate the parameters of the re-parameterised generalised 

extreme value distribution as well as their corresponding confidence intervals by maximising 

its log-likelihood function:  

( ) ( )
,

max , ,k k
L R L R

ξ σ

ξ σ=                                                                                                 (10) 
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These confidence intervals satisfy the following condition: 

 ( ) ( ) 2

1

1ˆ ˆˆ, ,
2

k k
L R L R αξ σ χ −− > −                                                                               (11) 

where 2

1 αχ − is the ( )1
th

α−  quantile of the Chi-square distribution with 1 degree of freedom. 

3.2. The peak over the threshold approach 

3.2.1. Generalised Pareto distribution 

Let X  be a vector of extreme returns larger than a specific threshold u  as depicted in 

Figure 2 below, and assume that the density function of X  is given by F . The limiting 

distribution of the extreme returns above a specific threshold is known as the generalised 

Pareto distribution. The excess density function of X over the thresholdu  is defined as; 

( ) ( )
( ) ( )

( )
Pr ( ) /  ;  0

1
u

F x u F u
F x ob X u x X u x

F u

+ −
= − ≤ > = ≥

−
                                  (12)                                                 

This function is obtained via the generalised Pareto distribution in what is termed as the 

“peak-over-threshold method. Figure 2 illustrates how the generalised Pareto distribution fits 

the extreme returns above a specific threshold value of 3u = . 

 

PLACE FIGURE 2 HERE 

 

This figure shows a hypothetical extreme return distribution marked as 1, 2, 3, 4, 5, 6, 

and 7 observed during the first half of January, and the y-axis reports their magnitudes. 

Assume that the return marked as 3 is our threshold. In this case the returns marked as 4, 5, 6 

and 7 are considered here as extreme returns since they are larger than the threshold 3u = . 

The limiting distribution of these extreme returns over the threshold 3u =  is known as 

generalised Pareto distribution (GPD) and is given by the following expression:  

( )

1

, ( )

1 1 ;   0
( )

( )

x
1-exp - ;     0

u

u

x

u
G x

ξ

ξ β

ξ ξ
β

ξ
β

−
  − + ≠   = 
 

=   
 

                                                            (13) 
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where ξ  is the shape, and u  the threshold parameter, respectively. It is assumed that the 

random variable x is positive and that  ( ) ( )
0.for   ;

u
-x0 and 0for  0  ;0 <≤≤≥≥> ξ

ξ

β
ξβ xu

 

The shape parameter ξ  is independent of the threshold u . If 0>ξ  then ( )u,G βξ  is a 

Pareto distribution, while if 0=ξ then ( )u,G βξ  is an exponential distribution. If 0<ξ then 

( )u,G βξ  is a Pareto type II distribution. These parameters are estimated by making use of the 

ML method. Firstly an optimal threshold is chosen using the mean excess function plot 

method introduced by Davidson and Smith (1990). The mean excess function plots the 

conditional mean of the extreme returns above different thresholds; the empirical mean 

excess function is defined as: 

( )

∑

∑

=
>

=

−

=
u

i

u

N

i

uxu

N

i

i

I

ux

ume

1

)(

1)(                                                                                            (14) 

where 1=uI if uxi >  and 0, otherwise. uN  is the number of extreme returns over the 

threshold u. If the empirical mean excess function has a positive gradient above a certain 

threshold u, it is an indication that the return series follows the GPD with a positive shape 

parameter ξ. In contrast, an exponentially distributed log-return series would show a 

horizontal mean excess function, while the short tailed log-return series would have a 

negatively sloped function. The parameters of the generalised Pareto distribution are obtained 

by maximising the following log-likelihood function: 

( ) ( ) ∑
=










β

ξ
+









ξ
+−β−=βξ

uN

1i

i
u

x
1Log

1
1LogN,L                                                        (15) 

Embrechts, Klüppelberg and Mikosch (1997) show that the tail distribution of the generalised 

Pareto distribution can be expressed as follows: 

( )
( )

1

ˆ

ˆˆ 1 1
ˆ

u
x uN

F x
n

ξ

ξ
β

−
 − 

= − + 
 

                                                                          (16) 

3.3. Computing tail risk measures 
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Although widely used to measure market risk, the value at risk (VaR) method is not a 

coherent measure of risk because it doesn’t satisfy the sub-additivity condition. Assume that 

we have a long position in two financial assets 1z and 2z , then sub-additivity means the total 

risk of a portfolio of these two assets must be less than the sum of the individual asset risks. 

Consequently, VaR doesn’t satisfy the diversification principle. A more coherent risk 

measure is the Expected Shortfall (ES). The ES measures the expected loss of a portfolio, 

given that the VaR is exceeded. In this paper, we compute the VaR as the alpha quantile of 

the tail distribution in Equation (16), and obtain the ES by adding to the VaR the mean excess 

function over the VaR (see Coles, 2001 for derivation): 

( )
ˆ

ˆ 1
1

ˆ /
u

p
VaR p u

N n

ξ

β

ξ

−  − = + − 
   

                                                                             (17) 

( ) ( )( ) ( ) ( ) ( )( )/ /ES p E Y Y VaR p VaR p E Y VaR p Y VaR p= > = + − >                     (18) 

( )
( ) ˆ ˆ

ˆ ˆ1 1

VaR p u
ES p

β ξ

ξ ξ

−
= +

− −
                                                                                          (19) 

where p is the significance level at which the VaR is computed. For example, when 

0.99p = Equations (17) and (18) produce the tail risk measures at the 99 significance level. 

 

4.  Empirical results 

4.1. Data description 

We make use of closing daily stock market indexes for the Sharia-compliant stocks in 

the Dow Jones stock index universe and for stocks in three main regions: the United States, 

Europe and Asia in the S&P universe (see, for example, Hammoudeh et al., 2014; 

Hammoudeh et al., forthcoming). As indicated earlier, the four Islamic and regional 

conventional market indexes under consideration are the US SP500, the Eurozone SPEU, the 

Asian SPAS50 and the Islamic market DJIM. The time series for the four stock market 

indexes are sourced from Bloomberg. The DJIM index represents the global universe of 

investable equities that have been screened for Sharia compliance. The companies in this index 
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pass the industry and financial ratio screens. The regional allocation for DJIM is classified as 

follows: 60.14% for the United States; 24.33% for Europe and South Africa; and 15.53% for 

Asia. The S&P Euro (SPEU) is a sub-index of the S&P Europe 350 and includes all Eurozone 

domiciled stocks from the parent index. This index is designed to be reflective of the 

Eurozone market, yet efficient to replicate. The Asian SPAS50 is an index that represents the 

most liquid 50 blue chip companies in four Asian countries: Hong Kong, Korea, Singapore, 

and Taiwan.  

The data spans from 01/01/1998 to 16/09/2014, making a total of 4358 observations 

which include the recent global financial crisis period. Our aim is to model the tail 

distribution of these financial markets which follow different business models and compute 

the corresponding left and right risk measures. The left tail represents the losses for an 

investor with a long position on the market indexes, whereas the right tail represents the 

losses for an investor being short on the market indexes. Table 1 exhibits the basic statistics 

of the log-returns. It shows that the Asian market SPAS50 has on average the highest 

historical rate of return which is equal to 0.0305%, with a corresponding standard deviation 

of 1.47%. The Islamic market (DJIM) has the lowest historical average rate of return, with 

the corresponding lowest standard deviation of 1.0743%.    

PLACE TABLE 1 HERE 

A risk-reward analysis exhibited in Figure 3 shows that the Islamic market 

represented by the DJIM index has the lowest annualised risk of all the markets, and has an 

annualised rate of return higher than that of the US and the Euro zone markets which are 

represented by the SP500 and SPEU, respectively. However, the Asian market provides the 

annualised rate of return with a corresponding relatively higher level of risk. Unlike the 

Islamic markets, the Asian market is characterised by higher uncertainty and political 

instability that requires higher premium.  

PLACE FIGURE 3 HERE 

4.2. Tail estimation results 

Since we are interested in both the downside (left tail) and the upside (right tail) risk 

measures, we collect all negative and positive log-returns, respectively, and fit them 

separately to the generalised extreme value distribution using the BMM method and to the 
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Pareto distribution using the POT method. For the generalised extreme value distribution, we 

first divide our sample period into quarterly blocks
2
 and collect the maximum positive return 

(for the right tail) and the largest loss (for the left tail) of each quarterly block. The limiting 

distribution of these maximums (minimums) is known as the generalised extreme value 

distribution, whose re-parameterised version that is expressed in Equation (8) is used to 

estimate the shape and scale parameters using the maximum likelihood (ML) method. Table 2 

reports the ML estimates of these parameters as well as their confidence intervals.  For the 

purpose of robustness, we report the best estimate and its corresponding bootstrapped value.  

PLACE TABLE 2 HERE 

Table 2 reports the shape (ξ) and the scale (σ) parameters of the re-parameterised 

GEV function shown in Equation (8), the point estimates and their corresponding confidence 

intervals for the Islamic and conventional stock market at the 1% and 5% significance levels. 

The maximum likelihood estimates are referred to as ML, whereas the bootstrapped estimates 

are denoted by BS. Moreover, LT (RT) refers to the left tail (right tail) of the empirical return 

distribution, representing the downside risk and upside risk, respectively. We find that the 

BMM method generates only positive shape parameters for all of the four market indexes 

used in our study. A positive shape parameter is an indication that these market indexes have 

fatter tails than the normal distribution. The quantile-quantile plots shown Figures 6, 7, 8 and 

9 confirm that the generalised extreme value distribution best fits the set of quarterly block 

maximums (minimums) data.  

Given the parameters of the re-parameterised generalized extreme value distribution, 

we thereafter compute one tail risk measure associated with the generalised extreme value 

distribution, namely the return level (see Gilli and Kellezi, 2006). We denote by RL the 

return level which represents the maximum loss expected in one out of ten quarters. Table 3 

reports the RL for both the left and the right tails of the empirical distribution at the 1% and 

5% significance levels as per the Basel II accord.
3
 Their confidence intervals are reported in 

                                                             
2 One of the criticisms of the BMM method is that there is not a standard way of grouping data in blocks of 

maxima. Given the length of our daily sample period (i.e., 16 years), we believe that grouping the maximums 

(minimums) in quarterly blocks would result in enough data points to generate unbiased estimates of the 

generalised extreme value distribution.  

3
 The Basel II accords recommend that the VaR be estimated at higher quantile, i.e., the 1% significance level 

for the next 10 trading days. 
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Tables 8 and 9. For the purpose of robustness, we also report the bootstrapped return level 

after 1000 resamples.  

PLACE TABLE 3 HERE 

For example, using the US SP500 market index, one would say that at 1% 

significance level the maximum loss observed during a period of one quarter exceeds 4.8% in 

one out of ten quarters on average for an investor with a long position on the market index 

(left tail). Figure 4 below highlights the differences in the return level of each market index at 

both the 1% and 5% significance levels. At these levels, we find that due to its Sharia laws, 

the Islamic market is less risky than other three market indexes. Both the left and right ML 

and bootstrapped maximum losses during one quarter are expected to exceed 3.8% on 

average in one out of ten quarters for an investor with long and/or short positions in the 

Islamic market. In contrast, the Asian market index SPAS50 is more risky than the rest of the 

market indexes in our portfolio. Its maximum loss observed during one quarter exceeds 5.8% 

in one out of ten quarters on average for an investor with a long position on the index (left 

tail) and 6% for an investor with a short position on the index (right tail). 

PLACE FIGURE 4 HERE 

Based on the specific market regulations, we find that in the US market and the Sharia 

- law compliant market which has 64% of it constiutents in the US maket, the portfolio risk 

measure is indepedend of the investment strategy used, i.e., the long or the short position. The 

maximum expected losses in these markets are almost the same for both the long position 

(left tail) and short positions (right tail) on the market indexes. However, in the Eurozone and 

Asian markets, we find that the short (selling) position generates higher risk than the long 

only position. We argue that this has to do with the presence of market speculations and  

short selling regulations, particualrly during the debt crisis. 

Contrary to the BMM methodology, the POT methodology produces more reliable 

and efficient shape parameters, and seems to be well suited for the modelling of the tails of 

financial time series (see for example Coles, 2001; McNeil, Frey and Embrechts, 2005 for 

more documentation of this result). The POT methodology proceeds as follows. Firstly, an 
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optimal threshold
4
 value is determined by using the mean excess function method which is 

described above. We report in Figures 6, 7, 8, and 9 the plots of the mean excess function, the 

excess distribution and the quantile-quantile distribution for the left tail of the empirical 

distribution. A visual analysis suggests that the optimal threshold value for the four market 

indexes varies between 3% and 5%. These values are located at the beginning of a portion of 

the sample mean excess plot that is roughly linear. Given the large number of values the 

thresholds can take in this interval of 3% to 5%, and the resulting subjectivity about the 

correct threshold value, in this study we follow Mackay, Challenor, and Bahaj (2010), 

Damon (2009); and Sigauke, Vester and Chikobvu (2012) who suggest the preferable use of 

the 90
th

 quantile of the empirical return distribution
5
.  

We follow the same procedure described above for the BMM method to separate the 

data for the left and right tails, respectively. Using the LM estimation method, we obtain the 

shape and scale parameters of the generalised Pareto distribution expressed in Equation (13). 

We also make use the Bonferroni confidence interval to correct for the sample bias. Two 

types of confidence intervals are reported: the ML confidence interval and the Bonferroni 

confidence interval for the left and the right tail distributions at the 1% and 5% significance 

levels, respectively. The ML and bootstrapped point estimates are reported in Table 4 in the 

column labelled “best estimate”. For example, using the SP500 one would say that the 1% 

level, ML and bootstrapped estimates of the left tail shape are 0.397% and 0.011%, 

respectively. Their corresponding confidence intervals are -0.034 (-1.028), and 1.669 (3.99), 

respectively. These numbers represent the smallest and the largest values these parameters 

can take.  

Unlike the BMM methodology which produced only positive shape parameters, the 

POT methodology produces negative and positive shape parameters. The negative shape 

parameter indicates that the tail of the empirical distribution (left and/or right) is thinner than 

                                                             
4
 The mean excess analysis may be used to select an optimum threshold. An optimal threshold is crucial to 

obtaining a reliable risk measures. Notice that a lower threshold is likely to reduce the variance of the estimates 

of the Generalised Pareto Distribution and induce a bias in the data above the threshold. A higher threshold 

reduces the bias but increases the volatility of the estimate of the GPD distribution. See for example Danielsson 

and de Vries (1997) and Dupuis (1998) for more discussion on this issue. To avoid these issues, we use the 90
th

 

quantile of the empirical log-return distribution as the threshold value.  
  
5
 For more discussion on the choice of the optimal threshold value, we refer the interested readers to the 

following studies Damen (2009); Mackay et al. (2010); Sigauke at al. (2012). 
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the tail of the normal distribution. However a positive shape parameter is an indication that 

the empirical distribution (left and/or right) has a fatter tail than that of the normal 

distribution, which can lead to the occurrence of extreme losses.  Table 4 shows that the US 

SP500 and the Eurozone indexes have thinner right tail distributions, meaning that the 

probability of the occurrence of extreme losses due to short (selling) positions is minimal. 

However, on the downside, the Eurozone SPEU, the Asian SPAS50, and the Sharia-based 

Islamic market indexes exhibit negative shape parameters, meaning that the probability of 

extreme losses due to long position is minimal. These results highlight the importance of the 

generalised Pareto distribution in fitting appropriately the tails of time series data 

characterised by extreme events. 

 

PLACE TABLE 4 HERE 

 

Based on these estimates, we compute two types of risk measures: the VaR and the 

ES. Theoretically, the ES is equal to the sum of VaR and the average of all losses exceeding 

the VaR. Therefore, we expect in all cases the VaR estimates to be of less magnitude than the 

ES estimates. Table 5  reports the risk measures for both the left and right tail distributions. 

Their confidence intervals are reported in Tables 8, 9, 10, and 11 . We find almost the same 

results with the BMM methodology, except for the US SP500 market index which results in 

the two largest risk measures, i.e. 17.15% (VaR) and 27.15% (ES) at the 5% significant level. 

We believe that this has to do with the recent 2008 – 2009 financial crisis.  

PLACE TABLE 5 HERE 

Figure 5 highlights the differences in the magnitude of the risk measures correponding 

to each of the four market indexes. Although the Sharia-based Islamic market index (DJIM) 

remains the least risky market, the POT methodology highlights the relatively high risk 

associated with the short (selling) position in the right tail of the return distributions of 

conventional markets. In general, the short positions lead to a higher likelihood of the 

occurrence of maximum/extreme losses.  

PLACE FIGURE 5 HERE 

        In addition, we attempt to answer the question of whether the Islamic market as 

represented by the DJIM is different from the three conventional financial markets. We apply 
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the ANOVA technique to the tail distribution data, i.e. the quartely maximum and nimum 

return series. Our aim in this section is to study the variability (dynamics) of each stock 

market during extreme events. In other words, we attempt to see whether the variability of the 

Islamic market during extreme market conditions is the same as that of conventional stock 

markets. We therefore test the null hypothesis of equal variability for the four markets i.e. 

H0: V1=V2=V3=V4 against H1: at least one stock market different from the others, where V1 

is the variability in the SP500 market, V2 is the variability in the SPEU market, V3 is the 

variability in the SPAS50 market and V4 is the variability in the Islamic DJIM market.  

       Two results can be obtained from this test. First, if we fail to reject the null hypothesis 

H0, it means that there is no difference between the Islamic and the conventional markets 

during extreme market events. Second, if we reject the null hypothesis it means that at least 

one market is different from others. In this case, we need to further test two sets of the null 

hypotheses:  

i. The conventional stock markets are not different (they have equal variability during 

extreme events) against the alternative that they are different. We refer to these 

hypotheses as H01: V1=V2=V3, and H11: at least one conventional market is 

different from the rest. 

ii. The Islamic stock market is different from each one of the conventional market; in 

this case the following hypotheses are formulated: H02: V4=V1 against H12: V4≠V1; 

and H03: V4=V2 against H13: V4≠V2; and H04: V4=V3 against H14: V4≠V3. With 

V1, V2, V3, and V4 defined as above. 

Tables 6 and 7 report the test statistic corresponding to each hypothesis test as well as 

its p-values. We reject the null hypothesis H0 of equal variability in all stock markets and 

conclude that at least one stock market is different from the others. To find out which one it 

is, we first test the null hypothesis H01 of equal variability in all conventional stock markets. 

We fail to reject this null hypothesis only at 10% significance level and conclude that the 

variability in convnentional stock markets during extreme events are the same. Lastly, we test 

the null hypothesis of equal variability between the Islamic market and each one of the 

conventional stock markets; that is hypotheses H02, H03, and H04. We do reject these null 

hypotheses at the 5% signifiance level for H03 and H04, and at  the10% significance level for 
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H02; and conclude that the Islamic DJIM market is significantly different from the 

convnentional stock markets. 

 

5.  Conclusion 

This paper makes use of two techniques used in the extreme value theory, namely the 

block of maxima method (BMM) based on the generalised extreme value dostribution and the 

peak-over-the threshold method (POT) based on the generalised Pareto distribution, in order 

to model the tails of the empirical distributions of three regional conventional imdxes and the 

Islamic market indexes. They indexes are represenetd by the US SP500, the Eurozone SPEU, 

the Asian SPAS50 and the Islamic DJIM. The main objective of the paper is to compute the 

financial tail risk measures associated with the distributions of these markets which follow 

different business models. To achieve this purpose, the study bigins by separating the log-

return data for the left and the right tail distributions. 

For the BMM method, the paper groups the log-return data in 67 independent and 

overlapping quarterly blocks and identified the minimum (maximum) of each block as the 

adequate inputs  to the BMM methodology. However, the inputs for the POT methodology 

have been identified as the excesses over the threshold of the 90
th

 quantile of the empirical 

log-return distribution.  

Using the ML method and the 1000 bootstrap simulations, we estimate the parameters 

of the re-parameterised generalised extreme value distribution. The estimation of the re-

parameterised distribution results in positive shape parameters for all four market indexes, 

leading to the conclusion that the BMM method suggests that these market indexes exhibit 

fatter tails than the tail of the normal distribution. However, when the POT methodology is 

used, we find more elaborate estimates of the shape parameters. We find that the US SP500 

and the Eurozone SPEU exhibit fatter tail behaviour in the right tail, whereas the Islamic 

DJIM, the Asian SPAS50, and the Eurozone SPEU exhibit fatter tail behaviour in the left 

tails. Stock markets with fatter left tails are prone to higher risk due to short selling positions. 

However, based on the risk-reward analysis reported in Fgure 3, we find that the Islamic 

market, although exhibiting a fatter left tail behaviour, is less risky than the conventional 

stock markets. Since short selling and other excessive risk taking behaviours are not allowed 
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in Islamic markets, we argue that its left fat-tailedness behaviour is an indication of windfall 

profits on long positions only that investors can reap during extreme events. We have applied 

the ANOVA technique to the tail distribution data in order to determine whether the Islamic 

market is different from the conventional markets. Using different statistical tests, we find 

that the Islamic stock market is indeed significantly different from the conventional stock 

markets during extreme market events. We therefore recommend the Islamic finance as a 

solution to financial crises in order to curb excessive risk taking behaviour in conventional 

stock markets  

Based on the shape parameters, we find that the Asian SPAS50 market index is the 

more risky market in its right tail than in its left tail. This is an indication that short (selling) 

positions on this market index have a more negative impact on its performance. The Islamic 

market index is the least risky market index most likely due to its restrictive Sharia laws that 

discourage high risk taking behaviour. However, the developed markets (the US SP500, and 

the Eurozone SPEU) are relatively riskier.  

The results of this current study are really significant because they show clearly that 

during major crises the Islamic stock index is not only less risky but also significantly 

different from the conventional markets. Thus, the results come differently to those of the 

recent studies which show that the former is no different from the counventional counterparts 

in different regions. Both the left and right risk measures depend on whether the investor is 

long or short on these market indexes. In general, we find that in most volatile and worst 

market conditions, short (selling) positions on conventional stock market indexes have a 

more negative impact on the respective portfolio performance than long position strategies. 

Finally, Islamic market provides generous opportunities for windfall profits during periods of 

financial crises. 
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Table 1: Summary statistics 

Index Mean Std Dev Skewness Kurtosis 

SP500 0.0167 1.2582 -0.2039 7.9104 

SPEU 0.0075 1.4017 -0.0994 4.4679 

SPAS50 0.0305 1.4689    0.03 5.5 

DJIM 0.0187 1.0743 -0.322 6.5891 

 

Table 2: BMM shape and scale estimates
6
 

Alpha=1% Alpha=5%   

LOWER 

BOUND 

POINT 

ESTIMATE 

UPPER 

BOUND 

LOWER 

BOUND 

POINT 

ESTIMATE 

UPPER 

BOUND 

SP500 LT MLξ 0.089 0.324 0.574 0.136 0.324 0.524 

MLσ 0.007 0.008 0.011 0.0071 0.00825 0.01 

BSξ 0.3239   0.32   

BSσ 0.0082   0.0082   

RT MLξ 0.092 0.36 0.635 0.145 0.36 0.581 

MLσ 0.007 0.008 0.011 0.007 0.0082 0.01 

BSξ 0.3605   0.3604   

BSσ 0.0082   0.0082   

SPEU LT MLξ 0.016 0.249 0.535 0.06 0.249 0.473 

MLσ 0.007 0.009 0.011 0.0072 0.00851 0.1034 

BSξ 0.2487   0.2487   

BSσ 0.0505   0.00851   

                                                             
6
 LT denotes left tail, while RT refers to right tail. ML and BS refer to the maximum likelihood and 

bootstraps estimates for the shape (ξ) and the scale (σ) parameters, respectively 

MLξ: estimate of the shape parameter using the Maximum likelihood method 

MLσ: estimate of the scale parameter using the Maximum likelihood method 

BSξ: estimate of the shape parameter using the Bootstrap technique 

BSσ: estimate of the scale parameter using the Bootstrap technique 

NB: each Bootstrap technique involves 1000 simulations in order to obtain unbiased estimates 
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RT MLξ 0.089 0.326 0.554 0.137 0.356 0.51 

MLσ 0.008 0.009 0.012 0.0079 0.00921 0.1113 

BSξ 0.0326   0.326   

BSσ 0.0092   0.009205   

SPAS50 LT MLξ -0.014 0.244 0.604 0.032 0.244 0.526 

MLσ 0.009 0.011 0.014 0.0091 0.01082 0.0132 

BSξ 0.2443   0.2443   

BSσ 0.0108   0.010816   

RT MLξ 0.048 0.635 0.791 0.137 0.338 0.552 

MLσ 0.009 0.011 0.013 0.0088 0.01038 0.0128 

BSξ 0.3381   0.3381   

BSσ 0.0104   0.010379   

DJIM LT MLξ 0.06 0.29 0.556 0.105 0.29 0.5 

MLσ 0.006 0.007 0.009 0.0058 0.00674 0.0082 

BSξ 0.2902   0.2902   

BSσ 0.0067   0.00674   

RT MLξ 0.019 0.007 0.057 0.23 0.435 

MLσ 0.006 0.039 0.0063 0.0071 0.0086 

BSξ 0.0071   0.02302   

BSσ 0.0386   0.007095   

Note. See footnotes 4 for Table 2. 

Table 3: BMM return levels  

Alpha=1% Alpha=5% 

ML Bootstrap ML Bootstrap 

SP500 Left.RL 4.8 4.78 4.778 4.777 

Right.RL 4.8 4.81 4.805 4.8048 

SPEU Left.RL 5.1 5.05 5.053 5.0526 

Right.RL 5.4 5.41 5.412 5.4121 

SPAS 

50 Left.RL 5.8 5.82 5.824 5.824 

Right.RL 6.001 6.02 6.023 6.0227 

DJIM Left.RL 3.901 3.92 3.92 3.9195 

Right.RL 3.9021 3.86 3.862 3.8619 
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Table 4: POT shape and scale estimates 

Alpha=1% Alpha=5%   

LOWER 

BOUND 

BEST 

ESTIMATE 

UPPER 

BOUND 

LOWER 

BOUND 

BEST 

ESTIMATE 

UPPER 

BOUND 

SP500 L.T MLξ -0.034 0.379 1.669 0.026 0.379 1.217 

MLσ 0.005 0.011 0.025 0.006 0.011 0.021 

Bcaξ -1.028 0.3787 3.99 -0.236 0.3787 2.919 

Bcaσ 0.001 0.113 0.08 0.002 0.0113 0.03 

R.T MLξ -0.003 -0.003 -0.178 -0.03 -0.003 -0.159 

MLσ 0.01 0.016 0.03 0.011 0.016 0.025 

Bcaξ -1.191 -0.0032 0.035 -0.672 -0.0032 0.267 

Bcaσ 0.01 0.0163 0.32 0.011 0.016 0.023 

SPEU L.T MLξ -0.085 -0.085 -0.268 -0.085 -0.085 -0.246 

MLσ 0.001 0.016 0.011 0 0.016 0.012 

Bcaξ -0.615 -0.0854 0.594 -0.378 -0.0852 0.383 

Bcaσ 0.006 0.0163 0.033 0.009 0.0163 0.027 

R.T MLξ -0.136 -0.136 -0.3 -0.136 -0.136 -0.283 

MLσ 0.001 0.022 0.015 0 0.022 0.017 

Bcaξ -1.082 -0.1356 0.782 -0.467 -0.1356 0.395 

Bcaσ 0.007 0.0224 0.049 0.011 0.022 0.039 

SPAS50 L.T MLξ -0.051 -0.051 -0.236 -0.051 -0.051 -0.21 

MLσ 0.001 0.017 0.012 0.001 0.017 0.013 

Bcaξ -0.463 -0.0507 0.408 -0.306 -0.51 0.289 

Bcaσ 0.008 0.0166 0.031 0.011 0.011 0.029 

R.T MLξ 0.115 0.115 0.758 0.115 0.115 0.544 

MLσ 0.011 0.017 0.029 0.012 0.017 0.025 

Bcaξ -0.405 0.1151 1.112 -0.161 0.1151 0.817 

Bcaσ 0.007 0.0172 0.031 0.009 0.172 0.027 

DJIM L.T MLξ -0.06 -0.06 -0.295 -0.06 -0.06 -0.276 

MLσ 0.001 0.016 0.009 0.001 0.016 0.01 

Bcaξ -1.599 -0.06 1.781 -1.087 -0.06 1.594 

Bcaσ 0.001 0.0161 0.08 0.02 0.0161 0.043 

R.T MLξ 0.201 0.266 1.62 -0.016 0.266 1.113 

MLσ 0.004 0.008 0.02 0.005 0.008 0.016 

Bcaξ 0.23 0.266 1.6 -1.587 0.2664 0.886 
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Bcaσ 0.0031 0.008 0.021 0.002 0.0083 0.017 

 

 

Table 5: POT estimates of VaR and ES 

Alpha=1% Alpha=5% 

SP500 Left.VaR 11.06 17.15 

Left.ES 17.79 27.15 

Right.VaR 8.65 10.44 

Right.ES 10.26 12.04 

SPEU Left.VaR 8.22 8.22 

Left.ES 9.31 9.31 

Right.VaR 9.47 9.47 

Right.ES 10.67 10.67 

SPAS50 Left.VaR 9.08 9.1 

Left.ES 10.37 10.4 

Right.VaR 11.53 11.53 

Right.ES 14.58 14.58 

DJIM Left.VaR 7.38 7.38 

Left.ES 8.65 8.65 

Right.VaR 8.024 7.02 

Right.ES 10.18 9.61 

 

Table 6: Summary of ANOVA tests for lower tail 

Source of Variation 

Sum-of 

Squared 

Degree 

of 

Freedom 

Mean 

Square 

F. 

Calculated 

P 

value 

F. 

Theoretical 

H0:V1=V2=V3=V4 

Between Markets 43.6297 3 14.54323 5.8797 0.000672 2.6388 

Error 652.9923 264 2.4725 

Total 696.622 267 

Decision Reject H0 

H01: V1=V2=V3 

Between Markets 12.7728 2 6.4864 2.3885 0.0944 3.0415 

Error 537.7111 198 2.7157 

Total 550.6839 200 

Decision 

Do not Reject 

H0 @ 10% 
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H02: V4=V1 

Between Markets 6.9886 1 6.9886 2.9873 0.086258 3.912875 

Error 308.804 132 2.3394 

Total 315.7926 133 

Decision RejectOnlyat10% 

H03: V4=V2 

Between Markets 21.9468 1 21.9468 11.1996 0.001066 3.912875 

Error 258.6684 132 1.9596 

Total 280.6152 133 

Decision Reject H0 

H04: V4=V3 

Between Markets 38.8648 1 38.8648 16.2305 0.000094 3.9129 

Error 316.0822 132 2.3946 

Total 354.947 133 

Decision Reject H0 

 

 

Table 7: Summary of NOVA tests for upper tail 

Source of Variation 

Sum-of 

Squared 

Degree 

of 

Freedom 

Mean 

Square 

F 

Calculated 

P 

value 

F 

Theoretical 

H0:V1=V2=V3=V4 

Between Markets 54.9709 3 18.3236 6.0139 0.00056 2.6388 

Error 804.3742 264 3.0469 

Total 859.3451 267 

Decision Reject H0 

H01: V1=V2=V3 

Between Markets 20.1067 2 10.0534 2.8871 0.058087 3.041518 

Error 689.4675 198 3.4822 

Total 709.5742 200 

Decision 

Do not Reject 

H0 @ 10% 

H02: V4=V1 

Between Markets 5.9004 1 5.9004 2.654607 0.1056 3.912875 

Error 293.3947 132 2.2227 

Total 299.295 133 

Decision RejectOnlyat10% 

H03: V4=V2 

Between Markets 26.6209 1 26.6209 10.5848 0.00148 3.91288 

Error 331.9807 132 2.515 

Total 358.6016 133 

Decision Reject H0 

H04: V4=V3 

Between Markets 47.2605 1 47.2605 15.2598 0.000149 3.912875 
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Error 408.8121 132 3.0971 

Total 456.0726 133 

Decision Reject H0 

 

Table 8: ML and Bca Estimates of RL when alpha=1% 

for BMM method 

LOW 

BOUND 

POINT 

ESTIMATE 

UPPER 

BOUND 

ML ML Bca ML 

SP500 Left RL 4.71 4.8 4.78 6.26 

Right 

RL 4.8 4.8 4.81 6.6 

SPEU Left RL 5.1 5.1 5.05 6.5 

Right 

RL 5.4 5.4 5.41 7.2101 

SPAS50 Left RL 5.8 5.8 5.82 7.9 

Right 

RL 6.01 6.001 6.02 8.2 

DJIM Left RL 3.9 3.901 3.92 5.1 

Right 

RL 3.9 3.9021 3.86 16.4 

 

Table 9: ML and Bca Estimates of VaR when 

alpha=5% for BMM method 

LOW 

BOUND 

POINT 

ESTIMATE 

UPPER 

BOUND 

ML ML Bca ML 

SP500 Left RL 3.968 4.778 4.777 6.377 

Right 

RL 3.931 4.805 4.8048 6.638 

SPEU Left RL 4.334 5.053 5.0526 6.472 

Right 

RL 4.503 5.412 5.4121 7.168 

SPAS 

50 Left RL 4.913 5.824 5.824 7.871 
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Right 

RL 4.97 6.023 6.0227 8.17 

DJIM Left RL 3.301 3.92 3.9195 5.137 

Right 

RL 3.287 3.862 3.8619 4.948 

 

Table 10: ML Estimates of VaR and ES when alpha=1% for POT 

method 

LOW BOUND best ESTIMATE UPPER BOUND 

SP500 Left VaR -58.94 11.06 598 

Left ES 7.12 17.79 810.37 

Right VaR -21.35 8.65 27.75 

Right ES 7.33 10.26 120.05 

SPEU Left VaR -21.79 8.22 28.81 

Left ES 7.15 9.31 142.3 

Right VaR -20.53 9.47 35.33 

Right ES 8.23 10.67 182.12 

SPAS 

50 Left VaR -20.92 9.08 27.32 

Left ES 7.81 10.37 78.75 

Right VaR -38.47 11.53 55.61 

Right ES 9.32 14.58 164.5 

DJIM Left VaR -22.62 7.38 125.74 

Left ES 0.01 8.65 183.39 

Right VaR 23.01 8.024 118.027 

Right ES 0.31 10.18 162.03 

 

Table 11: ML Estimates of VaR and ES when alpha=5% 

for the POT method 

LOW 

BOUND 

best 

ESTIMATE 

UPPER 

BOUND 

SP500 

Left 

VaR -92.85 17.15 74.254 

Left ES 0.01 27.15 248.65 
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Right 

VaR -29.56 10.44 28.7 

Right ES 8.75 12.04 57.61 

SPEU 

Left 

VaR -21.78 8.22 16.47 

Left ES 7.46 9.31 32.5 

Right 

VaR -20.53 9.47 19.48 

Right ES 8.6 10.67 38.03 

SPAS50 

Left 

VaR -20.9 9.1 17.4 

Left ES 8.1 10.4 30.9 

Right 

VaR -38.47 11.53 29.22 

Right ES 9.95 14.58 88.41 

DJIM 

Left 

VaR -22.62 7.38 28.22 

Left ES 0.01 8.65 183.39 

Right 

VaR -22.98 7.02 27.21 

Right ES 0.01 9.61 257.14 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Hypothetical return series for a long position on the SP500 index during 

years 1, 2, 3, 4, and 5. 
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  Figure 2: A hypothetical extreme return distribution with a threshold 3u = . 

 

 

 

Figure 3: Risk-reward plot. 
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Figure 4: BMM comparative return levels. 

 

 

 

Figure 5: POT comparative risk measures. 
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Figure 6: Checking the GPD for the SPAS50. 
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Figure 7: Checking the GPD for the DJIM. 



37 

 

 

Figure 8: checking the GPD for the SPEU. 
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Figure 9: checking the GPD for the SP500. 

 


